
Click Stream Pattern Matching with FPGAs

Louis Woods Jens Teubner Gustavo Alonso
Systems Group, Department of Computer Science

ETH Zurich, Switzerland

{louis.woods,jens.teubner,gustavo.alonso}@inf.ethz.ch

ABSTRACT
Complex event processing (CEP) is becoming an integral
part of traditional stream processing. To cope with con-
stantly growing data volumes and an increasing need for
fast results, new technologies have to be explored. In this
demonstration we present a hardware based complex event
detection system implemented on a field-programmable gate
array (FPGA). The FPGA is connected directly to the net-
work and monitors incoming web server traffic detecting
click stream patterns in real-time. As part of the demon-
stration, the process of transforming complex event patterns
into hardware circuits will also be illustrated. This involves
compiling click patterns to a hardware description language
(VHDL) with our custom-built query compiler, as well as
configuring the FPGA with the generated circuits.

1. BACKGROUND
Complex event detection is gaining significant importance

in current stream processing systems [1, 2, 3, 4]. A com-
plex event is a meaningful higher-level event derived from a
number of low-level (basic) events. Complex event patterns
are expressed with regular expressions [7], and multiple pat-
terns typically need to be concurrently evaluated on one or
several input streams. Commodity systems have problems
with this task for various reasons. On the one hand, pro-
cessing many patterns simultaneously over high-rate data
streams will lead to a bottleneck on sequential systems. On
the other hand, commodity systems have the problem that
the data needs to be brought from the source of the stream,
e.g., the network interface, to the CPU via main memory
before the CPU can process the data leading to another
bottleneck [5]. As a solution to these problems, we pro-
pose to use field-programmable gate arrays (FPGAs) and to
perform complex event detection directly in hardware. We
thereby exploit the inherent parallelism of FPGAs to eval-
uate multiple complex event pattern concurrently, and by
connecting the FPGA directly to the network we can avoid
the network-memory-bottleneck.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

2. DEMONSTRATION
The complex events that we will detect with the help of

an FPGA correspond to click stream patterns, i.e., the com-
plex events really are sequences of page views of a given
website. This use case has several interesting properties.
First of all, the FPGA detects click patterns in real-time, at
wire speed, and in an non-invasive manner, e.g., the exist-
ing web application does not need to be altered, no server
logs need to be processed, etc. Secondly, this use case al-
lows us to demonstrate the usefulness of FPGAs for many
different tasks. TCP packets will be decoded directly on
the FPGA and their payloads will be scanned in order to
detect specific HTTP requests. We use regular expressions
in hardware to match HTTP requests. Therefore, multiple
regular expressions have to be evaluated on every network
packet in parallel. Finally, matching HTTP requests need
to trigger events so that the complex event detection engine,
which is also on the FPGA, can detect the complex events.

2.1 Stream Partitioning
When multiple users concurrently are browsing a web-

site this generates a single interleaved stream of page views.
However, it does not make sense to detect patterns on the
accumulated click stream of all users. Therefore, the stream
of page views needs to be partitioned on the FPGA so that
click patterns can be detected on a per-user (per-client) ba-
sis. Our solution supports sub-stream pattern matching and
we will show this feature in the demonstration.

2.2 Query Compilation
For the purpose of specifying complex events (click stream

patterns), we present a declarative query language. This
language, which we further describe in Section 3, is inspired
by a recent standardization effort [7] to extend SQL with
pattern matching capabilities. We have developed a com-
piler that translates queries specified in our query language
to VHDL code. VHDL is a hardware description language
that can be used to configure an FPGA. Conference atten-
dees will be able to compile custom queries to VHDL and
the generated state machines will be illustrated through a
state machine visualizer built into the compiler.

2.3 Demo Setup
In this demonstration a small private network will be

setup (Figure 1). We connect a web server with a number
of laptops (clients) via a managed switch. We have config-
ured the switch to mirror the port of the web server. The
FPGA, programmed with the complex event detection en-



gine, is connected to the mirrored port. This way, the FPGA
can eavesdrop on the entire traffic between web server and
clients. On the FPGA the Ethernet frames are decoded
and potential TCP payloads are processed by the circuits of
the pattern matching engine. The FPGA is pre-configured
with click patterns of particular interest. When the FPGA
detects a given click pattern, it will report this (complex)
event on its LCD display. Visitors can use one of our laptops
or connect their own laptop to the switch and see how the
FPGA detects patterns that they generate by accessing the
web server.

Switch

Web Server

FPGA

Client

ClientClient

Figure 1: Demonstration Setup

Multiple complex event patterns are concurrently evalu-
ated on the FPGA for every network packet sent to the
web server. The patterns are detected on a per-client basis.
That is, multiple visitors can generate page views on our
web server simultaneously and patterns will be detected for
each user individually. This is possible because the stream
of clicks is partitioned by a special Stream Partitioner com-
ponent (see Section 5).

3. CLICK STREAM PATTERN EXAMPLES
In this section we want to give some idea of the kinds of

click stream patterns that can be detected by the circuits of
our complex event detection system. As an example we will
consider a multilevel web form such as are typically seen in
online flight reservation systems. A schematic representa-
tion of the web form is depicted in Figure 2.

F1 F2

T1

T2

T3

F3 C

Figure 2: Multilevel Web Form

This form consists of three subforms, which are all on
separate web pages. Depending on the options selected by
the user at the first level (F1), the second level (F2) will be
skipped. After the user has completed the third level (F3), a
confirmation-page (C) is displayed. From the confirmation-
page the user can go back to any of the previous levels and
modify his data. Once the user clicks the confirm-button on
the confirmation-page, one of three different thankyou-pages
(T1-T3) will be displayed.

3.1 Detecting Page Clicks
A complex event in this application is a sequence of clicks

corresponding to a given click pattern. The basic events are
the individual page clicks. In this section we discuss how
we can define the basic events of interest in the context of
a declarative query language. We specify basic events with
the help of predicates. These predicates can be declared in a
special DEFINE clause of a complex event query. In this case
a predicate is a specific condition that is evaluated for every
incoming network packet payload. When the predicate is
satisfied, this generates a basic event for the complex event
detection engine. In Listing 1 a DEFINE clause is listed for
the example web application illustrated in Figure 2.

1 DEFINE
2 F1 AS (Payload = /(GET|POST) \/form1\.html/)
3 F2 AS (Payload = /(GET|POST) \/form2\.html/)
4 F3 AS (Payload = /(GET|POST) \/form3\.html/)
5 C AS (Payload = /(GET|POST) \/ confirm \.html/)
6 T AS (Payload = /(GET|POST) \/ thankyou [1 -3]\. html/)
7 O AS (Payload = /(GET|POST) \/[^.]*\. html.*HTTP/)

Listing 1: Predicate Declarations

The predicates are labeled (F1, F2, etc.), so that they can
be used in click pattern declarations. After the AS keyword
follows the actual definition of the respective predicate. Here
we specify predicates with the help of regular expressions.
We use a Perl-like syntax, denoting regular expressions by
enclosing them in two slashes.

We are interested in TCP payloads that start either with
“GET” or “POST”, according to the HTTP protocol. For
example, clicking the submit-button on one of the subforms
would trigger a POST request, whereas the links on the
confirmation-page, taking the user back to one of the sub-
forms, would produce GET requests.

Since it will be irrelevant in our patterns which one of
the three thankyou-pages is displayed to the user, we can
declare a single predicate representing all three thankyou-
pages. On line six in Listing 1, we do exactly this with the
help of a character class declaration ([1-3]).

The last predicate (O), on line seven in Listing 1, is sup-
posed to catch any other GET or POST request issued by
the user which is not covered by the five previously declared
predicates. By appending .*HTTP1 to the regular expression
we ensure that this predicate is only satisfied when none of
the previously defined predicates have been satisfied. This
is because (in this case) click detection is terminated as soon
as the first predicate is satisfied. Specifying this predicate is
very important because the sequence F1 F2 F3 has a different
meaning than, say, the sequence F1 F2 O F3. If we had not
specified predicate O these two sequences would be equiva-
lent to the complex event detection engine because it would
never ‘know’ about the extra click that happened between
F2 and F3.

3.2 Complex Event Patterns
With the predicates declared, it is now time to define some

patterns over these predicates. Three example patterns are
illustrated in Listing 2. The patterns are explained below.

1In HTTP version 1.0 and 1.1 GET and POST requests
are followed by the version of the HTTP protocol, i.e.,
“HTTP/1.0”. Here we do not support HTTP 0.9, where
this is not the case.



1 PATTERN pattern1 (F1 F2? F3 C T)
2 PATTERN pattern2 (F1 F2? F3 C ([F1-F3]+ C)+ T)
3 PATTERN pattern3 ([F1-C]+ O)

Listing 2: Pattern Declarations

pattern1 A user clicks through form one, two (optional)
and three without interruption, i.e., without browsing
to a different page in between. On the confirmation-
page the user clicks the confirm-button without going
back to make any changes to his data.

pattern2 This time, the user at the confirmation page goes
back at least one time to one of the subforms, before
confirming. Notice how we use the range operator in
the symbol class ([F1-F3]). Which predicates are in-
cluded in the range depends on the order in which the
predicates are declared, i.e., in this case [F1-F3] is
equivalent to [F1 F2 F3].

pattern3 The last pattern detects users that start filling
out the web form but then leave and request some
other page (O) on this website.

4. PATTERN TO VHDL COMPILATION
As can be seen in the complex event queries that we have

presented previously, we use regular expressions in two ways.
First, character based regular expressions are used to detect
certain HTTP requests on the bytes of the network pack-
ets. Second, regular expressions are used also for specifying
the click stream patterns. On the FPGA, both regular ex-
pression types are implemented as finite automata. In hard-
ware, as opposed to software, deterministic finite automata
(DFA) are not more efficient than non-deterministic finite
automata (NFA) [6]. In contrast, NFAs typically have more
modest chip space requirements than DFAs.

Our query compiler can translate complex event patterns,
specified in the query language illustrated above, to VHDL
code. The VHDL code defines the necessary NFAs, a Pred-
icate Decoder component and a Stream Partitioner compo-
nent. At the demonstration, we will show how our compiler
generates VHDL code from sample queries. Unfortunately,
synthesizing the VHDL code, placing and routing the de-
sign, and configuring the FPGA on-site using a standard
FPGA tool chain can take some time, e.g., ten to fifteen
minutes. Nevertheless, we can configure the FPGA with
pre-generated bitstreams which is significantly faster and
also demonstrates the process.

5. SYSTEM ARCHITECTURE
The aforementioned compiler takes a set of queries and

generates a complex event detection system in hardware that
can be run on an FPGA. In this section we give a high-level
overview of the key components that this system consists
of. As mentioned earlier, our system is connected directly
to the Ethernet MAC component of the physical network
interface so that we can achieve full wire speed throughput
performance. Figure 3 depicts the placement of the FPGA
in the data path. Typically this would be between network
interface and CPU. For demonstration purposes, we will not
actually notify a CPU but rather display pattern matches
on the LCD display of the FPGA development board.

FPGA

Ethernet frame

TCP payload

Click event detection

Source IP

Click event

TCP paket decoder & filter

NIC

Stream partitioner

Event 
pattern 

detection

Event 
pattern 

detection

Event 
pattern 

detection

Event 
pattern 

detection

N
e
tw

o
rk

LCD

Distributes click events to 
different pattern matching 
engines based on their 
source IP address

Notification

Figure 3: FPGA Placed in Data Path

On the FPGA we have implemented a Network Packet
Decoding component that takes care of processing the raw
Ethernet frames. Its main task is to properly unpack the
payloads of the network packets, but it can also act as a filter
by dropping packets, e.g., based on an invalid IP address in
the IP header or an invalid port in the TCP header.

The payload of the network packets addressed to our web
server are forwarded to the next hardware component in our
system, the Click Event Detection component. This com-
ponent evaluates multiple regular expressions concurrently
on the data of the payload. Each regular expression corre-
sponds to a different kind of HTTP request.

When the Click Event Detection component matches an
HTTP request of interest, it generates a (basic) event and
forwards that event to the Stream Partitioner component.
This component has to make sure that the event is processed
by the appropriate finite state automaton. If we want to
be able to detect sub-stream patterns, we need a separate
finite state machine for every sub-stream. The Stream Par-
titioner determines the appropriate finite state machine and
forwards the event to it.

This state machine then does the actual complex pattern
detection and in case of a match the LCD component is
informed and the match is reported on the LCD display.
The LCD display has two display lines. On the top line
the pattern that matched will be displayed and on the bot-
tom line the IP address of the user that caused the pattern
match. For illustration purposes, we will not allow over-
lapping matches of different patterns. However, in general
overlapping patterns are not a problem since different pat-
terns are evaluated by different hardware components.



6. SUMMARY
In this demonstration we show how an FPGA can be en-

abled to monitor data streams directly from the network
in an non-invasive manner. Conference attendees can con-
nect their own laptops or use one of our laptops to generate
HTTP requests on a web server and see how their access
patterns are recognized by the FPGA. Multiple users can
evaluate the system concurrently and the patterns will be
detected on a per-user basis. The matches will be reported
on the LCD display together with the IP address of the user
that caused the pattern match.

Furthermore, we present our custom-built query compiler
showing how complex event patterns can be specified in a
declarative query language and how these queries are trans-
lated to VHDL code. For interested visitors we can also
synthesize custom queries and actually configure the FPGA
with these queries so that visitors can learn the entire life
cycle of an FPGA based query processor.

7. REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient pattern matching over event streams. In
SIGMOD ’08, New York, NY, USA, 2008.

[2] N. Dindar, B. Güç, P. Lau, A. Özaland M. Soner, and
N. Tatbul. DejaVu: Declarative Pattern Matching over
Live and Archived Streams of Events (Demonstration).
In SIGMOD’09, Providence, RI, USA, 2009.

[3] ESPER. http://esper.codehaus.org/.

[4] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg,
and G. Anderson. SASE: Complex Event Processing
over Streams (Demo). In CIDR’07, Asilomar, CA,
USA, 2007.

[5] R. Müller, J. Teubner, and G. Alonso. Streams on
Wires - A Query Compiler for FPGAs. In VLDB’09,
Lyon, France, 2009.

[6] Y. Yang, W. Jiang, and V. Prasanna. Compact
architecture for high-throughput regular expression
matching on FPGA. In ANCS’08, San Jose, California,
USA, 2008.

[7] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby.
Pattern Matching in Sequences of Rows. In Technical
Report ANSI Standard Proposal, 2007.


