Glacier: A Query-to-Hardware Compiler

Rene Mueller
rene.mueller@inf.ethz.ch

. Jens Teubner*
jens.teubner@inf.ethz.ch

Gustavo Alonso
alonso@inf.ethz.ch

Systems Group, Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

Field-programmable gate arrays (FPGAs) are a promising
technology that can be used in database systems. In this
demonstration we show Glacier, a library and a compiler
that can be employed to implement streaming queries as
hardware circuits on FPGAs. Glacier consists of a library of
compositional hardware modules that represent stream pro-
cessing operators. Given a query execution plan, the com-
piler instantiates the corresponding components and wires
them up to a digital circuit. The goal of this demo is to
show the flexibility of the compositional approach.

1. INTRODUCTION

The emergence of multi-core technology has largely elim-
inated the CPU bottleneck in computing systems—often
only to hit the next architectural limit of commodity hard-
ware. I/O bottlenecks to external components, high power
consumption, and memory bottlenecks have become critical
issues in existing systems.

Field-programmable gate arrays (FPGAs) are seen as a
possible escape out of this dilemma. Different research pro-
totypes [3, 4, 6, 7] as well as actual products [1, 2] indi-
cate the high potential of FPGA technology for the use in
database systems.

In simple terms, FPGAs are chip devices that provide a
configurable pool of logic resources. These logic resources
can be used to implement arbitrary digital circuits. A key
advantage of FPGAs over custom silicon chips is that the
configuration is not fixed. An FPGA chip can be repro-
grammed “in the field” even after the chip has been inte-
grated into an appliance.

From systems design perspective FPGAs have several in-
teresting properties. First of all, the large number of logic
cells (758,000 cells for a recent Xilinx Virtex-6 XC6VLX760
chip [8]) offers a level of hardware parallelism that cannot be

*Jens Teubner is supported by the Swiss National Science
Foundation SNF under Ambizione grant no. 126405.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 2010 Indianapolis, Indiana, USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Tay,....an(q)  Projection

oa(q) select tuples where field a contains true
®a:(by,b2)(@)  arithmetic/Boolean operation a = by * b2
q1 Uq2 union

ag9p..(q) aggregate agg using input field a,

agg € {avg, count, max, min, sum}
q1 8rPyc g2(x) group output of g1 by field ¢, then
invoke g2 with = substituted by the group
q1 By, g2(x) sliding window with size k, advance by [;
apply g2 with x substituted on each wind.;
t € {time, tuple}: time-, or tuple-based

Q1 ® g2 concatenation; position-based field join

Table 1: Supported streaming algebra (a,b,c: field
names; ¢,q;: sub-plans; z: parameterized sub-plan
input).

matched on traditional multi-core architectures or a graph-
ics processors (GPUs). FPGAs operate at a significantly
lower clock frequency and, hence, excel with extremely low
power consumption. Finally, unlike CPUs or GPUs, they
can be directly integrated into the data path. For instance,
FPGASs can be used to filter or aggregate data arriving from
the network or from disks [1, 4].

In [5], we presented Glacier, a component library and a
compiler that translates streaming queries into hardware
circuits. The component library consists of compositional
modules that represent stream processing operators. Given
a query, the compiler instantiates the necessary modules and
connects them to a digital logic circuit which is then trans-
lated into an FPGA configuration in a traditional FPGA
design flow. A virtue of Glacier is its full compositionality:
Glacier accepts arbitrary compositions of the supported al-
gebra operators (lined up in Table 1). In this demonstration
we present our implementation of Glacier and show the flex-
ibility of this approach using different queries.

1.1 Processing of Financial Streams

We adopt the use case from a collaboration with a Swiss
bank. In their financial trading application, high-volume
data streams from the Eurex stock exchange need to be
processed in real time. The streams arrive over the network
as a sequence of several ten thousand UDP network data-
grams every second. Yet, low latency—particularly under
high load—are critical and hard to reach with traditional
software-based stream processing engines. In our approach



notification

query plan T B ,CPU
network{NIC S —o— B —
""""""""""""""""""""""""""""""""""""" Main
data Memory
stream

FPGA

Figure 1: System Architecture: Stream engine be-
tween network interface and CPU.

we use Glacier to generate hardware execution plans and
execute the queries on an FPGA. The FPGA is placed be-
tween the network interface and the higher layers of the
trading application running on a traditional server.

Our demonstration uses a stripped-down version of the
original data stream. A data generator lets us generate
streams of configurable data rates that follow this schema.

1.2 System Integration

Glacier provides interface components that can accept
data from the CPU or the network and write result stream
back onto the network or back to the CPU. The network
origin as well as the low-latency demands suggest a config-
uration like the one shown in Figure 1, where the FPGA is
directly connected to the physical network interface. Parts
of the UDP/IP network controller are implemented inside
the FPGA fabric. After reception, data from the network is
directly fed into the hardware implementation of a database
query plan. Only the final query result is sent to a commod-
ity system, e.g., to serve a user application.

2. QUERY-TO-HARDWARE COMPILER

We described the inner workings of the Glacier compiler
and its component library in [5]. Here we only summarize
those characteristics of Glacier that are the focus of this
system demonstration.

Currently, Glacier supports all stream queries that can
be composed from the streaming algebra listed in Table 1.
In addition to these surface-level stream processing opera-
tors, the component library of Glacier provides interfaces
for the network and the CPU, latency balancing operators,
concatenation of streams and means to evaluate Boolean and
arithmetic expressions.

2.1 Example Query

We illustrate the characteristics of Glacier based on the
simple example query shown in Figure 2(b). It operates over
a data stream whose schema is shown in Figure 2(a). The
compiler parses the query and produces an internal repre-
sentation of the corresponding query plan, as depicted in
Figure 2(c). Glacier makes arithmetic and Boolean opera-
tions very explicit in its internal plans in order to prepare
for its compositional compilation scheme.

Arithmetic and Boolean operators each add a new at-
tribute to the stream schema. For example, the result of the
string comparison Symbol = "UBSN" is written into a new
field a. Similarly, the outcome of Volume = 100000 is writ-
ten into attribute b. Both attributes are combined using a
Boolean ‘and’ operation that produces another new column
c. This way, selection o, does not need to be a higher-order
operator, but only inspects a single Boolean column c to

filter out non-matching tuples. At the root of the plan in
Figure 2(c), the projection operator 7 discards the superflu-
ous columns and establishes the requested output schema.

2.2 Circuit Generation

Glacier compiles the algebraic query plan into the descrip-
tion of a hardware circuit expressed in the hardware descrip-
tion language VHDL, then fed into a standard FPGA tool
chain and loaded into the chip.

Figure 2(d) shows a graphical representation of the hard-
ware plan generated for the algebraic plan in Figure 2(c).
In this hardware plan, the tuples from the Trades stream
enter the system at the bottom on an 128-bit wide bus. The
tuples being processed move upwards the pipeline and leave
the circuit at the top. Each operator is implemented in a
separate pipeline stage. Tuples are paired with an addi-
tional data_valid signal that encodes whether the state of
an operator describes a valid tuple or not.

Pipeline stages correspond to query operators in the al-
gebraic plan. The two predicates ‘=" and ‘<’ are evaluated
first and the outcome of the comparisons represented as sig-
nals a and b, respectively. A logical ‘and’ implements
the Boolean expression a A b, which is used in pipeline stage
four to implement the selection operator o.: another logi-
cal ‘and’ invalidates the data_valid signal whenever the
filter condition is not met.

The fifth and last state implements the projection opera-
tion Trprice,volume. Glacier simply leaves signals unconnected
if their corresponding attributes are to be discarded. This
way, Glacier takes advantage of the circuit optimizer in the
FPGA design flow. Sub-circuits whose output is never con-
sumed will be pruned automatically, effectively implement-
ing projection pushdown for free.

2.3 Performance Characteristics

The pipeline is driven by a common clock and data ad-
vances one stage every clock cycle. Therefore, the processed
tuples leave the circuit with a latency of 5 FPGA cycles.
The circuit is fully pipelined such that a new tuple can be
inserted into the first stage during every clock cycle, which
corresponds to an issue rate of 1 tuple per cycle.

The issue rate directly translates into throughput. The
observable throughput in tuples per second depends on the
clock rate the circuit is operated with. On current FPGA
hardware, we can operate the circuit shown in Figure 2(d)
at 100 MHz, resulting in a throughput of 100 million tuples
per second at a latency of 50 ns (five pipeline stages with
10 ns latency each).

The circuits for aggregation queries and queries contain-
ing group-by require additional FPGA mechanisms (such as
content-addressable memories or multiplezers). Currently,
our implementation of Glacier supports algebraic aggregates
requiring a constant-sized state over time- and tuple-based
windows. We refer to [5] for details.

3. DEMO SETUP

Our demonstration will showcase a full Glacier design flow
as well as a fully functional stream engine that processes
(synthetic) stock ticker data off a network.

Design Flow. The Glacier compiler is embedded into a
design flow that uses a standard FPGA tool chain as its
back-end, as shown in Figure 3. For the demonstration, we
enriched the Glacier system with various hooks to illustrate



CREATE INPUT STREAM Trades (
Segnr int, - sequence number
Symbol string(4), - valor symbol
Price int, - stock price
Volume int) - trade volume

(a) Stream Declaration

SELECT Price, Volume
FROM Trades
WHERE Symbol="UBSN" AND
Volume > 100000
INTO LargeUBSTrades

(b) Textual Query

LargeUBSTrades

T'Price,Volume
Oc
@e:(a,b) -
‘
Ob: (Volume, 100000) 100,000

@u:(Symbol, "UBSN")

(c) Algebraic Plan

Trades Trades
(d) Hardware Circuit

Figure 2: Translation of a query into a plan and a hardware circuit.

query plan

’ Glacier ‘

VHDL 1

‘ ’ simulation ‘@

’ map, place & route ‘
bitstreamf ........................... @

FPGA tool chain

FPGA

L
TTTTTTT

Figure 3: Glacier design flow from query to FPGA-
based implementation. VHDL compilation done us-
ing available FPGA tool chain.

the inner workings of hardware plan generation. The de-
sign flow can be intercepted at different processing stages,
as indicated with @ through @ in Figure 3.

Right after VHDL generation with Glacier @), the gener-
ated VHDL code can be inspected on the console, but also
using a high-level plan diagram (much like the one shown as
Figure 2(d)). The VHDL code can also be fed into a circuit
simulator (2) to visualize all intermediate plan results and
to verify the correctness of the generated circuit.

Different stages of the vendor-provided FPGA tool chain
can be intercepted, too, in order to inspect the schematic 3)
and chip @ views of the generated hardware circuit. The
former illustrates the composition of basic building blocks
from the Glacier component library; the latter breaks the
design down into low-level FPGA primitives and visualizes
their placement and routing on the chip.

Stream Engine. We demonstrate a realistic stock ticker
scenario with a hardware setup as shown in Figure 4. Syn-
thetic stock ticker data is generated on a laptop machine.
The data is sent over an Ethernet connection to the net-
work port of an FPGA development board, where a user-
specified query is evaluated fully in hardware. The outcome
of the query is sent back to the presentation laptop using
a second connection (a serial line), then visualized on the
laptop screen.

serial line
(output)

Ethernet
(input stream)

Figure 4: Demonstration setup. A synthetic Trades
stream is fed into an FPGA development board,
evaluated, and the result visualized on the laptop.

Conference attendees will be able to experiment with both
parts of the demonstration and, e.g., state their own queries
and inspect the corresponding hardware circuits.

4. REFERENCES

[1] Netezza Corp. http://www.netezza.com/.

[2] Kickfire. http://www.kickfire.com/.

[3] A. Mitra, M. R. Vieira, P. Bakalov, V. J. Tsotras, and

W. A. Najjar. Boosting XML Filtering Through a

Scalable FPGA-Based Architecture. In CIDR,

Asilomar, CA, 2009.

R. Mueller, J. Teubner, and G. Alonso. Data

Processing on FPGAs. PVLDB, 2(1), 2009.

[5] R. Mueller, J. Teubner, and G. Alonso. Streams on
Wires—A Query compiler for FPGAs. PVLDB, 2(1),
2009.

[6] T. Oliver, B. Schmidt, and D. Maskell. Hyper
Customized Processors for Bio-Sequence Database
Scanning on FPGAs. In FPGA, Monterey, CA, 2005.

[7] J. Teubner, R. Mueller, and G. Alonso. FPGA
Acceleration for the Frequent Item Problem. In ICDE,
Long Beach, CA, 2010.

[8] Xilinx Inc. Virtez-6 Family Overview. Data Sheet 150,
September 2009.

4



