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Abstract— Field-programmable gate arrays (FPGAs) can pro-
vide performance advantages with a lower resource consumption
(e.g., energy) than conventional CPUs. In this paper, we show how
to employ FPGAs to provide an efficient and high-performance
solution for the frequent item problem.

We discuss three design alternatives, each one of them ex-
ploiting different FPGA features, and we provide an exhaustive
evaluation of their performance characteristics. The first design
is a one-to-one mapping of the Space-Saving algorithm (shown
to be the best approach in software [1]), built on special features
of FPGAs: content-addressable memory and dual-ported BRAM.
The two other implementations exploit the flexibility of digital
circuits to implement parallel lookups and pipelining strategies,
resulting in significant improvements in performance.

On low-cost FPGA hardware, the fastest of our designs can
process 80 million items per second—three times as much as the
best known result. Moreover, and unlike in software approaches
where performance is directly related to the skew factor of the
Zipf distribution, the high throughput is independent of the skew
of the distribution of the input. In the paper we discuss as well
several design trade-offs that are relevant when implementing
database functionality on FPGAs. In particular, we look at
resource consumption and the levels of data and task parallelism
of three different designs.

I. INTRODUCTION

The limitations and problems associated with modern CPU
architectures are well known: high power consumption, heat
dissipation, network bottlenecks, and the memory wall. These
problems add up when the CPU is embedded in a com-
plete computer. For instance, if applications are not carefully
designed, CPUs can spend much of their time waiting for
data from memory or disk. Getting data in and out of the
system often results in high latency, to the point that any
algorithmic advantages may become irrelevant. In addition,
a modern server CPU consumes over 100 Watts of electrical
power, not counting necessary peripherals such as memory,
disks, or cooling equipment.

In the search for possible solutions, field-programmable
gate arrays (FPGAs) have been proposed as a way to extend
existing computer architectures. They add processing elements
that help alleviate or eliminate some of these problems. FPGAs
are particularly interesting today because they can be either
added as additional processing cores in heterogeneous multi-
core architectures [2], [3] and/or embedded in critical data
paths (network-CPU, disk-CPU) to reduce the load and amount
of data that hits the CPU [4].

What makes FPGAs interesting for designing data pro-
cessing systems is that they are not bound to the classical
von Neumann architecture. Thus, they can be used to avoid

the memory wall, to implement highly parallel data process-
ing, and to provide support that would be very expensive
otherwise, e.g., content-addressable memory. They can also
guarantee extremely low latencies and high throughput rates.
For instance, they can process data from the network at wire-
speed, without having to bring it to memory and the CPU
first. In addition, and not least important these days, FPGAs
feature a far lower power consumption than CPUs, making
them ideal complements to general-purpose CPUs in many-
core architectures.

In this paper we tackle a basic data mining operation, the
calculation of frequent items in a data collection, and show
how it can be implemented using FPGAs. We achieve through-
put rates of up to 80 million items per second, a rate two
to three times higher than the best published results [5] for
software-based implementations. The solution we propose can
be used advantageously in business intelligence queries, high-
volume data mining, and even real-time data processing (e.g.,
to analyze traffic directly as it comes from the network).

Our main contribution is a highly efficient frequent item
operator based on FPGAs. The operator offers a performance
that far exceeds the best published results. Moreover, the
throughput of the operator is independent of the distribution
of the input data, whereas software-based solutions only work
well if the distribution of the input data is highly skewed (for
Zipf-distributed data, a higher z parameter typically implies
better performance). This makes our results even more relevant
in practical settings, where the actual distribution of the input
data might not be known in advance.

Our paper discusses three alternatives to solve the frequent
item problem in hardware: SOFTWARE-LIKE, PARALLEL-
LOOKUPS, and PIPELINE. They illustrate some of the design
considerations that many hardware implementations for data
mining tasks will face. Through the three designs, we give
guidance on how to find the right balance between resource
availability, circuit complexity, and performance when design-
ing FPGA-based solutions.

As part of illustrating the design trade-offs, we complement
each of the three alternatives with an in-depth experimental
evaluation, where we discuss resource requirements, scalabil-
ity, and performance. As a main reference for the performance
of existing software solutions, we use the in-depth study of the
frequent item problem by Cormode and Hadjieleftheriou [5].

The paper is organized as follows. The upcoming Section II
formalizes the problem and briefly reviews the known solu-



tions in software, before Section III gives a general back-
ground in FPGA technology. Sections IV to VI describe our
three FPGA circuits, gradually moving from a more classi-
cal, software-inspired approach to the highly parallelizable
pipeline-based solution. At the end of each section, we assess
resource and performance trade-offs. In Section VII, we relate
our work to others’, before we summarize in Section VIII.

II. FREQUENT ITEMS IN SOFTWARE

The search for frequently occurring items is a classical data
mining problem. Example applications include identifying the
network hosts that generate most traffic; detecting large trade
volumes originating from the same company; or finding the
most visited URLs. Frequent items are also helpful in the
search for frequent item sets, e.g., as an input to the a-priori
algorithm [6].

A. The Frequent Item Problem

The frequent item problem can be defined as follows.
Assume a stream S of items x1, . . . , xN drawn from an
alphabet A. The φ-frequent items are those items in S that
occur more than φN times. φN is called the support that
result items must exceed to be considered frequent items.
The number of occurrences of an item x in S is termed the
frequency fx of x.

It is easy to see that, even for large φ, the exact solution
to this problem requires at least O (min {|N |, |A|}) space. An
algorithm would have to remember all occurrences of an item
x ∈ A in the stream to determine the exact value of fx, which,
in turn, is a prerequisite for an exact solution.

Since exact solutions are expensive, research has focused on
approximate algorithms that provide sufficient accuracy at low
space and CPU overhead. These algorithms solve a (weaker)
version of the problem: ε-approximate frequent items. The
result set for the approximate problem must include all items
x with fx > φN , but may also include some items for which
(φ− ε)N < fx ≤ φN .

The work of Cormode and Hadjieleftheriou has provided an
in-depth comparison of such algorithms [5]. The comparison
indicates that the Space-Saving algorithm by Metwally et al.
[1] is the best one among existing software solutions. In the
rest of the paper we use Space-Saving as our performance
baseline and as a starting point for the FPGA based designs.
We refer the reader to [5] for details and characteristics of the
other frequent item algorithms, which we will not cover here
any further.

B. The Space-Saving Algorithm

Space-Saving tries to monitor frequencies only for those
items that are frequent in the input stream. To this end, the
algorithm keeps a number k of 〈item, count〉 pairs b1, . . . , bk,
which we refer to as bins in the following.

For every arriving item x, the algorithm checks whether x
is already monitored in some bin bx. If yes, the associated
frequency estimate, bx.count, is incremented by one. Other-
wise, the monitored bin with the lowest count value, bmin,

foreach stream item x ∈ S do1

find bin bx with bx.item = x ;2

if such a bin was found then3

bx.count← bx.count + 1 ;4

else5

bmin ← bin with minimum count value ;6

bmin.count← bmin.count + 1 ;7

bmin.item← x ;8

Fig. 1: Algorithm Space-Saving. A fixed number of bins
monitors the most frequent items in the stream S [1].

is evicted and replaced by the pair 〈x, bmin.count + 1〉 (see
Figure 1). Observe how, in the latter case, item x receives the
benefit of doubt: it could have occurred as often as bmin.count
times before. Space-Saving never under-estimates frequencies
and, hence, records bmin.count + 1 as the frequency estimate
for x.

The number of bins k reserved for monitoring is a con-
figuration parameter that can be used to trade accuracy for
space. As detailed in [1], d1/εe counters are required to find
frequent items with an accuracy of ε. As an example, 100 bins
are needed to obtain a result with 1 % accuracy. In practice,
frequent item algorithms are used to identify clear “heavy
hitters,” for which task the accuracy (and hence the number
of needed bins) can often be kept even lower.

As shown by Cormode and Hadjieleftheriou, Space-Saving
exhibits a very good accuracy-to-space ratio. With explicit
knowledge about the expected data distribution the space
requirement can be reduced even further [1].

C. Implementation Considerations

Though succinct and elegant, the challenge in realizing
Space-Saving is that the same data—the currently monitored
bins—have to be accessed under two independent criteria:

(i) Line 2 in Algorithm Space-Saving needs to access the
set of bins based on their item values (and the current
input item x).

(ii) If no match was found, bins have to be accessed via their
count values to determine bmin (line 6).

To be able to answer (ii) efficiently, existing implementa-
tions keep their bins physically organized according to their
count values. Metwally et al. [1] propose the use of a linked
list for this purpose. Their data structure, dubbed Stream-
Summary, implements a sorted list that can be re-organized
with only O(1) effort after each bin update.

On the down side, as many as 10 pointer updates are nec-
essary in Stream-Summary for each re-organization. In an oth-
erwise very compact algorithm like Space-Saving, this could
have noticeable impact on performance. As an alternative,
Cormode and Hadjieleftheriou discussed an implementation
that uses a min-heap (worst case complexity O(log k)) to
have the minimum count value accessible at all times. In their
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Fig. 2: Performance of Space-Saving [5] for different Zipf
distributions z ∈ {0, 1, 1.5, 2,∞}.

experimental assessment, the heap-based implementation came
out only slightly behind Stream-Summary.

Either implementation has to invest re-organization effort
whenever a counter increment leads to a violation of the sort
or heap property. In effect, both implementations are sensitive
to the distribution of the input data. [1] and [5] both report
that high skewness in the input data can improve performance
by a factor of around two.

Access operation (i) (line 2) suggests the use of a hash table
for item lookups. Its complexity can typically be approximated
as O(1). Since bins are primarily organized by count values,
the hash table provides a secondary access mechanism that
points into the main data structure.

D. Evaluation

We used the publicly available implementation of the Space-
Saving algorithm by Cormode and Hadjieleftheriou to obtain
a baseline for our work. Here we focus on the implementation
that uses a min-heap as the primary bin organization (referred
to as “SSH” in [5]). The implementation is going to be the
basis for our first implementation on top of an FPGA, and it
showed very good performance in the study of Cormode and
Hadjieleftheriou.

We repeated the measurements of [5] on comparable hard-
ware (a Core2 Duo T9550 2.66 GHz system with 6 MB L2
cache and 4 GB main memory) and obtained similar results
(see Figure 2).

The most remarkable characteristic seen in Figure 2 is the
dependence of the throughput on the input data distribution.
While we see a throughput of around 5–10 million items per
second for uniformly distributed data (z = 0), performance
increases by a factor of more than three with increased
skewness (i.e., for z & 1.5). The actual throughput in practice
is going to be in the band between the performances for z = 0
and z = ∞. The cause of this behavior was not analyzed in
detail by Cormode and Hadjieleftheriou. Table I fills in these
details.

During processing, updates to count values may necessitate
re-organizations of the min-heap used to monitor items. A

heap swaps per item
Zipf parameter 64 bins 256 bins 1,024 bins

z =∞ 0 0 0
z = 2 0.04 0.02 0.02

z = 1.5 0.44 0.34 0.24
z = 1 3.12 3.99 4.49
z = 0 4.10 6.03 8.00

TABLE I: Average number of heap modifications per input
item, as a function of the Zipf distribution parameter z.

re-organization pass involves a series of parent-child swaps.
Given the low cost of the hash lookup (line 2 in Figure 1)
and the counter increment (line 4), maintenance of the heap
dominates the complexity of algorithm Space-Saving. The
likelihood of re-organizations depends on the skewness in the
input data. For instance, while actual swapping of items in the
min-heap is rare for z = 2, around four swaps are necessary
on average to process each input item when z = 1.

Table I also explains the performance decrease for data with
low skew as we increase the number of monitored items. While
only 4 swaps/item are necessary in a 64 bin configuration
(z = 0), 8 swaps/item are required for 1,024 bins.

III. FPGA BACKGROUND

FPGAs, informally sometimes referred to as “programmable
logic”, are general-purpose hardware chips. In contrast to
ASICs (application-specific integrated circuits), FPGAs have
no pre-determined functionality. Rather, they can be config-
ured to implement arbitrary logic by combining gates, flip-
flops, and memory banks.

A. FPGA Resources

FPGAs provide a variety of resources. Configurable logic
is provided through lookup tables (LUTs), each of which can
implement an arbitrary Boolean function with n inputs and
one output (n = 6 for Virtex-5 FPGAs [7]). Lookup tables
are backed up by carry logic that can be used to implement
particular functionality directly in silicon and very efficiently.
Flip-flop registers, one-bit memory entities, are woven into the
logic fabric and thus provide fully distributed storage. Larger
quantities of memory are available in the form of Block RAM
(or BRAM). Virtex-5 chips, for instance, include a number of
BRAM blocks, each of which provides 36 kbit of fast storage.

To satisfy even larger memory requirements, off-chip mem-
ory can be added using, e.g., standard DDR-RAM. Compu-
tations and experimental assessments in this work are based
on a Xilinx VC5VFX130T FPGA model. It has a reasonably
large chip space and two additional, on-chip PowerPC cores.
See Table II for the resources available on this FPGA.

Other Virtex-5 chips provide significantly more resources:
up to 2.5 times more logic resources (lookup tables and
flip-flops) and almost twice as many BRAM blocks. The
upcoming Virtex-6 series offers up to 474,240 lookup tables
and 948,480 flip-flops, and up to 1,064 BRAM blocks; signif-
icantly more than the hardware used for the work we report
here.



lookup tables (6-to-1 lookup tables) 81,920
flip-flops (1-bit registers) 81,920
block RAM (total kbit) 10,728
block RAM (number of 36 kbit blocks) 298
18-bit multipliers 320
PowerPC Cores 2

TABLE II: Selected characteristics of the Xilinx FPGA used
in this paper, model VC5VFX130T.

FPGAs typically operate at clock frequencies that are
significantly lower than those of general-purpose CPUs
(≈ 100 MHz). They are still competitive because tailor-made
circuits can perform more work in less cycles than software-
based systems. A side effect of the low clock frequency, on the
other hand, is the low energy consumption of FPGAs (≈ 1 Watt
vs. ≈ 100 Watts for a modern CPU).

B. System Integration

FPGA are usually programmed in a hardware description
language, such as VHDL (VHSIC hardware description lan-
guage) or Verilog. A synthesizer compiles the description of
a hardware circuit into a bitstream that is then loaded into
the FPGA chip. Existing circuits can also be re-configured,
either off-line, at runtime upon workload changes, or even
dynamically for individual user queries.

The configured FPGA can be integrated into a system in
various configurations. Common configurations are to use the
FPGA as a co-processor to a general-purpose CPU or to insert
the configurable logic into the data path of the system [8]. The
former case relies on fast interconnects such as PCI Express
or HyperTransport; in the latter case the FPGA can be directly
wired to the controllers of disk drives or network cards.

C. Block RAM: Dual-Ported and Configurable.

In this paper we exploit the high configurability of the
available BRAM. In Virtex-5 FPGAs, each BRAM block
provides 36 kbit of on-chip memory. Unlike in commodity
systems, the word size of each block can be configured: the
36 kbit of BRAM can be partitioned into, for instance, 1,024
words of 36 bit, 4,096 words of 9 bit, or 32,768 single-bit
words.1 Multiple BRAM blocks can be wired together to
obtain larger memories and/or larger word sizes.

All BRAM blocks are dual ported. Two independent ports
provide access to the same physical data and as truly concur-
rent operations.2 Moreover, the word size of both ports can be
configured independently; data might be written, e.g., as two
8-bit words on one port, later accessed as a single 16-bit word
using the other port. We will shortly see how we can use this
feature to implement key-value stores and heap structures in
an efficient manner.

1In some configurations not the full 36 kbit can be used.
2The semantics for two conflicting write operations is undefined.

· · · · · ·phys. RAM

16 · item + bin

1
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Port A (write port)
4096× 1 bit

item
Port B (read port)

256× 16 bit
bin number

(one-hot encoded) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

convert

1100 bin number (binary encoded)

Fig. 3: CAM implementation using dual-ported BRAMs. A
single bit is written via BRAM Port A to store an 〈item, bin〉
pair. Reading via Port B reveals the bin number for a given
item in one-hot encoded form (16 bits).

IV. A SOFTWARE-LIKE SOLUTION IN HARDWARE

Algorithm Space-Saving is very compact and known to be
efficient in software-based systems. We use it as the starting
point for implementing frequent items in an FPGA and explore
how to best exploit the features available in an FPGA board.
We first illustrate two such features, before we package them
into a working solution for the frequent item problem, which
we call SOFTWARE-LIKE later on.

When designing an FPGA circuit, we prefer a min-heap-
based bin storage over the linked list-based Stream-Summary
of [1], even though the latter showed a small advantage in
Cormode and Hadjieleftheriou’s comparative analysis. The
necessary pointer chasing in Stream-Summary is relatively
expensive in FPGA circuits and should thus be avoided.

A. Content-Addressable Memory: A Hash Table on Steroids

The first task in Algorithm Space-Saving, the lookup of
bins based on item values (line 2 in Figure 1), is a good
candidate for content-addressable memory (CAM), a hardware-
accelerated key-value store with strong runtime guarantees.
CAMs are a standard device in network processing (e.g., for
packet classification) and have recently been proposed also as
a tool for frequent item computation [9].

For SOFTWARE-LIKE, we build a content-addressable mem-
ory based on dual-ported BRAM. It provides a good balance
between write and read performance and supports the problem
sizes that we are interested in for the frequent item search (see
[10] for CAM implementation alternatives).

The key idea of our BRAM-based CAM implementation
is the use of differently configured BRAM ports for read
and write accesses. Figure 3 illustrates this for a CAM that
supports 8-bit keys and 4-bit values (as it could be used for
a very small-scale Space-Saving implementation with 16 bins
and an input alphabet of size |A| = 256).

Port A in this illustration is configured to a word size
of 1 and used for writing entries into the CAM. To store
a pair 〈item, bin〉 in the CAM, we set the bit at address
16 · item + bin to 1 (top half of Figure 3). Thus, we need
(at least) 4,096 single-bit words accessible via Port A.

To look up the bin number of a given item, we access the
stored information via Port B which is configured to a word



· · · itemn−1 countn−1 itemn countn itemn+1 countn+1 · · · item2n count2n item2n+1 count2n+1 · · ·

Port A (k × 64 bit)

Port B (k/2× 128 bit)

· · ·
bin number n

· · ·
bin number n

parent data

left child right child

Fig. 4: Implementation of a min-heap using dual-ported BRAM. Bin number n applied to the address lines of both ports will
yield record bn at Port A and its two children b2n and b2n+1 at Port B.

size of 16 bit (in support for 16 bins). As illustrated in Figure 3,
the value item is used as an address to retrieve a 16-bit word.
This word contains the bin information in one-hot encoded
form, i.e., a single bit in this word is set and its position
encodes the bin number. A standard encoding circuit converts
this representation into the common binary encoding.

Support for Larger Alphabets. The CAM implementation in
Figure 3 has a clear scaling problem. To support, say, a 32-
bit alphabet and 100 bins, we would need as many as 232 ·
100 bits (or 50 GB) of BRAM capacity. This explosion can
be avoided by chopping item words into smaller sub-words,
distributing them over separate CAMs, and recombining CAM
outputs upon lookup (refer to [10] for details).

B. Min-Heaps in Dual-Ported BRAM

The bin that holds the minimum count value can be found
quickly (line 6 in Algorithm Space-Saving, Figure 1) if all bins
are organized as a min-heap. This had also been suggested by
Cormode and Hadjieleftheriou. A min-heap is a binary tree
where the value stored in a node is never larger than the value
stored in any of its children. Thus, the bin with the smallest
count value is readily available as the root of the min-heap.

The efficient access of that bin comes at the cost of a
small maintenance overhead, which has to be paid after every
update of the data structure. After each count increment, the
heap property must be validated and the tree re-organized if
necessary. To this end, we must compare the modified node
with both its children and, if necessary, swap parent and child
node and recurse. (Min-heap inserts, consequently, have a
log k worst case complexity.)

In an FPGA implementation, we can again benefit from
the dual-ported access mechanism to BRAM blocks. With the
proper data layout and BRAM configuration, a node and both
of its children can be read or written at the same time and
within a single FPGA clock cycle.

The idea is illustrated in Figure 4. Port A provides the
expected type of access to all k nodes of the heap. We
store item and count information using 32-bit values each,
suggesting a word size of 64 bit on BRAM Port A.

Our heap is represented as an array in which the children
of a node at array position n can be found at positions 2n and
2n + 1 (left and right child, respectively). With two siblings
always at adjacent locations (and starting at an even location),

we can use the configurability of FPGA BRAM to access both
of them simultaneously. To do so, we configure Port B to a
word size of 128 bit, as illustrated in Figure 4. Since the word
size is twice the logical record size, an access to Port B with
address n will automatically yield both children of node bn.

Heap maintenance is a good example where high con-
figurability can compensate for the comparably low clock
frequencies of FPGAs. While, in software, separate instruc-
tions are required to access each of the heap nodes and
to compare them one by one, an FPGA can perform all
lookups and comparisons in a single cycle. If necessary, the
modified nodes are again written back in just one cycle. In
fact, our implementation performs all comparisons concurrent
to counter increments, such that no cycles are wasted if the
heap layout need not be changed.

C. The Pieces Plugged Together
Solving the frequent item problem along the lines of

Algorithm Space-Saving naturally leads to processing each

CAM Lookup

BRAM Read

BRAM Write

input item in three stages. Our imple-
mentation SOFTWARE-LIKE executes
these stages as shown on the right.
We implemented them in VHDL us-
ing content-addressable memory and
a BRAM-based min-heap structure as
discussed before. Processing stages are
coordinated by a finite state machine
implemented in FPGA logic.

First, our circuit consults the content-addressable memory
to locate the corresponding bin (implicitly creating a new entry
if the item is not currently monitored). Information about the
item is then read from BRAM, updated, and written back.
Sometimes, it may be necessary to re-organize the min-heap,
in which case SOFTWARE-LIKE iterates as indicated with
the dashed line (re-organization also triggers changes to the
content-addressable memory not shown in the figure).

A process of this type is a good candidate to exploit some
of the parallelism offered by FPGAs. Our implementation
SOFTWARE-LIKE will, for instance, overlap the CAM lookup
of an input item with the bin updates triggered by its predeces-
sor. Likewise, we parallelize heap re-organizations and their
associated updates to the content-addressable memory. Both
optimizations further increase the amount of work that can be
achieved per FPGA clock cycle.
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Fig. 5: Performance characteristics of SOFTWARE-LIKE im-
plementation, based on content-addressable memory and dual-
ported BRAM, for input data sets that follow Zipf distributions
z ∈ {0, 1, 1.5, 2,∞}. Dashed line: performance of the soft-
ware implementation.

D. Evaluation

We implemented the circuit for SOFTWARE-LIKE using the
aforementioned XC5VFX130T Xilinx FPGA. We configured
the circuit to monitor between 16 and 1,024 items and mea-
sured its throughput with data that follows a Zipf distribution.
The throughput we achieved for each configuration and for
different values for the Zipf parameter z is reported in Fig-
ure 5.

Performance Characteristics. Two characteristics are most
apparent in the graph:

(i) The achieved throughput is very sensitive to the dis-
tribution of the input data. Skewed data (large z) can
be processed about three times faster than uniformly
distributed input.

(ii) Throughput decreases when the number of monitored
items is scaled up.

We already observed characteristic (i) when we evaluated
an implementation of Space-Saving in software. The data
dependence is mainly caused by necessary re-organizations
of the data structure used to monitor items, a min-heap in
the implementation we consider here. Non-uniform data dis-
tributions reduce the likeliness that such re-organizations are
necessary. In Table I (Section II) we looked at the necessary
heap swaps in detail. The same conclusions we drew for the
software-based implementation also hold for the SOFTWARE-
LIKE counterpart.

Signal Propagation Delays. Characteristic (ii), the perfor-
mance degradation of SOFTWARE-LIKE with an increasing
number of monitored items is an artifact specific to FPGAs.
To build larger content-addressable memories, an increasing
amount of BRAM blocks have to be wired together into a
single functional unit. The growing complexity of this unit
leads to longer signal paths and, hence, to longer signal
propagation delays.

configuration lookup tables flip-flops BRAMs clock freq.

64 bins 3,111 3 % 2,161 2 % 29 9 % 125 MHz
128 bins 3,363 3 % 2,485 3 % 37 12 % 120 MHz
256 bins 3,863 4 % 2,439 2 % 53 17 % 100 MHz
512 bins 4,919 6 % 2,639 3 % 85 28 % 90 MHz

1,024 bins 6,775 8 % 3,157 3 % 149 50 % 75 MHz

TABLE III: FPGA chip resource consumption for the
SOFTWARE-LIKE implementation (based on content-
addressable memory and dual-ported BRAM). BRAM is the
critical resource for this setup.

The longest signal path determines the maximum frequency
at which the overall circuit can operate. While we were able
to clock our smallest circuit instance (16 bins) at a rate of
up to 130 MHz, a clock rate of 75 MHz was the maximum
for the instance with 1,024 bins. This directly results in the
observed performance degradation. This is a problem specific
to FPGAs. Our experiments using software (Figure 2) do not
show the same performance degradation for large algorithm
configurations.

Chip Resource Requirements. The min-heap to hold monitored
items and the content-addressable memory are the primary
chip resource requirements of this solution to the frequent
item problem, and both boil down to the consumption of
BRAM blocks. Only a little amount of logic is required, on
the other hand, to implement the state machine that drives
processing. As shown in Table III, BRAM blocks are the main
chip resource that the implementation consumes. The amount
of available BRAM blocks in the chip thus limits the number
of bins that we can instantiate to 1,024.

Larger chips (such as the Virtex-5 XC5VLX330T or the
upcoming Virtex-6 VC6VLX760) include more BRAM blocks
than the hardware we have available and could host con-
figurations with 2,048 or even 4,096 bins. However, circuit
complexity and the resulting signal propagation delays are
only going to become worse when we increase configuration
sizes further.

Summary. The use of content-addressable memory and a
BRAM-based bin storage may be seen as a straightforward
translation of the existing software algorithm into hardware. It
is not surprising that SOFTWARE-LIKE also inherited a critical
deficiency that is already known to exist in software-based
implementations. Heap maintenance makes the performance of
the implementation data dependent. This may be prohibitive in
scenarios that depend on predictable behavior even when the
nature of the input data is not predictable. SOFTWARE-LIKE
requires between 3 cycles/item (z = ∞) and 35 cycles/item
(z = 0 and 1,024 bins).

V. PARALLELIZE, DON’T SORT

We can address these deficiencies by leveraging some of
the FPGA features that do not apply to a straightforward
implementation of an algorithm that was designed for exe-
cution in software. In particular, we can use the parallelism



that is inherent to FPGAs to replace the data-dependent heap
structure by an alternative that is less sensitive to the input
data distribution. We are going to refer to the resulting circuit
as PARALLEL-LOOKUPS.

A. Finding the Bin with Minimal count

For locating the identifier min of the bin bmin that holds
the smallest count value we use a parallel circuit. The search
for this bin was the motivation to use a heap structure in the
implementation SOFTWARE-LIKE.

The corresponding circuit can easily be constructed using a
VHDL description. Assuming only two bins ba and bb (iden-
tifiers a and b; count values counta and countb, respectively)
to choose from, a component to implement the functionality
could be coded as (<= denotes signal assignment in VHDL):

architecture min(a :in integer,
counta :in integer,
b :in integer,
countb :in integer,
min :out integer,
countmin :out integer) is

begin
min <= a when counta < countb else b;
countmin <=

counta when counta < countb else countb;
end;

A VHDL compiler will translate this description into a com-
parison of count values, followed by two multiplexers that
drive the output ports of the component, min and countmin (we
detailed the inner workings of a similar operation in [11]).

It is easy to see that component min can be composed into
a tree that performs bin search for an arbitrary number of input
bins. To process an input of k bins, k − 1 min elements are
needed to construct a search tree of height dlog2 ke (e.g., using
VHDL structural modeling):

min

min

min

· · · · · ·
min

· · · · · ·

min

min

· · · · · ·
min

· · · · · ·

tree for k = 8

With such a search tree, it is no longer necessary to organize
bins in a particular way (such as a min-heap) or to invest time
in sorting. Using the tree, we do not require any particular bin
order and can exploit parallelism for efficient bin access.

B. Parallel Item Search

The item lookup corresponding to line 2 of Algo-
rithm Space-Saving can be implemented in very much the
same way. The corresponding circuit is sketched in Figure 6.
An array of simple logic components = compares the input
item x to all currently monitored items itemi in parallel. In
case of a match, the bit-wise ‘and’ operator & emits the
address bi of the matching bin or zero otherwise. Since an
item can be found at most in one bin, collecting the output of

item1
count1

=

& b1

item2
count2

=

& b2

itemk
countk

=

& bk

· · ·

x

or
· · ·

bx

Fig. 6: All bins bi are compared with the input item x in
parallel to determine whether x is currently monitored.
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Fig. 7: Throughput of FPGA implementation PARALLEL-
LOOKUPS ( ). Performance of software implementation
shown for reference ( / ).

all & using a bit-wise ‘or’ operation (indicated as the n-ary
operator or in Figure 6) yields the address bx of the bin that
currently monitors x—or zero if the item was not found.

All sub-tasks are particularly efficient to perform on FPGAs.
Bit-wise ‘and’ operations are supported by the fast carry logic
gates. Comparison components as well as the or operator
can use the full six LUT inputs for fast, resource-efficient
processing. We can, for instance, implement the n-ary or
operation by composing 6-to-1 lookup tables into a tree of
height dlog6 ne.

Parallel searches for items and count values in PARALLEL-
LOOKUPS can leverage the asynchronous processing mech-
anisms offered by FPGAs. Component min as well as the
building blocks for parallel item search ( = , & , and bit-wise
or) all use combinatorial logic only. The performance of an
asynchronous circuit built from such operators only depends
on the low-level signal propagation delays inside the chip. In
earlier work [11], we demonstrated how this can considerably
improve the performance of an FPGA circuit.

C. Evaluation

By using parallelism we avoid the heap maintenance re-
quired in SOFTWARE-LIKE. An immediate consequence can
be seen in the performance chart shown in Figure 7. The
throughput of the PARALLEL-LOOKUPS circuit has become
independent of the input data distribution (contrast to the
software solution, which we also plotted into Figure 7 for



configur. lookup tables flip-flops BRAMs clock freq.

32 bins 6,470 7 % 3,892 4 % 24 8 % 150 MHz
64 bins 11,890 14 % 5,973 7 % 24 8 % 120 MHz
128 bins 22,623 28 % 10,134 12 % 24 8 % 100 MHz
256 bins 45,267 55 % 18,455 22 % 24 8 % 85 MHz

TABLE IV: FPGA chip resource consumption and clock
frequencies of implementation PARALLEL-LOOKUPS.

reference). Data skew no longer affects the performance of
the hardware circuit, a benefit that is particularly valuable if
the distribution of the input data is not known in advance.

Performance Characteristics. As mentioned before, the per-
formance of PARALLEL-LOOKUPS is primarily determined by
signal propagation delays inside the chip. When scaling up the
number of bins, two effects result in increasing propagation
delays:

(i) With increasing heights of min and or trees, more
lookup tables have to be traversed. Each lookup table
adds a fixed propagation delay.

(ii) The high overall fan-in of the two trees complicates on-
chip signal routing. The logic synthesizer thus has to
resort to sub-optimal routing strategies with high routing
delays.

Both factors affect the maximum clock frequency at
which we can operate the hardware circuit (growing content-
addressable memories caused the same effect in the previous
circuit). While we could run the 16-bin configuration at
180 MHz, routing delays forced us to clock our largest instance
(256 bins) at no more than 85 MHz.

The finite state machine that controls the operation of
PARALLEL-LOOKUPS requires four cycles for each input tuple
(independent of the data distribution). This yields a throughput
of 45 million items per second for the 16-bin configuration,
but only 21.25 million items per second for the configuration
with 256 bins.

Note that the SOFTWARE-LIKE implementation in a 256-
bin configuration can be operated at a higher clock rate of
100 MHz compared to the 85 MHz of PARALLEL-LOOKUPS.
The achievable throughput, however, depends on the num-
ber of cycles spent for each item. In the SOFTWARE-LIKE
implementation using 256 bins 3–27 cycles are required for
each item. PARALLEL-LOOKUPS, by contrast, always spends
4 cycles per item.

Chip Resource Requirements. The high degree of parallelism
directly affects the amount of logic resources required. As
shown in Table IV, the limited availability of lookup tables,
the actual resource that performs computation, now prevents
us from scaling up our implementation beyond 256 monitored
items (we considered only powers of 2).

In addition, the nature of PARALLEL-LOOKUPS may pre-
vent further scale-ups. Large search trees already cause sig-
nificant routing problems and large signal propagation delays.
These problems do not go away with larger or faster boards.

foreach stream item x ∈ S do1

i← 1 ;2

while i < k do3

if bi.item = x then4

bi.count← bi.count + 1 ;5

continue foreach ;6

else if bi.count < bi+1.count then7

swap contents of bi and bi+1 ;8

else9

i← i+ 1 ;10

/* replace last bin if x was not found */
bk.count← bk.count + 1 ;11

bk.item← x ;12

Fig. 8: Algorithm Array. Keep all processing and communi-
cation local to ensure scalability.

A difference to the SOFTWARE-LIKE design is that we now
have to use flip-flop registers to store bin data. Flip-flops are
tightly woven into the FPGA logic and can thus be accessed
fully in parallel. The contents of BRAM blocks, by contrast,
need to be requested explicitly by address, and at most one
word can be fetched from each BRAM block per clock cycle
and BRAM port.

Summary. The notable improvement over the earlier
SOFTWARE-LIKE implementation is that the throughput of
PARALLEL-LOOKUPS is independent of the input data dis-
tribution. For data with a small skew, this resulted in a clear
improvement of the net throughput.

On the down side, the performance degradation for large
circuit configurations has become worse. Between 16 and 256
bins, we see a throughput reduction by more than a factor of
two (because we had to operate the large configuration at a
lower clock speed).

VI. PIPELINING FOR SCALABILITY AND THROUGHPUT

The search trees in PARALLEL-LOOKUPS showed a drop
in execution performance with growing sizes of the hardware
circuit. The main cause is that the necessary on-chip wiring
has to interconnect many storage bins that are far apart on the
chip die. This leads to long signal paths and complex routing.
A circuit that keeps all wirings and computations local has
better chances to show good scalability.

A. Algorithm Array

We can obtain such locality when we organize all bins as an
array in which each bin is only connected to its two immediate
neighbors. The algorithm now has only a restricted view on
the currently monitored information and must implement its
functionality by communication along the array.

An algorithm that implements these restrictions is shown in
Figure 8 as Algorithm Array. The algorithm passes each new
item x linearly along the array, compares x with each bin,



item
count bi

x

· · · item
count bi+1

item
count bi+2

· · ·

bi.item
?= x

(lines 4–6)1©

bi.count
?
< bi+1.count (lines 7–8)

2©

i← i+ 1 (line 9)
3©

Fig. 9: The three processing steps of Algorithm Array.

and updates the bin’s count value if a match was found (lines
9–10 and 4–6).

As item x travels along the array, lines 7 and 8 in Algorithm
Array test the local order among adjacent bins and, if neces-
sary, swap bin contents to bring the bin with the smaller count
value to the right (we assume small bin indexes to be to the
“left” and large indexes to be to the “right”). A consequence is
that the traveling item pushes the bin with the smallest count
value toward the right end of the array.

Once item x reached the end of the array and no match was
found, we can be certain that the last bin holds the smallest
count value. According to Algorithm Space-Saving, this is the
bin where we place the new item, as done in lines 11 and 12
in Figure 8.

We illustrate the three processing steps of Algorithm Array
in Figure 9. In Step 1© (algorithm lines 4–6), item x is
compared to the local bin and the count value incremented
if necessary. Otherwise, Step 2© (lines 7–8) compares count
values of the current bin and its right-next neighbor and
swaps the two bin contents if need be. If neither action was
performed, item x moves on to consider the next bin (Step 3©,
lines 9–10).

Properties of the Algorithm. Algorithm Array is semantically
equivalent to Algorithm Space-Saving. The two searches by
item and count value are implemented within one sequential
read over the monitored data. As such, the processing time for
a single input item is guaranteed to be O(k), independently
of the input data distribution.

Moreover, the bin swapping mechanism in lines 7 and 8
provides the functionality of bubble sort inside Algorithm
Array. Traveling items will gradually sort the monitored bins
in descending order of their count values. This order coincides
with the one typically requested by users or higher-level
algorithms (such as a-priori [6]).

B. Pipeline Parallelism

If implemented on a regular CPU, Algorithm Array is
obviously inefficient. While the original Space-Saving algo-
rithm can be implemented with O(1) (approximated; using
a Stream-Summary) or O(log k) (approximated; using a min-
heap) complexity, the time needed to process an item in Array
depends linearly (i.e., O(k)) on the configuration size k. On
the other hand, all sub-tasks involved are simple and, as we

x3 x2 x1

· · · · · ·

Fig. 10: Pipeline parallelism. Multiple input items xi follow
one another and are processed in parallel.

will see in a moment, Array can be parallelized well, which
makes it a good basis for an implementation in an FPGA.

The bin array can be viewed as a pipeline. Each item
progressively traverses this pipeline and changes state only
locally. Multiple items can follow one another in the pipeline
and will not interfere with each other as long as they keep
sufficient distance. An FPGA can process all such items in
parallel.

Any processing step in Algorithm Array operates on two
adjacent bins at most. Items will thus never interfere with each
other if they are separated by at least one bin; i.e., up to k/2
items can traverse an array of length k simultaneously. This
is illustrated in Figure 10. The six bins on the bottom of that
figure represent a subset of the bin array. Items x1 through x3

follow each other with one bin separation. The three steps in
Algorithm Array (illustrated using arrows as before) can only
reach bins in a way that will not cause interference.

Analysis. Assuming sufficient resources for parallelism (as it
is the case in FPGAs), pipelining makes the throughput of
Algorithm Array independent of the length of the bin array
(i.e., of the number of items monitored). This is an even
stronger guarantee than the O(1) complexity of Space-Saving
which assumes constant-time hash lookups.

Pipeline parallelism could, in theory, also be implemented
in software on top of general-purpose CPUs. But even if CPU
resources were available in sufficient quantity (several tens or
hundreds of CPUs), such an implementation would suffer from
a significant overhead to synchronize threads and communicate
data between them. In addition, threads would all compete for
the same cache lines and thus experience high cache miss
rates. None of these problems are an issue in an FPGA-based
implementation.

C. Implementation Details

Our actual hardware implementation PIPELINE performs
all steps 1©– 3© as one processing unit, which makes each
item’s progress in the pipeline fully predictable (hence, avoids
expensive synchronization). To ensure the correctness of the
implementation (and not miss a bin match), we compare x
with the contents of bi and bi+1.

When a match is found for an item x, PIPELINE continues
traversing the array (as opposed to aborting the while loop in
line 6), but x is replaced by a special void item that will never
match and will not be put into the last bin of the pipeline. This
increases the regularity of our circuit, and we benefit from the
sort operations that are also performed during the processing
of void items.
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Fig. 11: Performance of hardware circuit PIPELINE ( ).
Due to pipeline parallelism, the throughput sustained is inde-
pendent of the length of the pipeline. Performance of software
implementation shown for reference ( / ).

The latter two implementation details also make the
throughput of PIPELINE data independent. The execution of a
processing unit takes the same amount of time, no matter how
skewed the input data. Like the PARALLEL-LOOKUPS design
in the previous section, the implementation PIPELINE features
predictable data throughput.

We constructed our circuit to perform two processing units
within each clock cycle. That is, after each clock cycle we
move each item xj forward by two bins (and perform up to
two swaps). Once more this increases the regularity of our
circuit, which now performs the same work on the same bins
during every clock cycle. As a result, we can accept one item
from the input with every clock tick.

D. Evaluation

We ran our implementation PIPELINE in the Virtex-5-based
testbed for various numbers of bins. For all configurations,
we were able to push the clock frequency of the circuit up
to 80 MHz. This frequency is mostly dictated by complexity
of each instance of the processing unit that we programmed
and by the longest signal path inside the unit. All process-
ing units operate entirely independent. Hence, the maximum
clock frequency is independent of the number of units, i.e.,
independent of the number of bins monitored.

Performance Characteristics. This can also be seen in Fig-
ure 11, where we illustrated the throughput of PIPELINE. As
can be seen, the throughput is independent of the pipeline
length. As mentioned before, our circuit can accept one input
item per clock cycle, resulting in a net throughput of 80 million
items per second.

Chip Resource Requirements. Resource requirements for the
PIPELINE implementation (listed in Table V) scale similarly
to what we saw previously for PARALLEL-LOOKUPS, though
the absolute numbers are somewhat higher.

Again we use flip-flops to keep state (a requirement for the
highly parallel access that we perform). In addition to storage

configuration lookup tables flip-flops clock freq.

32 bins 8,720 10 % 8,312 7 % 80 MHz
64 bins 16,887 20 % 6,880 8 % 80 MHz

128 bins 32,023 39 % 12,033 14 % 80 MHz
256 bins 62,260 76 % 22,335 27 % 80 MHz

TABLE V: Resource consumption of PIPELINE.

for the bin contents, this time we also need additional flip-flops
to hold all items that concurrently traverse the pipeline (“the
circles in Figures 9 and 10”), which explains the additional
flip-flop consumption.

The pipelined circuit also has to perform more compu-
tational work for each bin. Each processing unit (as men-
tioned before) consists of several comparisons (equality and
inequality) and two counter increments, as well as a swap
logic; and one processing unit has to be processed per bin
and clock cycle. PIPELINE’s consumption of lookup tables
thus is appreciably higher than what we saw for PARALLEL-
LOOKUPS, but also yields a two- to four-fold throughput
improvement.

Scalability. A virtue of the pipeline-style circuit design is its
scalability with circuit sizes. We already discussed how the lo-
cality of computations within PIPELINE and the independence
of processing units leads to good scalability. The circuits we
generated all achieved a throughput of 80 million items per
second. FPGAs with more chip real estate would allow us to
increase the length of the pipeline beyond the 256 bins that we
considered so far. Currently there is no indication why 512-bin
or 1,024-bin circuits on such hardware should not be able to
sustain 80 million items per second, too.

Even larger pipeline instances could be obtained by daisy-
chaining multiple FPGA chips, a setup that would naturally be
supported by the pipeline structure of our circuit. Obviously,
this would necessitate specialized multi-chip hardware, which
is typically harder to obtain than single-chip solutions.

Summary. The PIPELINE implementation clearly wins the
throughput race among all frequent item solutions we are
aware of. Independent of the input data distribution, our circuit
sustains a throughput of 80 million tuples per second. This
corresponds to a processing time of 1 cycle/item. Although
PIPELINE has the lowest clock frequency of all implemen-
tations it has the highest throughput. The reason is that the
previous approaches spend more cycles per item. SOFTWARE-
LIKE requires 3–27 cycles/item and PARALLEL-LOOKUPS
4 cycles/item.

What makes PIPELINE even more attractive, however, is its
high potential to scale to significantly larger bin configurations
on suitable, but already mainstream, hardware. On such hard-
ware, we expect that PIPELINE is going to show a throughput
of 80 million items per second also for pipelines with 512 or
1,024 bins (again only considering powers of two).

VII. RELATED WORK

In their survey article, Cormode and Hadjieleftheriou [5]
give an excellent overview over existing (software-based) tech-



niques to answer the frequent item problem, including groups
of algorithms that we did not mention here (such as quantile
or sketch-based algorithms). We refer to their paper for related
work on general frequent item techniques. In a more recent
work, Das et al. [12] parallelized the calculation of frequent
items for multi-core systems. Their achieved performance
(≈ 5 million items per second) demonstrates that Space-Saving
is difficult to accelerate using commodity multi-core CPUs.

We would like to mention the work of Bandi et al. [9]
explicitly. They too suggested the use of content-addressable
memory to determine frequent items. To this end, they assume
a specialized hardware component originally designed for
network processing. Compared to the CAM we instantiated
inside an FPGA, such a hardware solution provides higher
storage capacities as well as support for ternary CAM. Ternary
CAMs allow the use of wild cards in the search key. Bandi et
al. use this feature extensively and use content-addressable
memory as their only access mechanism to an otherwise
unordered bin storage (no heap or similar data structure on the
side). In summary, they were able to achieve throughput rates
slightly under 1 million input items per second. Like software-
based implementations or our SOFTWARE-LIKE circuit, this
implementation is sensitive to value distributions in the input
data.

The structure of Algorithm Array has many similarities to
systolic arrays, a concept that emerged as a design guide for
hardware circuits in the late 70s. Kung and Leiserson [13]
discovered systolic arrays as a very efficient, yet simple-to-
manufacture type of circuits to perform matrix multiplications.
Later, Kung and Lohman [14] and Hurson et al. [15] used the
same principle to implement basic database functionality.

The idea of systolic arrays was also picked up by Baker and
Prasanna [16], who implemented parts of the a-priori algorithm
with a technique they termed systolic injection. The main use
of their circuit is the calculation of support for candidate item
sets. In an array of processing units, each unit is initialized
with one candidate set. Then, data is streamed through the
array (one transaction after the other), and each unit counts
the number of transactions that contain the candidate set.

Finally, this work is embedded into our own research in
the context of the Avalanche project at ETH Zurich. As
FPGAs go mainstream, we assess how their potential can be
leveraged to accelerate core database operations. Glacier [8],
the query compiler in Avalanche, uses metrics such as resource
consumption and performance to optimize FPGA circuits that
implement database tasks, and could decide among either of
the three presented FPGA circuits in this work.

VIII. CONCLUSIONS

FPGAs are poised to become an ideal complement to
traditional CPUs in many-core architectures. FPGAs have a
very low power consumption and can be tailored to perform
data processing tasks more efficiently than software-based
solutions by taking advantage of the characteristics of FPGAs
and the inherent parallelism.
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Fig. 12: Throughput comparison of all approaches discussed.

In this paper we presented three different FPGA designs that
implement the search for frequent items: SOFTWARE-LIKE,
PARALLEL-LOOKUPS, and PIPELINE. The different designs
illustrate the possibilities and trade-offs inherent in FPGAs,
as well as their advantages over software-based solutions.
Figure 12 summarizes the throughput of each one of the
techniques discussed in the paper, including the software
implementation of Space-Saving [1], [5] as a baseline.

At the time of writing this paper we did not have hardware
available that would allow us to consider larger configurations
with more bins. Yet, the results and trends presented indicate
that FPGAs are clearly competitive as the basis for implement-
ing frequent item search. PIPELINE, the best design in terms
of performance, provides a throughput of 80 million items
per second. Moreover, the throughput is independent of the
distribution of the input data, a major difference over software-
based solutions. Considering that much larger designs are
possible with modern FPGAs, the implementation PIPELINE
showed far better performance than any known software-based
solution.

Work in Progress. As part of the Avalanche project at ETH
Zurich, we envision a hybrid setup where operators running
on CPUs and on FPGAs complement each other. In the par-
ticular case of frequent item calculation, such operators could
actually work together on the same task. We are currently
investigating an architecture where we use the pipeline-based
circuit discussed in this paper to process the bulk of the input
data. At the end of the pipeline, items could then be handed off
to a general-purpose CPU. Faced with only a small remaining
load and dealing with the lower frequency items, this CPU
could then provide scalability to very large bin configurations.

We are also exploring configurations where the frequent
item operator on the FPGA is applied directly to real-time data
streams from the network, exploiting both the high data rates
demonstrated in this paper and the low latency I/O systems
available in the FPGA [8].
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