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Problem Statement

We address a core database problem, but for large problem sizes:

Process a join R 1θ S (arbitrary join predicate).

R and S are large (many gigabytes, even terabytes).

Traditional approach:

Use a big machine and/or suffer the severe disk I/O bottleneck of

block nested loops join.

Can do distributed evaluation only for certain θ or certain data

distributions (or suffer high network I/O cost).

Today:

Assume a cluster of commodity machines only.

Leverage modern high-speed networks (10 Gb/s and beyond).
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Modern Networks: High Speed?

It is actually very hard to saturate modern (e.g., 10 Gb/s) networks.
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High CPU demand

I Rule of thumb: 1 GHz CPU per 1 Gb/s network throughput (!)

Memory bus contention

I Data typically has to cross the memory bus three times

→ ≈ 3 GB/s bus capacity needed for 10 Gb/s network
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RDMA: Remote Direct Memory Access

RDMA-capable network cards (RNICs) can saturate the link using

direct data placement (avoid unnecessary bus transfers),

OS bypassing (avoid context switches), and

TCP offloading (avoid CPU load).
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Data is read/written on both ends using intra-host DMA.

Asynchronous transfer after work request issued by CPU.
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Cyclo-Join Idea
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RDMA: join and rotate
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Analysis

Cyclo-join has similarities to block nested loops join.

Cut input data into blocks Ri and Sj .

Join all combinations Ri 1 Sj in memory.

As such, cyclo-join

can be paired with any in-memory join algorithm,

can be used to distribute the processing of any join predicate.

Cyclo-join fits into a “cloud-style” environment:

additional nodes can be hooked in as needed,

arbitrary assignment host ↔ task,

cyclo-join consumes and produces distributed tables

→ n-way joins.

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 6 / 11



Cyclo-Join Put Into Practice

We implemented a prototype of cyclo-join:

four processing nodes

I Intel Xeon quad-core 2.33 GHz

I 6 GB RAM per node; memory bandwidth: 3.4 GB/s (measured)

10 Gb/s Ethernet

I Chelsio T3 RDMA-enabled network cards

I Nortel 10 Gb/s Ethernet switch

in-memory hash join

I hash phase physically re-organizes data (on each node)

→ better cache efficiency during join phase

I I/O complexity: O (|R|+ |S |)
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Experiments

Experiment 1: Distribute evaluation of a join where |R| = |S | = 1.8 GB.
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Main benefit: reduced hash buildup time.
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Experiments

Experiment 2: Scale up and join larger S (hash buildup ignored here).
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, System scales like a machine with large RAM would.

/ CPUs have to wait for network transfers (“synchronization”).
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Memory Transfers

Need to wait for network: Does that mean RDMA doesn’t work at all?

join Ri 1 Sj
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The culprit is the local memory bus!

If RDMA hadn’t saved us some bus transfers, this would be worse.
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Conclusions

I demonstrated cyclo-join:

ring topology to process large joins,

use distributed memory to process arbitrary joins,

hardware acceleration via RDMA is crucial:

I reduce CPU load and memory bus contention.

Cyclo-join is part of the Data Cyclotron project:

support for more local join algorithms,

process full queries in a merry-go-round setup.
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