
Spinning Relations:
High-Speed Networks for Distributed Join Processing

Philip Frey, Romulo Goncalves, Martin Kersten, Jens Teubner

Problem Statement

We address a core database problem, but for large problem sizes:

Process a join R 1θ S (arbitrary join predicate).

R and S are large (many gigabytes, even terabytes).

Traditional approach:

Use a big machine and/or suffer the severe disk I/O bottleneck of

block nested loops join.

Can do distributed evaluation only for certain θ or certain data

distributions (or suffer high network I/O cost).

Today:

Assume a cluster of commodity machines only.

Leverage modern high-speed networks (10 Gb/s and beyond).

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 2 / 11

Modern Networks: High Speed?

It is actually very hard to saturate modern (e.g., 10 Gb/s) networks.

System 1

CPU

RAM NIC

System 2

CPU

RAMNIC

underutilized
network

High CPU demand

I Rule of thumb: 1 GHz CPU per 1 Gb/s network throughput (!)

Memory bus contention

I Data typically has to cross the memory bus three times

→ ≈ 3 GB/s bus capacity needed for 10 Gb/s network

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 3 / 11

RDMA: Remote Direct Memory Access

RDMA-capable network cards (RNICs) can saturate the link using

direct data placement (avoid unnecessary bus transfers),

OS bypassing (avoid context switches), and

TCP offloading (avoid CPU load).

System 1

CPU

RAM RNIC

System 2

CPU

RAMRNIC

fully utilized
network

Data is read/written on both ends using intra-host DMA.

Asynchronous transfer after work request issued by CPU.

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 4 / 11

Cyclo-Join Idea

Host H0

Host H1
Host H2

Host H3

Host H4

Host H5

RD
M
A

RD
MA

R
D
M
A

RD
M
A

RDMA

R
D
M
A

R
D

M
A

RDMA

R
D

M
A

R
D

M
A

RDMA

R
D

M
A

S0

S1
S2

S3

S4
S5

R0

R1
R2

R3

R4

R5

R1

R2

R3

R4

R5

R0

R1

R2

R3

R4

R5

R0

R1

R2

R3

R4

R5

R0

R1

R2
R3

R4

R5

R0

R2

R3

R4

R5

R0

R1

R2

R3

R4

R5

R0

R1

R2

R3

R4

R5

R0

R1

R2

R3
R4

R5

R0

R1

input S

input R

1 distribute

2 join locally

3 rotate

RDMA: join and rotate

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 5 / 11

Analysis

Cyclo-join has similarities to block nested loops join.

Cut input data into blocks Ri and Sj .

Join all combinations Ri 1 Sj in memory.

As such, cyclo-join

can be paired with any in-memory join algorithm,

can be used to distribute the processing of any join predicate.

Cyclo-join fits into a “cloud-style” environment:

additional nodes can be hooked in as needed,

arbitrary assignment host ↔ task,

cyclo-join consumes and produces distributed tables

→ n-way joins.

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 6 / 11

Cyclo-Join Put Into Practice

We implemented a prototype of cyclo-join:

four processing nodes

I Intel Xeon quad-core 2.33 GHz

I 6 GB RAM per node; memory bandwidth: 3.4 GB/s (measured)

10 Gb/s Ethernet

I Chelsio T3 RDMA-enabled network cards

I Nortel 10 Gb/s Ethernet switch

in-memory hash join

I hash phase physically re-organizes data (on each node)

→ better cache efficiency during join phase

I I/O complexity: O (|R|+ |S |)

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 7 / 11

Experiments

Experiment 1: Distribute evaluation of a join where |R| = |S | = 1.8 GB.

MonetDB
(single-host)

0

20

40

60

80

w
a

ll-
cl

o
ck

ti
m

e
[s

]

1 host
1.8 1 1.8

2 hosts
1.8 1 1.8

3 hosts
1.8 1 1.8

4 hosts
1.8 1 1.8

hosts / sizes of S 1 R [GB]

join execution
synchronization
hash buildup

Main benefit: reduced hash buildup time.

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 8 / 11

Experiments

Experiment 2: Scale up and join larger S (hash buildup ignored here).

1.35

2.08

0.80 2.83

0.58 3.54

0.26

0

1

2

3

4

w
a

ll-
cl

o
ck

ti
m

e
[s

]

1 host
1.8 1 1.8

2 hosts
3.6 1 1.8

3 hosts
5.4 1 1.8

4 hosts
7.2 1 1.8

hosts / sizes of S 1 R [GB]

join execution
synchronization

, System scales like a machine with large RAM would.

/ CPUs have to wait for network transfers (“synchronization”).

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 9 / 11

Memory Transfers

Need to wait for network: Does that mean RDMA doesn’t work at all?

join Ri 1 Sj

2.83 s

RDMA send

RDMA receive

1.8GB
10Gb/s = 1.44 s

0.58 s

RDMA trans.
bus bandwidth

0

1

2

3

4

5

0 1 2 3 4

timem
em

o
ry

b
a

n
d

w
id

th
[G

B
/

s]

2.83

0.58

0

1

2

3

ti
m
e

3 hosts
5.41 1.8

The culprit is the local memory bus!

If RDMA hadn’t saved us some bus transfers, this would be worse.

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 10 / 11

Conclusions

I demonstrated cyclo-join:

ring topology to process large joins,

use distributed memory to process arbitrary joins,

hardware acceleration via RDMA is crucial:

I reduce CPU load and memory bus contention.

Cyclo-join is part of the Data Cyclotron project:

support for more local join algorithms,

process full queries in a merry-go-round setup.

Jens Teubner · Spinning Relations: High-Speed Networks for Distributed Join Processing 11 / 11

