
Cyclo-Join: A Join that Spins without Getting Dizzy

Philip W. Frey Romulo Goncalves Martin Kersten Jens Teubner
Systems Group

Department of Computer Science
ETH Zurich

firstname.lastname@inf.ethz.ch

Database Architectures and
Information Access Group

CWI Amsterdam
goncalve|mk@cwi.nl

ABSTRACT
By leveraging modern networking hardware (RDMA-enabled
network cards), we can shift priorities in distributed data-
base processing significantly. Complex and sophisticated
mechanisms to avoid network traffic can be replaced by a
scheme that takes advantage of the bandwidth and low la-
tency offered by such interconnects.

We illustrate this phenomenon with cyclo-join, an effi-
cient join algorithm based on continuously pumping data
through a ring-structured network. Our approach is capa-
ble of exploiting the resources of all CPUs and distributed
main-memory available in the network for processing queries
of arbitrary shape and datasets of arbitrary size.

1. INTRODUCTION
In this paper, we present a mechanism to perform joins of

arbitrary size in main-memory rather than on disk. For that
purpose, we distribute the data among a set of hosts con-
nected over a high-performance network (≥ 10 Gb/s). The
hosts are organized in a logical ring around which the data
can circulate. We leverage Remote Direct Memory Access
(RDMA) to ensure fast network transfers at low cost.

Consider you are given two many-gigabyte database tables
R and S (e.g., coming from a large TPC-H instance) and you
have to compute the relational join R 1 S between the two
(e.g., as part of evaluating TPC-H query Q3). Of course
you get plenty of resources for that: the machines in your
cluster contain tens of CPU cores in total, with a combined
main-memory that can easily hold the entire data set. The
challenge is how to orchestrate the machines in order to solve
R 1 S in an efficient manner, without creating a bottleneck
in any node and without hampering the capabilities needed
for concurrent or future queries.

In this work, we demonstrate how modern networking fa-
cilities in compute clusters can be beneficial for database
processing. In summary, we focus on two contributions:

Cyclo-Join. We demonstrate cyclo-join, a distributed join
processing technique (Sections 2 and 3). We deviate from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the main route in distributed join processing by (continu-
ously) pumping data through the network. We assume that
the network is your friend, rather than the enemy to be
evaded at all cost.

RDMA. We give a brief overview of RDMA, with a focus on
its potential use in a database context (Section 4). Though
RDMA can promise significant network performance advan-
tages, the technology calls for a strong algorithm engineering
attitude from the system designer.

We implemented cyclo-join on real RDMA hardware. We
provide an in-depth study of its characteristics in Section 5.
It demonstrates the potential of RDMA and its particular
usefulness in a technique like cyclo-join. We look into related
work in Section 6 before we summarize in Section 7.

2. PROCESSING LARGE JOINS IN
DISTRIBUTED MAIN-MEMORY

Our challenge is to process joins R 1 S whose input re-
lations R and S are both too large to fit into the main-
memory of a single machine, but small enough to be held in
distributed main-memory.

2.1 Small Joins on a Single Machine
As a point of reference of what an ideal distributed solu-

tion could achieve, let us first assume that all input data fits
into the memory of a single host. Leaving pre-processing
costs (hashing/sorting) aside, the time to perform a well-
tuned hash or merge join R 1 S can then be as small as

(|R|+ |S|) · in-memory join throughput

(|R| and |S| denote the sizes of R and S, respectively). In
practice, the in-memory join throughput often gets very
close to the physical bandwidth of the underlying main-
memory interconnects.

2.2 Large Joins on a Single Machine
Once the input relations become too large to fit, the single-

host algorithm has to resort to secondary storage, typically
a hard disk, as temporary buffer. Chances are that the best
way of doing is the use of a block nested loops join (BNLJ).
It brings chunks of each relation into main-memory where
in-memory join techniques are applied:

save S to disk ;1

foreach block Ri of R do2

foreach block Sj of S do3

compute Ri 1 Sj in memory ;4

(BNLJ)

Hs

H0 H1 H2 H3 · · · Hn−1

R0 + S
.

. . . . · · ·

R
n−1 + S

Figure 1: Distributed block nested loops join. The
data source Hs has to send the respective R-block Ri

to host Hi, plus the full relation S.

The available amount of main-memory determines the par-
titioning of both input relations into blocks. If we have a
buffer space of size MR to hold the blocks of R, then there
will be n = d|R|/MRe iterations of the outer loop.

Note that R and S could be the outcome of entire sub-
plan evaluations. In that case, a pipelined execution model
would allow us to consume all input data only once. Here we
assume that we can request pieces of R and S to be brought
into memory once (we account the cost for that to the cost
of evaluating R and S, as typical in a pipelined setup).

Therefore, we are forced to buffer relation S on disk and
have to bear the cost for the disk write. For every iteration
of the outer loop (i.e., n times), we read S back to execute
the inner loop on the current Ri. This results in an overall
I/O cost of

(1 + n) · |S| · disk throughput .

Since n is proportional to |R|, the disk I/O cost to evaluate
R 1 S is roughly proportional to |R| · |S|. Furthermore, the
disk I/O throughput is significantly lower than the memory
bus bandwidth. Therefore, being forced to use the disk as
intermediate buffer is undesirable.

2.3 Large Joins on Multiple Machines
One way of reducing disk I/O is by parallelizing the outer

loop of Algorithm BNLJ across multiple machines in con-
junction with a trade-in of network I/O. With n hosts avail-
able, we need to run only one outer loop iteration on each
host and thus leverage the total main-memory available. To
this end, we have to provide each of the n hosts with its re-
spective piece Ri of the input relation R and with the entire
relation S:1

foreach network host Hj do1

send block Rj ∈ R to Hj ;2

foreach block Si of S do3

foreach network host Hj do4

send block Si to Hj ;5

At the expense of network I/O this avoids the need to buffer
relation S on disk. Network I/O these days is significantly
cheaper than disk I/O. While a typical value for disk band-
width is ≈ 100 MB/s (or a multiple in RAID configurations),
modern interconnects can provide up to several 10 Gb/s.
The total I/O cost that the sender Hs has to bear is

(|R|+ n · |S|) · network throughput .

The necessary network transfers are illustrated in Figure 1.
Each host receives its share of R plus the full content of S.

1We assume that this is done from some host Hs that acts
as the data source. The algorithm could trivially be adapted
to fetch the source data from one of the processing hosts Hi.

Hs

H0 H1 H2 H3 · · · Hn−1

R0 + S

R1 R
2

R
3 · · ·

R
n−1

S S S S S

Figure 2: Chaining all processing hosts decreases the
network bottleneck at the data source host and takes
advantage of the available inter-host bandwidth.

Unfortunately, transmitting the inner join relation S multi-
ple times can cause a serious bottleneck at host Hs.

Note that, since we compute the join in a distributed way,
the join result R 1 S now ends up as a fragmented relation,
distributed over all nodes.

2.4 A Smarter Way to Parallelize
We can decrease the bottleneck at the data source host

by taking advantage of the network bandwidth available be-
tween the processing hosts Hi. We can do so by chaining
all Hi as illustrated in Figure 2. In this configuration, Hs

sends the join relation S only to the first processing host H0.
There, we not only evaluate the local fragment of the join,
but also forward it to the next processing host H1 using the
network link H0 → H1. That is, each node Hi (i < n − 1)
now executes

receive Ri from Hs ;1

foreach block Sj received from Hs or Hi−1 do2

compute Ri 1 Sj in memory ;3

forward Sj to host Hi+1 ;4

(Hn−1 simply drops all pieces Sj after processing). The total
network I/O load on Hs (which still remains the bottleneck
in terms of network I/O volume) is now reduced to

(|R|+ |S|) · network throughput .

In the upcoming section, we discuss how cyclo-join pushes
our parallelization effort even further to support entire query
plans in a distributed fashion. In Section 4, we then in-
vestigate how modern networking technology (RDMA) can
significantly reduce the remaining network I/O cost.

3. CYCLO-JOIN
The ideas of the previous section have minimized the a-

mount of network I/O necessary to process input data that
originates from a single host (the data source Hs). In prac-
tice, this data may rather be available as distributed tables
already, such as those that come from an earlier evaluation
of a distributed join. If we are to compute (R 1 S) 1 T ,
for instance, the result of the inner join R 1 S is already
distributed at the time we start processing the join with T .

3.1 Idea
To account for such a fully distributed evaluation, we

slightly change the logical topology of our network to look as
shown in Figure 3. In cyclo-join, we organize all processing
hosts to form a ring. We assume that both input relations
are distributed arbitrarily (but reasonably even) across all
hosts, say host Hi holds pieces Ri and Si of R and S. There
is no longer an explicit data source host Hs (though, in prac-

R0

R1
R2

R3

R4
R5

S0

S1

S2

S3

S4

S5

Host H0

Host H1

Host H2

Host H3

Host H4

Host H5

R
D
M

A

RDMA

R
D

M
A

R
D
M

A

RDMA

R
D

M
A

Figure 3: Cyclo-join: Network hosts are organized
in a logical ring. Relation S circulates in the ring.

tice, one might want to introduce such a host to seed data
into the ring).

If we are to evaluate R 1 S now, we can compute some
sub-results right away, namely those that result from joining
pieces that are co-located on some host (using the in-memory
join). That is, we compute all Ri 1 Si.

Much like in Section 2.4, each node Hi then forwards one
of its pieces, say Si, to its next neighbor H(i+1) mod n, illus-
trated with arrows in Figure 3. We join locally again
(now Ri 1 S(i−1) mod n), forward, and repeat. For every Hi

we get

foreach block Sj received from H(i−1) mod n do1

compute Ri 1 Sj in memory ;2

forward Sj to host H(i+1) mod n ;3

Unlike in Section 2.4, no sub-relation is dropped: every Sj

continuously circulates in the ring.
After n iterations, all Sj have performed one full revo-

lution in the cyclo-join ring and each host saw the full in-
put relation S once. Hence, every node Hi computed the
sub-result Ri 1 S locally and the full join result R 1 S is
available in a distributed form, much like in Sections 2.3 and
2.4.

The time it takes to obtain a full ring revolution depends
on two independent factors: the processing time of an indi-
vidual in-memory join as well as the network transfer speed
in the cyclo-join ring. In Section 5, we are going to assess
how both factors interact.

3.2 Cyclo-Join Characteristics
Cyclo-join essentially provides the necessary infrastruc-

ture to leverage existing in-memory techniques to the pro-
cessing of large data sets in a distributed environment.

Leveraging Main-Memory Resources. The main effect of
cyclo-join is the efficient use of available main-memory re-
sources in a multi-host setup. In many cases, this is going to
make the join processing viable at all, when no single host
would be available to perform the full join locally.

Applicability. A virtue of cyclo-join is that it does not de-
pend on any particular pattern that supported join types
would have to satisfy. As such, cyclo-join can also be ap-
plied to join problems that are not amenable to any of the
existing (often hash-based) optimization strategies.

In-Memory Join Processing. Likewise, cyclo-join is obliv-
ious of the algorithm that is used to implement the in-
memory join. A consequence is that the use of cyclo-join
will not always yield the same benefit. The resulting CPU
load distribution, for instance, will benefit those in-memory
join implementations best that would show poor scaling oth-
erwise (such as nested loops joins).

3.3 Implementation Details
Cyclo-join itself is amenable to straightforward optimiza-

tions. Most importantly, observe that lines 2 and 3 of the
cyclo-join pseudo-code above can be executed fully inde-
pendently (likewise, lines 3 and 4 in the pseudo-code shown
in Section 2.4). In Section 4, we are going to exploit this
opportunity to perform both tasks asynchronously and in
parallel.

At the receiver end, our implementation uses a double
buffering scheme. In effect, by overlapping network trans-
fers and join processing, we can hide most of the latency
incurred with network I/O.

Our current in-memory join implementation is based on
a rather straightforward variant of hash join. During the
execution of cyclo-join, we take advantage of the fact that we
can re-use temporary data structures over a full revolution
in the ring, even though technically there are n independent
join invocations on each node. In the experimental part of
this work (Section 5), we characterize our in-memory join
implementation in more depth and illustrate its interaction
with the processing of cyclo-join. Before that, we look into
a considerable cost factor that we inherited from Section 2,
network processing.

4. RDMA: HARDWARE-ACCELERATED
NETWORK PROCESSING

In order to achieve significant performance advantages,
cyclo-join requires a high-throughput, low-latency underly-
ing transport mechanism.

With the advent of Infiniband and 10Gb Ethernet, phys-
ical networks would now support transport speeds that are
almost as fast as local main-memory access. But it is known
for years that the traditional TCP/IP stack induces a sig-
nificant load on the local CPU and on the memory bus [4].
According to Mackert and Lohman [9], more than 90% of
the CPU cost to evaluate a distributed join in the R* sys-
tem were spent in the network stack. This observation has
inspired a line of work in earlier systems that aimed at re-
ducing I/O cost by reducing the transfer volume [2, 9, 14].

Remote Direct Memory Access. Here we address the
problem from a different end. Modern, RDMA-enabled net-
work interface cards (so-called RNICs) offer support from
the hardware side. They can handle high-speed network I/O
(≥ 10 Gb/s) between two hosts with minimal involvement of
either CPU. A key concept behind RDMA is direct data
placement which is a mechanism whereby data is enriched
with local placement information such that the RNIC is able
to directly access the data in main-memory using DMA. The
RNIC has a TCP offload engine built in such that it can per-
form the network stack processing autonomously.

Figure 4 illustrates a typical RDMA data path: thanks
to the placement information, the RNIC of the sending host
can fetch the data directly out of local main-memory using
DMA. It then transmits the data across the network to

System 1

CPU

RAM RNIC

System 2

CPU

RAMRNIC
network

Figure 4: Network transfer using RDMA. RNICs
handle data transfer autonomously; data has to
cross each memory bus only once.

the remote host where a receiving RNIC places the data
straight in its destination memory location. On both hosts,
the CPUs only need to perform control functionality, if at
all.

RDMA Benefits. The most apparent benefit of using
RDMA is the CPU load reduction thanks to the aforemen-
tioned direct data placement (avoid intermediate data copies)
and OS bypassing techniques (reduced context switch rate).
A rule of thumb in network processing states that about
1 GHz in CPU performance is necessary for every 1 Gb/s
network throughput [5]. Experiments on our test platform
confirmed this rule: even under full CPU load, our 2.33 GHz
quad-core system was barely able to saturate the 10 Gb/s
link.

A second effect is less obvious: RDMA also significantly
reduces the memory bus load as the data is directly DMAed
to/from its location in main-memory. Therefore, the data
crosses the memory bus only once per transfer. The ker-
nel TCP/IP stack on the other hand requires several such
crosses. This may lead to noticeable contention on the mem-
ory bus under high network I/O. Thus, adding additional
CPU cores to the system is not a replacement for RDMA.

Applying RDMA. By design, the RDMA interface is
quite different from a classical Socket interface. A key differ-
ence, which we exploit in our cyclo-join implementation, is
the asynchronous execution of the data transfer operations
which allows overlapping of communication and computa-
tion. Taking full advantage of RDMA is not trivial as it has
hidden costs [6] with regard to its explicit buffer manage-
ment. Due to these costs, not every application can bene-
fit from RDMA. However, the cyclo-join is an application
that clearly can. Figure 5 depicts the raw data through-
put per host achieved by the transport layer of our cyclo-
join implementation as a function of the transfer buffer size.
RDMA performs best when large data sets are transferred.
With small transfer units as they occur, e.g., in a tuple-
by-tuple transmission, only a small fraction of the available
bandwidth can be used. We can saturate our network with
transfer units ≥ 8 MB.

Availability. RDMA is available for quite some time now
through Infiniband [7]. Since recently, RDMA can also be
used over Ethernet [11] and therefore no specialized network
infrastructure is needed anymore to realize the setup that we
describe here (besides the RNICs at a mere $ 800 each).

5. CYCLO-JOIN IN ACTION
We built a prototype implementation of an RDMA-ac-

celerated cyclo-join to verify some of our expectations in
Section 3 and assess the potential of cyclo-join. We bench-

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

[G
b
/
s]

8.6Gb/s

Message Size [2x bytes]

(1
G

b
/
s

=
1
×

1
0
2
4
3
b
it

s/
s)

Figure 5: Network throughput achievable with
RDMA in a cyclo-join ring configuration.

mark our hard- and software infrastructure in the upcoming
section, before we actually study cyclo-join in Section 5.2.

5.1 Hard- and Software Baseline
We conducted our measurements in an IBM BladeCenter

with four HS21 blade servers. Each of them hosts a quad-
core Intel Xeon E5345 CPU, clocked at 2.33 GHz, equipped
with 32 KB L1 data cache per core and a shared 4 MB L2
data cache for every two cores. Each machine contains at
least 6 GB of PC2-5300 SDRAM with a theoretical peak
bandwidth of 5 GB/s.2

The memory bandwidth that is actually achievable with
software is lower. We verified the memory bandwidth of
our platform by running Zack Smith’s bandwidth tool [13]
on each of our machines. We observed a maximum read
bandwidth of 3.4 GB/s and a write bandwidth of at most
2.5 GB/s. In all measurements that follow, we thus assume
a memory bus bandwidth of 3.4 GB/s.

We use Chelsio T3 network cards (model S320EM-BCH)
as our RDMA back-end. All machines are connected via a
Nortel 10 Gb Ethernet switch.

All join experiments in the following use tables which we
populated with random data. The join column is a 4-byte
integer containing 32-bit random values. Each tuple also
contains an 8-byte random payload. To eliminate a depen-
dency on join hit rates, in all experiments we only count
the number of matches, but do not actually materialize the
join result in main-memory. When reading the studies that
follow, keep in mind that result materialization would cause
additional memory bus traffic.

In-Memory Join Kernel. As mentioned earlier, we im-
plemented the in-memory join in our system as a hash join,
running in two phases:
(1) During the hash phase we create a hash table on all

entries of the outer join relation R. We also physically
reorganize both input relations to cluster all data by
hash values.

(2) In the join phase we then scan the inner relation S and
probe into the hash table for each tuple. Since we had
both input tables reorganized before, this effects in a
single sequential read of both input tables from main-
memory.

In the cyclo-join setup we are going to run the hash phase
only once, but execute the join phase for every S-block re-

2Often reported as 5.3 GB/s when actually 5.3 billion bytes
per second are meant.

hash join throughput

1 thread 76 s 5.29 s 0.68 GB/s
2 threads 76 s 2.64 s 1.35 GB/s
3 threads 76 s 1.75 s 2.04 GB/s
4 threads 76 s 1.34 s 2.67 GB/s
MonetDB (1 thread) 41.9 s

Table 1: In-memory join throughput. 1.8 GB 1

1.8 GB with tuples of 12 bytes each.

configuration hash join sync total

A : 1 host 75.7 s 1.35 s – 77.0 s

B : 2 hosts 33.3 s 1.61 s 0.80 s 35.7 s

C : 3 hosts 21.8 s 1.75 s 0.60 s 24.1 s

D : 4 hosts 14.2 s 1.74 s 0.42 s 16.4 s

Table 2: Effect of distributing a join 1.8 GB 1 1.8 GB
over multiple nodes.

ceived from the network.
To make best use of our available hardware, we run the

join phase using multi-threaded code. Each S-block is di-
vided into four equi-sized sub-blocks that are then distributed
over the four available cores. Table 1 illustrates how this
effort pays off in decreased join execution time. Our multi-
threaded implementation achieves a data throughput of 2.67
GB/s, about 3/4 of the memory bandwidth our machine
would be able to provide.

We did not invest efforts in optimizing the hash phase.
For reference, we listed the total hash join execution time
(including hash-buildup time) achievable with a distribution
copy of MonetDB 5. Techniques like those implemented in
MonetDB [10] or suggested by others [12] could be used to
bring our implementation up to comparable speeds.

5.2 Cyclo-Join
The main interest of our experiments is to assess the

potential of cyclo-join, but also its principal or hardware-
specific limitations. Toward this end, we dissect our join im-
plementation to see how its components interact with cyclo-
join.

5.2.1 Parallelized Hashing
In Table 2, we show the effect of distributing the evalua-

tion of a join R 1 S, where each relation is 1.8 GB in size.
For each configuration A to D , we dissect processing times
into the time required for the hash table build-up and on join
processing (columns ‘hash’ and ‘join’). Column ‘sync’ re-
ports additional time that our implementation has to spend
waiting for data to arrive via RDMA.

Distributed processing has a significant effect on the hash
phase of our join algorithm, whose performance improves
roughly proportional to the number of nodes in our network.
This comes at no surprise: a join evaluation that uses n
hosts splits up both input table into n equi-sized chunks,
which are then hashed independently. In our setup, hashing
dominates the overall cost, which leads to a more than four-
fold improvement in total execution time.

As can be seen in column ‘join’ of Table 2, the join phase
of our algorithm, by contrast, is hardly affected by paral-
lelization. In the join phase, we pay a penalty for chopping

1.35

2.08

0.80 2.83

0.58 3.54

0.26

0

1

2

3

4

w
a
ll
-c

lo
ck

ti
m

e
[s

]

1 host
1.8 1 1.8

2 hosts
3.6 1 1.8

3 hosts
5.4 1 1.8

4 hosts
7.2 1 1.8

hosts / sizes of R 1 S [GB]

join execution
synchronization

E F G H

Figure 6: Execution times for increasing data vol-
umes, distributed over an increasing number of
nodes.

input data into pieces (R now has to be processed n times
in total). Distribution over n nodes just about compensates
this penalty and we see no significant net change in the time
spent in the join phase.

To understand this effect better, but also to assess the
performance limits of cyclo-join, let us now “zoom in” into
the join phase.

5.2.2 Parallelizing the Join Phase of Hash Join
Figure 6 illustrates the outcome of a similar effect. But we

now only focus on the costs of the join phase and of network
transfers. Configuration E is a repetition of configuration

A . In F through H we increase the size of input relation
R and bring in more nodes to provide the necessary main-
memory resources.

Join Execution Time. The bars printed in dark gray in
Figure 3 illustrate the total amount of time spent in the in-
memory join execution routine. The numbers are consistent
with those that we saw earlier (2.67 GB/s, see Table 1). To
exemplify, in configuration F , each node runs two iterations
of a 1.8 GB 1 0.9 GB join, i.e., processes 5.4 GB in total.
Divided by the observed join execution time (2.08 s), this
implies a data throughput of 2.58 GB/s.

Synchronization Time. On top of the time required for
join execution, we need to spend some time waiting for the
completion of RDMA transfers, indicated using light-gray
in Figure 6. This synchronization time considerably affects
the overall execution time.

One might be tempted to blame the network for the this
delay. If we look at configuration H , for instance, 3.54 sec-
onds should be more than enough to bring in the necessary
1.8 GB of data over a 10 Gb/s link. The real culprit is the
memory bandwidth of our machines. In configuration H ,
for example, a full cyclo-join evaluation requires four rota-
tion steps. During each step, on each host, we need to

read the stationary block Ri 1.80 GB
read the rotating block Sj 0.45 GB
send Sj to the next host via RDMA 0.45 GB
receive Sj+1 from prev. host via RDMA 0.45 GB

3.15 GB

Thus, a total of 4 · 3.15 GB = 12.6 GB need to cross the
memory bus on each of our machines to compute the join.
In our systems, this bus is limited to 3.4 GB/s, effectively

limiting the bandwidth that RDMA can use while a local
join is being processed.3 During this time, 3.54 s·3.4 GB/s =
12.0 GB can be brought over the memory bus. Once the
join has completed, RDMA processing can proceed at its
maximum speed of 1.1 GB/s per connection. 0.26 seconds
are exactly the time needed to move the missing data at this
speed (2 · 1.1 GB/s · 0.26 s = 0.6 GB).

5.3 Discussion
Our observations have implications on what can be ex-

pected from a cyclo-join implementation in practice.

Viability. Most importantly, our experiments show that
cyclo-join is indeed a useful way to leverage the main-memory
resources of networked machines to process joins over large
data volumes. The join phase in configuration H , for in-
stance, performs essentially as good as a single machine with
a very large memory would. At the same time, we only need
to invest a fourth of the time that a single-host configuration
would spend in its hash phase.

Bottlenecks. Distributed databases are classically built on
the assumption that the network represents the most critical
bottleneck, either due to a slow physical network link or due
to the significant CPU overhead for network processing [9].
None of these turns out to slow down our implementation,
which rather is only limited by the available main-memory
bandwidth. We would like to note that more recent systems
may already provide the necessary memory bus speeds to
max out the potential of cyclo-join.

Necessity of RDMA. Our observations underpin the impor-
tance of using RDMA as a transport layer for cyclo-join.
As we pointed out in Section 4, even with sufficient CPU
resources, software-based network processing would cause
significantly more memory bus traffic and likely slow down
join processing.

6. RELATED WORK
We presented our work as an alternative to traditional

distributed join techniques such as fetch matches [9], semi-
join-based strategies [2], or ones that use Bloom filters [14].
Many of their underlying ideas, however, could still lead to
interesting improvements also in a cyclo-join setup.

The use of distributed memories and high-speed networks
has been explored for OLTP workloads in [8] and for dis-
tributed systems in [1, 3].

Our spinning join setup resembles the DataCycle system
[3] or the Broadcast Disks of [1]. Including their techniques
into cyclo-join is part of our ongoing research and we expect
to see significant performance advantages, but also interest-
ing insights into the potential of a merry-go-round setup
from doing so.

7. SUMMARY AND OUTLOOK
In this paper we reported on cyclo-join, a novel approach

to distributed join processing in modern computing net-
works. Cyclo-join goes particularly well with modern net-
working technology and can efficiently leverage the potential
offered by modern, RDMA-enabled hardware.

We kept the algorithmic structure of cyclo-join deliber-
ately simple. The essence of cyclo-join is a merry-go-round

3Memory controllers are constructed in a way that priori-
tizes memory transactions issued by the CPU.

of network hosts through which we continuously pump data
using RDMA. One consequence is that cyclo-join can sup-
port arbitrary input data, arbitrary join conditions, and ar-
bitrary network sizes. In experiments, we found the combi-
nation of cyclo-join and RDMA to be efficient enough to hit
the local main-memory speed as the limiting performance
factor.

Cyclo-join is part of our ongoing research effort Data Cy-
lotron. In Data Cyclotron, we plan to push the idea of
a data merry-go-round even further: to support arbitrary
query types and to adapt dynamically to changing query or
data workloads.

8. REFERENCES
[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.

Broadcast Disks: Data Management for Asymmetric
Communication Environments. In Proc. of the ACM
SIGMOD, San Jose, CA, USA, 1995.

[2] Philip A. Bernstein and Dah-Ming W. Chiu. Using
Semi-Joins to Solve Relational Queries. Journal of the
ACM, 28(1), 1981.

[3] T. F. Bowen, G. Gopal, G. Herman, T. Hickey, K. C.
Lee, W. H. Mansfield, J. Raitz, and A. Weinrib. The
Datacycle Architecture. Commun. ACM, 35(12), 1992.

[4] David D. Clark, Van Jacobson, John Romkey, and
Howard Salwen. An Analysis of TCP Processing
Overhead. IEEE Communications Magazine, 27, 1989.

[5] A. Foong, T. Huff, H. Hum, J. Patwardhan, and
G. Regnier. TCP Performance Re-Visited. In
Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and
Software, 2003.

[6] P. Frey and G. Alonso. Minimizing the Hidden Cost of
RDMA. In Proc. of the 29th ICDCS, Montreal, QC,
Canada, June 2009.

[7] InfiniBand Trade Association. InfiniBand Architecture
Specification. http://www.infinibandta.org.

[8] S. Ioannidis, E. Markatos, and J. Sevaslidou. Using
Network Memory to Improve the Performance of
Transaction-Based Systems. In Proc. of the 4th ACM
LCR, Pittsburgh, PA, USA, May 1998.

[9] L. Mackert and G. Lohman. R* Optimizer Validation
and Performance Evaluation for Distributed Queries.
In Proc. of VLDB, Kyoto, Japan, August 1986.

[10] S. Manegold, P. Boncz, and M. Kersten. Optimizing
Main-Memory Join on Modern Hardware. IEEE
Transactions Knowledge and Data Engineering, 2002.

[11] A. Romanow, J. Mogul, T. Talpey, and S. Bailey.
Remote Direct Memory Access (RDMA) over IP
Problem Statement, 2005.

[12] A. Shatdal, C. Kant, and J. F. Naughton. Cache
Conscious Algorithms for Relational Query
Processing. In Proc. of the 20th Int’l Conference on
VLDB, Santiago de Chile, Chile, September 1994.

[13] Z. Smith. Bandwidth: a Memory Bandwidth
Benchmark.
http://home.comcast.net/~fbui/bandwidth.html.

[14] P. Valduriez and G. Gardarin. Join and Semijoin
Algorithms for a Multiprocessor Database Machine.
ACM TODS, 9(1), March 1984.

