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Abstract Given the tremendous versatility of relational
database implementations toward a wide range of data-
base problems, it seems only natural to consider them
as back-ends for XML data processing. Yet, the assump-
tions behind the language XQuery are considerably dif-
ferent to those in traditional RDBMSs. The underlying
data model is a tree, data and results carry an intrinsic
order, queries are described using explicit iteration and,
after all, problems are everything else but regular.
Solving the relational XQuery puzzle, therefore, has
challenged a number of research groups over the past
years. The purpose of this article is to summarize and
assess some of the results that have been obtained dur-
ing this period to solve the puzzle. Our main focus is on
the Pathfinder XQuery compiler, a full reference imple-
mentation of a purely relational XQuery processor. As
we dissect its components, we relate them to other work
in the field and also point to open problems and limita-
tions in the context of relational XQuery processing.

Keywords Relational XQuery - Relational Tree
Encoding - XPath - Compilation - Loop Lifting - Type
Matching

1 Introduction

The W3 Consortium had not yet even set up its work-
ing group to develop what later would become XQuery
[6], when some authors already suggested the use of rela-
tional database technology to process XML in a scalable
and efficient manner [15]. The idea spurred the interest of
research teams around the globe to solve the “relational
XQuery puzzle.”
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A number of important pieces of this puzzle have
been discovered since and, after almost a decade, it gets
time to review, see what pieces have been found, and
which ones are still missing. We do so by dissecting the
internals of Pathfinder [49], a prototype of a purely rela-
tional XQuery processor. As we sketch its components,
we relate them to ideas that complement, or could some-
times replace, the current implementation in Pathfinder.

Our goal is to construct a complete, efficient, and
correct implementation of an XQuery engine. Since re-
lational database systems are, by far, the most scalable
and efficient data processors currently available, we want
to implement XQuery functionality on relational founda-
tions wherever possible. During our tour through Path-
finder, we will see that this in fact can be done for far
more language features than one would intuitively think
of. The remainder of this work emphasizes those features
that are particularly relevant or challenging in relational
XQuery processing.

(a) Relational encodings for trees seeded the interest in
relational XML processing. The way how XML data
is represented at the relational end obviously affects
the evaluation of XPath. These subjects are on our
agenda for Sections 2 and 3 (respectively).
To off-load the processing of an entire query to a re-
lational back-end, data and query need to be mapped
into the relational world. In Section 4, we investigate
ways to express the semantics of XQuery in terms of
relational algebra.
(¢) Substantial research efforts have been put into rela-
tional query optimization. In Section 5, we draw on
this work to optimize XQuery on the relational level.
Building an XQuery processor means to support all
features of the language. Support for XML Schema
types is one of them that often gets overlooked. We
present an efficient implementation for type match-
ing (the runtime aspect of XML Schema support) in
Section 6.
(e) Some functionality in XQuery go beyond what re-
lational systems can handle. In Section 7, we show



how a fair degree of recursion can be implemented
efficiently on relational hosts.

We summarize our work in Section 8, where we also
point at pieces that we think are still missing in order to
complete the full puzzle.

2 XML to Tables and Back

Obviously, the performance of an RDBMS-based XQuery
processor crucially depends on the representation of its
principal data type, ordered unranked trees at the re-
lational end. The work of Florescu and Kossmann [15]
(dubbed “edge mapping”) was an early attempt to es-
tablish such a representation. But although this work be-
came a seed for the whole topic, it fell short in providing
a convincing implementation for two key requirements
in XQuery processing:

(a) The relational equivalent of two XML tree nodes vy
and vy must easily be comparable to decide node
identity (v1 is v) and document order (vy << wvg).!

(b) The encoding must support efficient XPath naviga-
tion along all twelve axes.

Inspired by the idea of constructing a high-perfor-
mance XML storage solution based on relational technol-
ogy, an abundance of research papers got published, all
in the search for the optimal tree encoding. In retrospect,
they all discovered essentially the same two approaches
to relational XML storage: the ones that encode the tree
structure using each node’s rank in a pre- and postorder
tree traversal and the ones that picked up the idea of
Dewey ordering (a popular way of organizing books in
a library) and associated a vector of numbers with each
node, printed typically using a dot-separated notation.
A thorough treatment of the former idea has been pub-
lished by Grust et al. [24], a popular implementation of
the latter is ORDPATH [41].

2.1 pre/post-Based Tree Encodings

XPath accelerator, an encoding proposed in [21], stores
the positions of each node v’s occurrence in a pre- and
postorder tree walk, pre(v) and post(v) (respectively), as
attributes in a relational table accel. Additional columns
hold a foreign key reference to the pre value of v’s parent,
parent(v), and the semantical value of v (i.e., its XML
node type, tag name, text value, etc.). Column pre in this
encoding provides an immediate and simple implemen-
tation for the document order and node identity tests
mentioned before.
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(a) XML document tree. (b) Encoding pre/size/level.
Fig. 1: XML document tree, annotated with pre(-) and
size(-) information (left/right), and resulting tree encod-
ing.

A virtue of this approach to XML storage is that it
allows for a concise and machine-friendly characteriza-
tion for all twelve XPath axes. For the descendant axis,
e.g., we have

v’ € v/descendant
N (1)
pre(v) < pre(v’) A post(v') < post(v)

XPath step navigation, hence, translates into a two-
dimensional region query. Grust demonstrates how func-
tionality of a commodity database implementation (R-
and B-trees for that matter) is well suited to accelerate
this type of queries [21].

Pre- and postorder ranks are related to each other
according to the equation

pre(v) — post(v) = level(v) — size(v) (2)

for every node v in the tree (level(v) and size(v) denote
v’s distance from the tree root and its number of descen-
dants, respectively).

A consequence is that “new” encodings can be ob-
tained by using subsets of the four properties to store
the structural part of the XML tree.? One such encod-
ing is illustrated in Figure 1, corresponding to the XML
document

<a>
<b><c><d/>e</c></b>
<E>g<h><i/><j/></h></£> ° (3)
</a>

This is the encoding used within the Pathfinder sys-
tem (column post has been added for illustration pur-
poses, but is not explicitly maintained by Pathfinder).
An inherent problem of pre/post-based numberings is the
need to renumber parts of the document during updates
or node construction [12]. This particular variant, how-
ever, minimizes the relabeling overhead since column size
is invariant with respect to subtree copying or moving.
Column level need only be shifted by a constant value in
the face of either operation. For technical details regard-
ing Pathfinder’s XML storage refer to [8].

The TinyTree storage model of Saxon [32] is another
example of a pre/post-based tree encoding.

! With an appropriate choice for oid values, requirement
(a) could easily be satisfied with the encoding in [15].

2 In fact, any pair of properties already suffices to encode
the full tree structure, except the pair of level(v) and size(v).
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(a) XML document tree. (b) Dewey encoding.

Fig. 2: Dewey labels for XML Instance (3).

2.2 Dewey-Based Encodings

Dewey-based encodings are the second major avenue the
researchers followed to represent XML document trees
in a tabular format. Each node is assigned a wvector of
integer values (typically separated by dots in print). For
each node v, this vector consists of (a) the vector of the
parent of v, extended by (b) the position of v among
its siblings (according to document order). The resulting
encoding is illustrated in Figure 2 for our earlier XML
example.

Microsoft SQL Server uses Dewey-based ORDPATH
[41] labels to encode the XML structure in its “primary
XML index.” Other implementations that use variants
of the Dewey idea are IBM’s DB2 9 pureXML or XTC’s
SPLIDs [29].

The strength of the Dewey approach is its update-
friendliness. This is particularly the case of the ORDPATH
implementation that allows for arbitrary tree modifica-
tions without the need to re-label major parts of the
document. The “trick” here is to construct node labels
only from odd numbers during an initial document load
and reserve even numbers in-between as placeholders for
future updates. Such updates are then accommodated
by “careting in”, without affecting the remainder of the
tree [41].

The price of the update-friendliness is the depen-
dence on wvariable-sized node labels (up to 20 bytes in
SQL Server) and an increased CPU overhead to com-
pare two node labels for their relationship in the XML
document tree. Also note that this type of XML storage
requires explicit support from the underlying RDBMS
back-end, namely a “Dewey id” data type.?

Interestingly, both classes of tree encodings have very
similar behavior during typical XPath step processing.
Preorder ranks and Dewey ids both obey the same XML
document order. Scans along indices over either repre-
sentation, therefore, usually exhibit the same access pat-
terns on secondary storage.

3 Interestingly, ORDPATH has become a first-class (i.e.,
user-accessible) data type in the 2008 release of SQL Server.

3 Stepping Through XML Forests

Any tree encoding would be meaningless if we used the
relational database as a mere storage container for XML
trees. In this section, we are going to explore efficient
ways to perform XPath step evaluation over encoded tree
data. In the spirit of this work, we first consider RDBMS
functionality that is available in off-the-shelf systems. In
Sections 3.2 and 3.3, we then look at potential additions
to the DBMS kernel that could speed-up the processing
of XPath.

3.1 XPath Evaluation Off-The-Shelf

The XPath axis characterization over pre/post-based tree
data in Section 2.1 lends itself to the use of index struc-
tures with efficient support for range queries. At closer
look, the region to scan typically is a one-dimensional in-
terval only, as we can see if we characterize descendant
based on v’s pre and size values:

v’ € v/descendant

(4)

&
pre(v) < pre(v’) < pre(v) + size(v)

or using the Dewey label of v, vy.v9. -+ .U,:
v’ € v/descendant
= . (5)
v1.0g. oy < dewey(v') < wvpvg. e (v + 1)

Needless to say that such interval queries are well-sup-
ported by conventional B-tree indices.

Oftentimes, the descendant interval needs to be fil-
tered to answer the actual user query. Examples are node
tests that ask for a certain node type (e.g., descendant: :
text ()) or such that constrain element tag names (e.g.,
descendant: : open_auction). The output of an XQuery
child step, in fact, is a filtered descendant result, too:

v' € v/child

(6)

4
v’ € v/descendant A level(v') = level(v) + 1

These filter criteria all have two important properties
in common:

(a) they have a very low selectivity (there are elements
of only ~ 70 different names in XMark [45] data, for
instance, at levels smaller than 12),

(b) they are equality predicates.

As such, the entire step can be answered using a single
scan along a concatenated (f,pre) B-tree,* where f is
the column that contains the respective filter criterion.
Such a scan will not encounter any false hits, but directly
yield the step result (in document order). To answer a

4 In the interest of readability, we assume pre/size-encoded
data. Most of our observations hold for Dewey-encoded data,
too.



step along the child axis, e.g., it is sufficient to scan a
(level, pre) B-tree over Pathfinder’s XML representation.
The performance advantage of this flexibility in XML
indexing is significant: in [27], we showed how a relational
XPath processor can out-perform a native XML proces-
sor by orders of magnitude. Note that this advantage
comes at only little overhead. The low-selectivity pre-
fixes lead to B-tree partitioning [20], which makes the
indices particularly susceptible to prefix compression [5].
Readers interested in further techniques to accelerate
XPath performance on commodity RDBMS implemen-
tations are referred to [27] for an in-depth treatment.

3.2 Tree Awareness with Staircase Join

The indexes sketched in the previous paragraphs strive to
tell the relational query engine as many details as possi-
ble about data distributions in the encoded tree data and
guide the system in navigating the data by standard re-
lational means. Further performance improvements can
be achieved by extending the system with tailor-made
tree navigation algorithms, hence, “inoculating” it with
tree awareness.

Such algorithms were first described by Al-Khalifa et
al. [4], who proposed structural joins as a means to evalu-
ate XPath. Here we look at staircase join [23], which en-
capsulates tree awareness inside a single join algorithm.
At the cost of only a local change to the RDBMS kernel,
staircase join provides all knowledge about the tree origin
of the stored data that is required for high-performance
XPath processing. In addition, staircase join guarantees
a duplicate-free evaluation result in XML document or-
der, therefore lifts the requirement to explicitly sort any
expression result only to comply with XPath.

Staircase join draws its advantage from three princi-
pal techniques:

(a) Pruning redundant context nodes before processing
reduces overhead as well as the number of duplicate
result nodes encountered.

Partitioning the document relation and scanning par-
titions strictly sequentially guarantees a duplicate-
free, document-ordered result and yields cache-opti-
mal access patterns to secondary storage.

Skipping avoids the scanning of significant amounts
of data by ignoring parts which can early be detected
to not contain any result candidates. The decision to
skip is based on tree knowledge inside the algorithm.

(b)

()

In [37], we used the open-source system PostgreSQL
to demonstrate how staircase join could be incorporated
into any relational database back-end. The most signif-
icant effect is that the time necessary to evaluate an
XPath step now only depends on the size of the step’s
result. Contrast to the off-the-shelf system, the modified
system was unaffected by the size of the queried docu-
ment.

Pathfinder’s distribution version MonetDB/XQuery
ships with a MonetDB extension module that contains
an implementation of staircase join. In addition, a loop-
lifted variant is capable of evaluating a step over multiple
context sets in parallel [7].

3.3 Holistic XPath Evaluation

Our discussion so far only considered evaluation strate-
gies that break path expressions into individual steps
for evaluation one after another. Bruno et al. [10] pro-
posed to evaluate XPath expressions in a more holistic
fashion that looks at an entire path at once. The two
algorithms PathStack and TwigStack assume a tree en-
coding that makes child and descendant relationships
between nodes easily decidable. Any of the encodings we
discussed earlier would do.

To evaluate a straight k-step path, PathStack reads k
individual tuple streams T;, each providing a list of nodes
in document order. Stream T; is typically pre-filtered to
yield only those nodes that satisfy, e.g., the name test
for step ¢ in the user query. (Such a stream could be a
concatenated B-tree as described in Section 3.1.) While
reading the k streams, TwigStack maintains a combina-
tion of k stacks that hold (partial) query results in a very
compact way. As soon as a match is found, PathStack
emits a k-tuple of nodes (corresponding to a “binding”
for each of the k steps in the query).

TwigStack extends this idea to the evalu-
ation of twig-shaped paths. The figure on the ?
right, e.g., illustrates the twig that corresponds b

to the path 7 \
c e
\
/descendant: :a/child::b d
[ descendant::c/child::d]
/child::e

Given such a twig pattern, TwigStack runs a variant
of PathStack for every root-to-leaf path in the twig, then
merges their result tuples to compute the overall result.
Rather than running a set of PathStack operators inde-
pendently, TwigStack synchronizes the processing of all
root-to-leaf paths, thereby minimizing the production of
partial results that cannot qualify for the overall oper-
ator output (this is very much like what the classical
merge join algorithm does).

Holistic (twig-oriented) path evaluation algorithms
can play their trump in the evaluation of longer, pattern-
type queries, where a single operator of moderate com-
plexity may excel over many simple single-step joins. The
crux of twig-style path processing is that the twig model
is considerably off the syntax and semantics of the XPath
language. Michiels et al. [30; 39] describe the approach
taken in Galax [16] to detect opportunities for twig pro-
cessing.



It is worth noting that step-by-step evaluation is most-
ly a mental model for the evaluation strategies we de-
scribed earlier. In a pipelined execution engine, the k
joins that evaluate a k-step path all run in parallel, which
effects in an actual data access pattern that very much
resembles what happens in PathStack.

Twig join algorithms are in real-world use, e.g., in
DB2’s XML subsystem pureXML [31].

4 From XPath to XQuery

Equipped with efficient evaluation mechanisms for the
XQuery sub-language XPath, the next step to take is the
construction of a full XQuery processor based on purely
relational foundations. Unfortunately, these foundations
assume a data model that is significantly different from
the one we need to support XQuery. The data model
of XQuery, ordered sequences of items, faces unordered
tables of tuples on the relational end, explicit iteration
faces set-oriented processing.

Two approaches are conceivable to minimize this gap:

(a) force the physical processing order in the relational
engine to be aligned with the order semantics in
XQuery or

(b) lift order and iteration to the logical level by making
both concepts explicit using column values.

We first take a look into Microsoft SQL Server, which
follows route (a) to implement the XQuery semantics.

4.1 XQuery Compilation in SQL Server

The relational treatment of arbitrary XQuery expres-
sions mostly hinges on an appropriate translation of the
FLWOR construct, the XQuery way to inspect and gen-
erate the particular order of an XQuery item sequence.
To implement the semantics of FLWOR, expressions, SQL
Server relies on its existing APPLY operator, available,
e.g., in terms of the CROSS APPLY syntax at the surface
level in Microsoft’s SQL dialect Transact-SQL.

The semantics of APPLY is to read its left-hand in-
put relation R and run a parameterized execution of the
right hand-side expression S($z) for each tuple in R. All
execution results are then collected to obtain the output
of the overall expression R APPLYg, S [17]:

RAPPLYs, S = | ({r} x S[{r}/s2]) (7)
r€ER

Provided that the system preserves the physical order
of both arguments, APPLY is a direct implementation of
XQuery’s for-return iteration primitive. The following
compilation rule illustrates how SQL Server uses APPLY

... bia,... column projection, renaming (a into b)
Oa selection (select rows with a = true)
Ma—p, X equi-join, Cartesian product

W, \ disjoint union (append), difference

duplicate row elimination

row numbering (grouped by ¢)

®a:(by,b2) arithmetic/comparison operator
ataz::nt(b) XPath step operator (a = b/az: :nt)
2:b XQuery atomization (a = fn:data (b))

Oai(b1,....bn)llc

doc,.p XML document access (a = fn:doc (b))
€, T element /text node construction
ag9. b aggregation, grouped by b

Table 1: Relational algebra used by the Pathfinder
XQuery compiler (agg € {count, sum, max, ... }).

to generate the algebraic equivalence of an XQuery for
clause [42] (read = as “compiles to”):

1= q €2 = g2

(8)

Before actual execution, SQL Server will massage the re-
sulting APPLY expression using its existing rewrite mech-
anisms (which were originally targeted to optimize SQL
sub-queries and aggregates [17]).

for $x in e; return ey & ¢y APPLYg, o

The use of APPLY to implement XQuery’s iteration
primitive nicely exploits existing machinery in the query
engine of SQL Server. The simplicity of this approach,
however, is also its Achilles’ heel. The dependence on
a given execution order may prevent interesting oppor-
tunities for order-related optimizations, which in Sec-
tion 5.1.3 we will find to be very attractive in the context
of XQuery.

4.2 Loop Lifting: Order Made Explicit in Logical Plans

As discussed in [17], operator APPLY does not add ex-
pressive power to standard functionality available in any
RDBMS (textbook-style relational algebra plus grouping
operators as required for SQL). Therefore, it is possible
to compile XQuery FLWOR expressions into standard
SQL code. This route is taken by the Pathfinder XQuery
compiler which translates arbitrary XQuery expressions
into a textbook-style relational algebra, enriched only
with few operators to exploit available functionality on
particular RDBMS back-ends [22; 25]. This algebra can
then be externalized for consumption by numerous back-
ends, including MonetDB [9], kdb+ [46], and SQL:1999-
compatible systems.

Table 1 illustrates the set of operators emitted by
the Pathfinder XQuery compiler. In this table, operators
e, T, doc,.p, @a:m and ;.45 :ne(b) are syntactic short-
hands for micro-plans composed of remaining operators
(e.g., step navigation is a join with the pre/size document
table). Operator g,.(p,,...b,)|c 15 the Pathfinder-internal
representation of the SQL:1999 construct ROW_NUMBER ()
OVER (PARTITION BY c ORDER BY by,...,b,) AS a.
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Fig. 3: Execution trace for loop-lifted execution of Query @Q;. Using textbook-style algebra operators, the loop-lifted
sequence representation is maintained for all subexpressions (illustrated for subexpressions e; through es).

To maintain compliance with the

XQuery semantics over an unordered |1 |1 |wv1:
data model, Pathfinder makes sequence : :
and iteration order explicit in its data iA,S,-lAUJ:aA
representation. The evaluation result of ] .
any XQuery subexpression e is repre- ||l _‘_]
sented as shown on the right. In a single | " L] vna
table, this loop-lifted sequence encoding s :
holds the value of e for all iterations e [ |5n [Vn.sy

occurs in. A tuple (i,p,v; ) in this en-
coding indicates that, in the i-th iteration, the value of
e has item v; , at position p.

Pathfinder’s compilation procedure makes sure that
iter- and pos-columns are properly maintained during
query execution and that each subexpression result is
obtained in its loop-lifted representation. The relational
evaluation trace shown in Figure 3 illustrates this for the
query

for $x in (3,4, 5, 6) return
if ($x mod 2 eq 0) then "even" else "odd"
—_— —— ——
€1 €2 €3
(Q1)
We refer to [22; 25] for a detailed description of Path-
finder’s compilation procedure and the resulting query
plans.

Observe that the resulting plans have a strictly set-
oriented semantics, a property inherited from the defi-
nition of their individual operators. Thus, the system is
free to evaluate queries like @1 in any order it sees fit—or
even using a parallel mode of execution.

5 Relational XQuery Optimization

We have just seen how arbitrary compositions of XQuery
expressions can be turned into purely relational eval-
uation plans, using either syntactic sugar available in
SQL Server (the APPLY operator), or the loop lifting tech-
nique that maps XQuery directly into relational algebra.
Neither technique, however, can hide the full composi-
tionality of XQuery and generated plans take a shape
that is very different to the m-o-x pattern preferred by
typical RDBMS optimizers, as shown in Figure 4 for the

plan obtained by a loop-lifting com-
piler for Query Q8 from the XMark
benchmark set. This section illustrates
how Pathfinder deals with plans of such
shape and how the application of tech-
niques from the relational domain can
lead to new insights into XQuery prob-
lems.

5.1 Rewriting and Join Graph Isolation

The strength of relational database sys-
tems certainly is their ability to pro-
cess joins in a highly efficient manner.
The best order in which joins should
be applied is determined by sophisti-
cated join optimization algorithms. To
perform their work, however, these algorithms need to
have a clear view on all involved join operators. Un-
fortunately, in the case of relational XQuery evaluation
plans, this view is obstructed by the stacked plan shape
we saw just a moment ago. Pathfinder’s optimizer, there-
fore, tries to isolate join graphs, then hand them over to
a traditional join enumeration algorithm [28].

Fig. 4: Typical
plan shape.

5.1.1 Peephole-Style Optimization

Toward this end, Pathfinder employs its peephole-style
plan optimizer, which both, (a) is flexible to cover a wide
range of optimizations and plan analyses and (b) guaran-
tees scalability with plan sizes, since operators are looked
at only one at a time.?

Optimization is performed in two distinct phases:

1. An inference phase traverses the entire plan tree once.
For each operator O, the plan analyzer collects any
relevant information about the vicinity of O and stores
this information in an annotation to O.

2. This gives the subsequent rewrite phase enough in-
formation to decide on plan rewrites by looking at
the annotations to O only.

5 Loop-lifted compilation typically leads to plan sizes of a
hundred and more operators prior to optimization.
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(KEY-2)
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(ConsT-2)
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Fig. 5: Peephole-style inference rules to obtain operator annotations key (-) (key columns) and const (-) (columns

holding a constant value).

O¢{d} {a,b} C cols(q1) U cols(g2)
0(q1) Mazb g2 — O (Q1 Mazb ¢2)

key (q) # 0
5(q) —q

0 € {op,d}
O (Qa:(bl,...bn,)(q)) — Oa:(by,...by) (D(Q)) Qa:()Hc(q) —q X E
b; " € const (q)

p independent of a

Qa:(“.,bi,l,bi,bi+1m)||c(q) e Qa:(m,bi,l,bprlm)Hc(q)

Fig. 6: Simplified rewrite rules to implement join graph
isolation in Pathfinder [28]. Rules move obstructing op-
erators toward the plan root to clear the view for join
planning algorithms.

Both phases are driven by extensible sets of rules.
Figure 5, e.g., exemplifies some of the inference rules
that infer annotation key (O) for operators 7, X, and p
(key (O) lists key columns in the output of 00) and anno-
tation const (O) for m and o (const (O) 2 {c="} indicates
that column c in O is constant and has value v). Both
annotations are inferred bottom-up (but others may also
be derived top-down). In the following, we sometimes as-
sume the presence of an annotation cols(0d) that holds
schema information about O’s output.

5.1.2 Join Graph Isolation

The annotated information is the basis for subsequent
rewrite rules. Figure 6 illustrates some of the plan mod-
ifications that lead to an isolation of join graphs. Their
joint goal is to “pull” obstructing plan operators (such
as blocking g or 0 operators) toward the plan root, leav-
ing join graphs behind near the plan leaves. Rules 1 and
3, for instance, push down equi-joins and pull out row
numbering operators, respectively. Rule 2 avoids dupli-
cate elimination if the input contains a key column, while
Rules 4 and 5 simplify or eliminate instances of row num-
bering. Refer to [28] for a more extensive documentation
of Pathfinder’s plan rewrite rule set.

With join graphs isolated, a traditional join optimizer
(e.g., in an SQL:1999 back-end to Pathfinder) is now free
to move around joins and evaluate them in any order it
sees fit. Joins in relational XQuery evaluation plans may
come from different sources:

(a) XPath location steps translate into joins in the rela-
tional plan,

(b) idteration in XQuery (the for clause) is compiled into
a join much like the dependent join in SQL Server
(see Section 4.1), and

(¢) wvalue-based joins in the input query end up as (scat-
tered) o-x pairs in loop-lifted plans. XQuery lacks
an explicit join construct, but value-based joins are
common and can be expressed in different syntacti-
cal ways.

The effect of join ordering on sources (a) and (c) is
particularly interesting. Reordering joins that evaluate
XPath location steps effectively alters the direction of
path navigation. A traditional join optimizer, therefore,
solves XPath optimization problems that challenged re-
searchers in the past, such as rewriting into forward-only
paths [40] or deciding top-down vs. bottom-up path eval-
uation [38].

Detecting instances of source (c) is a known hard
problem in XQuery processing. The feature richness of
XQuery allows value-based joins to be expressed in a
large variety of ways, making them hard to detect based
on syntax analyses. Pathfinder’s join detection is based
on the rewrite principles we mentioned before. In [§],
we found it to be the only XQuery processor capable of
detecting all join scenarios in the XMark benchmark set
[45]. Moreover, with join graph isolation, Pathfinder can
optimize queries across all join sources (a)—(c).

5.1.8 Omnipresence and Lack of Order in XQuery

Another rewrite strategy implemented in the optimizer
of Pathfinder is the pushdown of projections. A peephole-
style data flow analysis discovers table columns produced
but never consumed by any upstream plan operator.
Such columns will be discarded early in the plan DAG
or, most importantly, their generation be avoided if pos-
sible.

Remember that, in loop-lifted XQuery plans, table
columns may contain other information than only user
data. Columns iter and pos are Pathfinder’s device to
encode order in otherwise set-oriented evaluation plans.
Though technically this releases the back-end from any
prescribed tuple order, the maintenance of both columns
may ultimately still impose a specific row order. This
constraint gets lifted, once columns iter or pos can suc-
cessfully be projected out from the plan. The system is
then free to do its task in any physical order.

It turns out that a column projection of this kind
is applicable more often than one might think. Existen-
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Fig. 7: System R-style cardinality estimation rules [48].

tial semantics, aggregation, explicit requests for sorted
output (order by clause), or explicit user-requested or-
der relaxation (fn:unordered (-), unordered{-}) are
all situations where projection pushdown instantly leads
to unordered processing. On realistic workloads, this may
lead to orders of magnitude in performance improvement

[26].

5.2 Dependable Cardinality Forecasts for XQuery

The inference of a good physical plan (e.g., the choice of
the proper join order for the join graphs in Section 5.1.2)
is only possible if the system can make accurate predic-
tions on the cost of potential plan alternatives. These
predictions, in turn, usually depend on cardinality esti-
mates for (intermediate) XQuery expression results.

It is fairly well understood how such estimates can be
computed for basic XPath expressions. Data guides [18],
e.g., succinctly summarize an XML document tree by re-
ducing multiple nodes with an identical root-to-leaf path
to a single instance in the guide. Annotated with such
statistical information, such a summary provides a high
estimation accuracy for common (and order-insensitive)
paths with only small space overhead. Follow-up work
has improved on the ideas of data guides by reducing
the memory footprint of collected statistics [1] or pro-
viding support for order-sensitive axes [35] or branching
paths [44].

The syntactic diversity of XQuery, combined with a
blurred distinction between schema and data, makes it
hard to lift such results to the level of all XQuery. This
knot can be cut by using relational algebra as a frame-
work that links available XPath estimation work with
traditional techniques, such as data histograms or the
seminal System R estimator. The concise semantics of
algebraic operators thereby serves as a common ground
for meaningful reasoning over cardinalities.

The query analyzer in [48] is an implementation of
this idea that was shown to provide high-quality esti-
mates for a wide range of XQuery workloads. In line
with Pathfinder’s peephole-style plan assessment, it con-
sumes and produces plan annotations to ultimately yield
annotation |0, the projected cardinality for operator O.

Figure 7 illustrates how basic estimation rules from
System R fit into this inference mechanism. The cardinal-
ity of disjoint union U or Cartesian product x operators
can be determined by adding or multiplying both input
cardinalities (Rules CARD-1 and CARD-2). A histogram

can be used to judge the selectivity of a selection pred-
icate if available (Rule CARD-4). If not, Rule CARD-3
applies the System R 10 % heuristic to obtain the out-
put cardinality.

5.2.1 Data Flow Analysis and Value Domains

The stacked shape of loop-lifted XQuery evaluation plans
is reflected in the rule set of [48], too. An annotation
dom (O) speculates over the size of the runtime value do-
main of each column c (i.e., the number of distinct values
in c¢) and reasons over known inclusion relationships be-
tween domains. This implements data flow analysis just
to the amount necessary for cardinality estimation.

Domain sizes and table cardinalities often interact.
If operator p is used, e.g., to attach a new key column
to the output of ¢, the new column is going to range
exactly over values 1,...,|q| (||o| indicates the size of
domain «):

dom (0a:(by ... by (@) 2 dom (q) U {a® A o] =" |g|}

Likewise, the number of groups in an aggregate function
is determined by the domain size of the grouping crite-
rion c:

b? € dom (q)

(CARD-5) .

aggapul@)| = 13

See [48] for details on peephole-style data flow tracking.

5.2.2 Interfacing with XPath Estimation

Relational XQuery cardinality estimation does not imply
any particular technique to estimate XPath subexpres-
sions. Rather, a generic interface allows plugging in any
of the published techniques for XPath estimation.

To this end, Pathfinder tracks the application of ]
operators (XPath step navigation) and constructs navi-
gation traces very much like the projection paths in the
Galax XQuery processor [36]. Each node-valued column
c in the loop-lifted plan is annotated with the navigation
path that has been followed to obtain the nodes in c:

b=" € path (q)
path (fﬂa:az: :nt(b) (Q)) 2 a:>p/a:r: ity path (q)

A set of related rules ensures that the information is
properly propagated through the operator graph.

Tracked path information is then used to invoke the
XPath estimation subsystem. Assuming a mechanism to
predict the fanout of a location step ax::nt that origi-
nates in a node set reachable via the path p,

fn:count (p/ax::nt)
Praw::nt (p) =

)

fn:count (p)



the cardinality of the step operator &J can be estimated
according to

b=" € path (q)
|fﬂa:az::nt(b)(q)| = |q| “Prog::nt (p)

(CARD-6) .

Further examples are detailed in [48].

The attractiveness of using relational query plans to esti-
mate XQuery cardinalities is its robustness with respect
to the syntactic diversity of XQuery and potential mis-
estimations for intermediate expressions. An extensive
experimental assessment in [48] demonstrated that a re-
lational XQuery estimator can cope with a wide range
of query workloads.

6 Scalable XQuery Type Matching

Unlike most existing programming or query languages,
XQuery blurs the distinction between data and its type.
Type names can be used, e.g., as the node test in XPath
location steps. Likewise, the type of any XQuery item
can be inspected at runtime by means of the typeswitch
or instance of constructs. In this section, we look into
relational support for such functionality.

The approach taken in [47] is inspired by the XQuery
Data Model specification [14]. In XQuery, every item x
is defined to be a pair, consisting of a value v and its
type annotation t (a reference to a named XML Schema
type):

xr =vof typet .

Provided a suitable representation for named types, this
definition can directly be used to enrich a relational se-
quence encoding with dynamic type information: each
instance of an item column becomes
a pair of value and type. The mod-
ified loop-lifted sequence encoding
shown on the right, e.g., assumes the i p v }t
availability of surrogates 7+ to repre- - : :
sent the type annotation t.

iter|pos|value type|

6.1 Sequence Type Matching

The common ground for all XQuery operations on run-
time type information is the type matching process de-
fined in the XQuery Formal Semantics [13]. In a nutshell,
a singleton XQuery item x = v of type t' matches a
named type t if the type annotation of z, ', references a
named type definition that has been derived from t (by
extension or restriction). A sequence x = (x1,...,x;)
matches a sequence type tO if all singletons in z match
t and the length [ of = is compatible with the occurrence
indicator 0.

Implementing a singleton type match, therefore, im-
plies a lookup in the derives from hierarchy. One insight

(0, xs:anyType, 12)
(1, xs:untyped, 0)
— (2, xs:anySimpleType, 8)

L (3, xs:anyAtomicType, 7)
- (4, xs:boolean, 0)
— (b, xs:decimal, 2)

T: (6, xs:integer, 0)

(7, Price, 0)

— (8, xs:string, 1)

L (9, Currency, 0)
L (10, xs:untypedAtomic, 0)
L (11, AuctionItem, 1)

L (12, CarAuctionItem, ()

Fig. 8: Sample type hierarchy, annotated with pre(-)
(left) and size(-) (right) numbers.

in [47] is that derives from describes a proper tree struc-
ture. We already saw how trees can efficiently be handled
by relational means: preorder ranks in a pre/size-encoded
type hierarchy or Dewey ids for type relationships would
both make for appropriate implementations of 7;.% Fig-
ure 8 illustrates a pre/size encoding, termed type ranks in
[47], for a subset of the predefined XDM type hierarchy,
enriched with user-defined simple (Price and Currency)
and complex types (AuctionItem and CarAuctionIten).

Assuming a pre/size-encoded type hierarchy, predi-
cate matches can then by characterized as

xr =vof typet
pre(t) < pre(t') < pre(t) + size(t)
x matches ¢

9)

Compare this to the pre/size-based characterization of
the XPath descendant axis in Section 3.1 and note that,
due to syntactical constraints in XQuery, type t (i.e., the
two interval ends) is always known at query compilation
time. Only ¢’ is runtime-dependent in this judgment.

The use of type ranks avoids the runtime recursion
required by existing XQuery processors to resolve the
derives from property (e.g., [32; 16]).

6.2 Type Aggregation

Lifted to sequence-valued operands, Judgment 9 reads

V(x; = v; of typet;) :
pre(t) < pre(t;) < pre(t) + size(t)
length of = compatible with O

10
x matches tO (10)
Informally, we test the type annotation ¢; for each item
x; in x against the interval defined by the pre and size
values of ¢.

5 Note that we are encoding trees of types here, not XML
document trees.
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€= Qe

t is a named atomic type

SELECT iter, 1 AS pos,

(INSTANCEOF)

CASE WHEN (MIN(type) >= pre(t) AND MAX (type) <= pre(t) + size(t)
AND COUNT (*) IS COMPATIBLE WITH )

e instance of t0 &=
pre(xs:boolean) AS type
FROM g,
GROUP BY iter

THEN ’true’ ELSE ’false’ END AS value,

Fig. 9: Translation of instance of for atomic types in a loop-lifting compiler (for details refer to [47]).

There is a different (and more database-friendly) way
to obtain the same result. Instead of separately test-
ing each pre(t;) against the given interval boundaries,
we could as well determine the minimum and mazximum
type ranks in x first, then do the interval test only once

(type aggregation):

min
(z;=v;of typet;)Ex

max
(z;=v;of typet;)Ex

(pre(t;)) = pre(t)
(pre(t;)) < pre(t) + size(t)

length of & compatible with O

(1)

x matches ¢t

Needless to say that this rewrite enables the use of ad-
vanced algorithms for aggregation on modern RDBMS
back-ends.

As detailed in [47], all remaining type-related tasks
can be turned into similar aggregation problems, includ-
ing the check for the occurrence indicator O and support
for XML Schema substitution groups.

6.3 Loop-Lifted Type Matching

The aggregation semantics is easily expressible in the
context of a loop-lifted XQuery compiler. Figure 9 shows
the (simplified) translation rule for the XQuery instance
of operator. Observe how this rule emits a four-column
loop-lifted output representation to ensure composition-
ality with arbitrary XQuery expressions. The output of
an instance of expression is a Boolean value. Column
type, therefore, is populated with the preorder rank of
the xs:boolean type, a constant determined at query
compilation time.

In experiments on top of an SQL database back-end
we found that, besides providing a slim and efficient im-
plementation for derives from, type ranks integrate par-
ticularly well with existing strategies for relational query
processing. A relational database will immediately take
advantage of, e.g., a type column that happens to be
physically sorted. Further, for XPath node tests on type
and tag name, the system may now, depending on esti-
mated costs, freely choose among indexes on types, tag
names, or even on a combination of both.

7 Hitting the Limits

It is well-known that XQuery is a Turing-complete lan-
guage, which relational algebra is not [33]. No encoding
or compilation strategy can get around this limit in ex-
pressive power (see, e.g., [19; 34] for detailed theoretical
analyses of the complexity of XPath/XQuery).

The source of Turing-completeness in XQuery is pri-
marily the allowance of arbitrary recursion in user-de-
fined functions.” At the same time, recursion is a highly
desirable feature in a query language that operates over
an inherently recursive data structures such as XML
trees. And while the general problem is proven hard, lim-
ited types of recursion may still be tractable on relational
back-ends, yet be useful in actual applications.

An extension recently built into Pathfinder [2] aims
to explore one particular flavor of recursion, the support
for transitive closure. Its evaluation has been studied ex-
tensively in the context of deductive databases, and any
decent SQL processor readily ships with support for tran-
sitive closure.

To relieve the query compiler from detecting tran-
sitive closure operations in function declarations in the
input query, Pathfinder requires users to make their in-
tentions explicit using the

with $v seeded by e,ccq Tecurse epoay($v)

construct in a Pathfinder-specific extension to XQuery.
(Based on an initial binding of $v, expression epoqy is
recursively evaluated until a fixed point is reached.)

While the semantics of the with--- construct can di-
rectly be translated into a back-end implementation, the
resulting Algorithm Naive (Figure 10a) may often not
be the most efficient strategy to compute the fixed point.
Its counterpart Delta is the folklore variant in deductive
databases and avoids the repeated re-computation of the
results obtained in early loop iterations.

In XQuery, unfortunately, Algorithm Delta turns out
to be not correct for all instances of epoqy and, there-
fore, cannot serve as a general-purpose implementation
for with---. But if those instances that satisfy a distribu-
tivity property can be detected reliably, an optimizer can

" Tt is not surprising that several commercial XQuery im-
plementations built around relational technology do not sup-
port user-defined functions.
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TES <— €hody (eseed)
A «— res
do
A — epogy(A) except res
T€S «— €hody(T€S) Union res
while res grows
return res

(b) Algorithm Delta.

TES <— €hody (eseed)

do

res «— €pody(res) union res
while res grows
return res

(a) Algorithm Naive.

Fig. 10: Potential implementations for the with--- con-
struct. Algorithm Naive is correct for all epoqy, but less
efficient than Delta.

trade Naive for Delta. Based on a relational representa-
tion for epoqy, the distributivity property can be proven
by well-defined algebraic plan rewrites. In a nutshell,
Pathfinder tries to push a union operator U through the
plan that implements epoqy. If this can be done success-
fully, Algorithm Naive is replaced by Delta [3].

The application of Delta can lead to significant per-
formance advantages for fixed-point computations (or
may enable their use on relational back-ends at all).
Pathfinder’s current implementation still depends on user
hints in terms of the with--- clause. This is certainly
one situation where XQuery compilers could benefit from
existing work on compilers for general-purpose program-
ming languages.

The work in [43] notes that a common query pattern in
XQuery is structural recursion along the XML document
tree. The authors propose an analysis based on static
type information to wunfold finite instances of recursive
invocations. The technique could be a way to extend the
class of queries that can be handled in a purely relational
XQuery setup. It does not bridge the expressivity gap per
se, however.

8 Conclusions

This work gave a (biased) review of existing techniques
to turn relational database back-ends into processors for
XQuery. We have based our tour on the paths chosen in
Pathfinder, an open-source implementation of a purely
relational XQuery compiler.

Our review demonstrates that the relational approach
to XQuery has come a long way since its first steps
roughly a decade ago. Pathfinder is able to support a
large subset of the XQuery specification at unprecedented
speeds and with scalability far into the gigabyte range.
Similar approaches have already found their way into
commodity database software, such as the XQuery im-
plementation in Microsoft SQL Server.

Yet, to solve the full puzzle, not all of the necessary
pieces have been found so far. We feel that the most in-
teresting question in relational XQuery processing is the
role of pattern-based query evaluation in the XQuery pic-
ture (see Section 3.3). Some systems have come up with

very efficient algorithms to answer queries formulated in
a pattern style (and we have sketched one prominent
representative). Unfortunately, due to significant seman-
tical differences between XPath and pattern notations,
these algorithms still remain largely inaccessible for com-
pliant XQuery evaluation. The work in [30; 39] does a
significant step toward closing that gap. The full piece,
however, seems still missing to fit into the puzzle.

Section 7 hints at another aspect of XQuery process-
ing that has not yet been fully explored. In many senses,
XQuery is at the verge to a general-purpose program-
ming language, as one can also tell from recent develop-
ments in the W3C Working Group [11]. Pathfinder and
other XQuery processors already picked up a number
of techniques originally designed for programming lan-
guage compilers. But we feel that the general application
of such techniques to query processing problems is still
not sufficiently understood. Research on recent script-
ing additions to XQuery may bring up interesting syn-
ergies contributed from both research fields, databases
and programming languages/compiler construction (and
recursion is only one aspect).
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