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ABSTRACT
Computer architectures are quickly changing towards het-
erogeneous many-core systems, where processing units of
different characteristics are combined into a single platform.
Such a trend opens up interesting opportunities, but also
raises immense challenges since the efficient use of hetero-
geneous many-core systems is not a trivial problem. In this
paper, we explore how to program streaming operators on
top of field-programmable gate arrays (FPGAs). FPGAs are
very versatile in terms of how they can be used and now they
can also be added as additional processing units in standard
CPU sockets. As customizable hardware, however, FPGAs
induce several trade-offs.

In the paper, we use the example of a median filter ap-
plied to a sliding window to study how stream processing can
be accelerated using an FPGA. Our results indicate that
efficient usage of FPGAs involves non-trivial aspects such
as having the right computation model (an asynchronous
sorting network in this case); a careful implementation that
balances all the design constraints in an FPGA; and the
proper integration strategy to link the FPGA to the rest
of the system. Once these issues are properly addressed,
our experiments show that significant performance benefits
can be obtained by extending conventional engines with the
option of implementing operators directly on an FPGA, par-
ticularly operators that are CPU-bound.

1. INTRODUCTION
Taking advantage of specialized hardware has a long tra-

dition in data processing applications. Some of the earliest
efforts involved building entire machines tailored to database
engines [6]. More recently, graphic processing units (GPUs)
are being studied as a way to efficiently implement certain
types of operators [9, 10].

Parallel to these developments, computer architectures
are quickly evolving towards heterogeneous many-core sys-
tems. These systems will soon have a (large) number of pro-
cessors and the processors will not be identical. For instance,
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some will have full instruction sets, others will have reduced
or specialized instruction sets, not all of them will use the
same clock frequency or exhibit the same power consump-
tion, floating point arithmetic-logic units will not be present
in all processors, and there will be highly specialized cores
such as field-programmable gate arrays (FPGA) [11]. An ex-
ample of such heterogeneous system is the Cell Broadband
Engine, which contains, in addition to a general-purpose
core, multiple special execution cores (synergetic processing
elements SPEs).

Given that existing applications and operating systems
already have significant problems when dealing with multi-
core systems [4], such diversity adds yet another dimension
to the complex tasks of adapting data processing software
to these new hardware platforms. Unlike in the past, it
is no longer a question of taking advantage of specialized
hardware, but a question of adapting to new, inescapable
architectures.

In this paper, we focus our attention on FPGAs as one
of the more “different” elements that are likely to be found
in many-core systems. FPGAs are (re-)programmable hard-
ware that can be tailored to almost any application. As such,
in addition to the potential increase in parallelism offered by
one more core, they open up the possibility of implementing
data processing operators directly in hardware. As a first
step in determining how to take advantage of FPGAs, in this
paper we study how to implement an apparently simple data
stream operator (median) over a small sliding window. We
focus on this deceptively simple example to be able to study
in detail the trade-offs induced by the use of FPGAs. The
contributions of the paper are empirically tested solutions
to four key design trade-offs in the use of FPGAs:

(1) FPGAs have clock frequencies that are lower than those
of conventional CPUs. In this paper, we show how they
can provide high efficiency nonetheless if their circuits
are designed to run in an asynchronous execution mode,
outside the regular system clock.

(2) Asynchronous designs are notoriously more difficult to
design than synchronous ones. This has led to a prefer-
ence for synchronous circuits in studies of FPGA usage
[11]. By example of sorting networks, we illustrate sys-
tematic design guidelines to create asynchronous circuits
that solve database problems.

(3) FPGAs provide inherent parallelism whose only limita-
tion is the amount of chip space to accommodate par-
allel functionality. We show how this resource can be
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managed and demonstrate an efficient circuit for paral-
lel stream processing.

(4) The usefulness of an FPGA as a database co-processor
hinges on its integration with the remainder of the sys-
tem. We demonstrate a working heterogeneous multi-
core setup and identify trade-offs in FPGA integration
design.

In a detailed experimental study, we let our FPGA proto-
type compete face to face against general-purpose CPUs and
see how a single-threaded low-cost FPGA compares favor-
ably with performance figures published recently for high-
end CPUs [5]. Our implementation further provides linear
scale-out with respect to additional threads.

Outline. We start our work by setting the context with
related work (Section 2). After introducing necessary tech-
nical background in Section 3, we illustrate the implementa-
tion of a complete database streaming operator using FPGA
hardware (Section 4). Its integration into a complete multi-
core system is our topic for Section 5, before we evaluate
our work in Section 6. We wrap up in Section 7.

2. RELATED WORK
A number of research efforts have explored how databases

can be re-architected to use the potential of modern hard-
ware architectures. Examples include optimizations for cache
efficiency (e.g., [16]) or the use of vector primitives (“SIMD
instructions”) in database algorithms [22]. The QPipe [12]
engine exploits multi-core functionality by building an op-
erator pipeline over multiple CPU cores. Likewise, stream
processors such as Aurora [2] or Borealis [1] are implemented
as networks of stream operators. An FPGA with database
functionality could directly be hooked into such systems to
act as a node of the operator network.

The shift toward an increasing heterogeneity is already
visible in terms of tailor-made graphics or networks CPUs,
which already found their way into commodity systems.
Govindaraju et al. demonstrated how the parallelism built
into graphics processing units can be used to accelerate com-
mon database tasks, such as the evaluation of predicates and
aggregates [10]. The GPUTeraSort algorithm [9] parallelizes
a sorting problem over multiple hardware shading units on
the GPU. Within each unit, it achieves parallelization by
using SIMD operations on the GPU processors. The AA-
Sort [14], CellSort [7], and MergeSort [5] algorithms are
very similar in nature, but target the SIMD instruction sets
of the PowerPC 970MP, Cell, and Intel Core 2 Quad pro-
cessors, respectively.

The use of network processors for database processing was
studied by Gold et al. [8]. The particular benefit of such
processors for database processing is their enhanced support
for multi-threading.

We share our view on the role of FPGAs in upcoming sys-
tem architectures with, e.g., the Kiwi [11] and Liquid Metal
[13] projects. Both projects aim at off-loading traditional
CPU tasks to programmable hardware.

The advantage of using customized hardware as a data-
base co-processor has already been recognized in the context
of database machines. DeWitt’s direct system, e.g., com-
prises of a number of query processors whose instruction sets
embrace common database tasks such as join or aggregate
operators [6].
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Figure 1: Simplified FPGA architecture: 2D array
of CLBs, each consisting of 4 slices and a switch
box. Available in silicon: 2 PowerPC cores, BRAM
blocks and multipliers.

Database machines ultimately failed purely for econom-
ical reasons: with significant up-front costs, the design of
customized chips could not compete with the racing clock
speeds of general-purpose CPUs. By contrast, our work
strives to exploit commodity and widely available compo-
nents. While we configure FPGA chips for a specific appli-
cation, the hardware remains general-purpose itself.

FPGAs are being used very successfully in the signal pro-
cessing domain and we draw on some of that work in Sec-
tions 4 and 5. The particular operator that we use to demon-
strate FPGA-based co-processing, the computation of a me-
dian, has been addressed, e.g., by [20]. The proposed stack
filters, however, are only suited to process input where the
underlying value domain is small (rather than the 32-bit
integer values we assume). Our median implementation is
similar to the sorting network proposed by Oflazer [17]. As
we demonstrate in Section 6.1, we gain significant perfor-
mance advantages by designing the network to run in an
asynchronous mode.

3. OVERVIEW OF FPGAS
Field-programmable gate arrays are reprogrammable hard-

ware chips for digital logic. As the name implies, FPGAs
are an array of logic gates that can be configured to con-
struct arbitrary digital circuits. These circuits are specified
using either circuit schematics or hardware description lan-
guages (HDL) such as Verilog or VHDL. A logic design
on an FPGA is also referred to as a soft IP-core (intellec-
tual property core). Existing commercial libraries provide
a wide range of pre-designed cores, including those of com-
plete CPUs. More than one soft IP-core can be placed onto
an FPGA chip.

3.1 FPGA Architecture
Figure 1 shows a simplified architecture of the Xilinx Virtex-

II Pro XC2VP30 FPGA used in this paper [21]. The FPGA
is a 2D array of configurable logic blocks (CLBs). Each logic
block consists of 4 slices that contains the logic gates and
a switch box that connects slices to the FPGA interconnect
fabric.

In addition to the CLBs, FPGA manufacturers provide
frequently-used functionality as discrete silicon components
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PowerPC cores 2
Slices 13,696
18 kbit BRAM blocks 136 (=2,448 kbit,

usable as 272 kB)
18x18-bit multipliers 136
I/O pads 644
Release year 2002

Table 1: Characteristics of Xilinx XC2VP30 FPGA.

(hard IP-cores). Such hard IP-cores include block RAM
(BRAM) elements (each containing 18 kbit fast storage) as
well as 18x18-bit multiplier units. A number of Input/Output
Blocks (IOB) link to external RAM or networking devices.
Two on-chip PowerPC 405 cores are directly wired to the
FPGA fabric and to the BRAM components. Each PowerPC
core has dedicated 16 kB data and instruction caches. The
caches are intended to speed up accesses to external memory
of long latency. The cores provide the 32-bit subset of the
PowerPC architecture, but do not have any dynamic branch
prediction. The execution pipeline has 5 stages and has sin-
gle in-order instruction issue. Table 1 shows a summary of
the characteristics of the FPGA used in this paper.

A simplified circuit diagram of a programmable slice is
shown in Figure 2. Each slice contains two lookup tables
(LUTs) with four inputs and one output each. A LUT
can implement any binary-valued function with four binary-
inputs or, equivalently, 16-bit memory. The output of the
LUTs can be fed to a buffer block which can be configured
as a register (flip-flop) or a latch. The output is also fed
to a multiplexer (MUXCY in Figure 2), which allows the
implementation of fast carry logic.

3.2 Hardware Setup
FPGAs typically come pre-mounted on circuit board that

includes additional peripherals. Quantitative statements in
this work are based on a Xilinx XUPV2P development board
with a Virtex-II Pro XC2VP30 FPGA chip. Despite being
on the market since six years already, this model is still
widely used for evaluation and production use. Relevant
for the discussion in this paper are the DDR DIMM socket
which we populated with a 512 MB RAM module. For ter-
minal I/O of the software running on the PowerPC, a RS232
UART interface is available. A 100 Mbit Ethernet port is
also present on the board.

The board is clocked at 100 MHz. This clock drives both,
the FPGA-internal buses as well as the external I/O con-
nectors, such as the DDR RAM. With a 64-bit interface,
this suggests a theoretical peak bandwidth of 1600 MB/s
to the DDR DIMM. The effective bandwidth that can be
achieved from the PowerPC core during sequential access is
significantly lower. With caches enabled, and hence burst
accesses, we measured up to 107.8 MB/s. We assume that
the significant difference is due to timing incompatibilities
of the existing DDR-RAM controller provided by Xilinx as
a soft IP-core. The PowerPC cores are clocked higher at
300 MHz.

Latest FPGAs allow significantly higher clock rates and
provide higher bandwidth to external memory. To account
for the technology gap, we compare our hardware implemen-
tation against the CPU solution on a processor of the same
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Figure 2: Simplified Virtex-II Pro slice consisting of
2 LUTs and 2 register/latch components. The gray
components are configured during programming.

age (the PowerPC core on the FPGA), as well as to modern
desktop CPUs. Together, these comparisons give an idea of
the potential of FPGA-accelerated data processing. Start-
ing from promising results we can see already, future, faster
FPGA models will increase the performance benefit.

4. A STREAMING MEDIAN OPERATOR
To demonstrate some of the considerations in an FPGA-

based database co-processor, we prototyped an operator that
is simple, yet touches interesting aspects of hardware-accel-
erated data processing and has useful applications. We used
the aforementioned Xilinx development board to implement
functionality that could be found in a typical stream pro-
cessing problem: the computation of a median over a count-
based sliding window (for illustration purposes, we assume
a window size of 8 tuples). For an input stream S, such an
operator can be described in CQL as

Select median(v)
From S [ Rows 8 ] .

(Q1)

Possible applications of such functionality include, e.g., the
elimination of non-Gaussian random noise in sensor readings
[18] or data analysis tasks [19].

The semantics of Query Q1 is illustrated in Figure 3. At-
tribute values vi in input stream S are used to construct a
new output tuple T ′i for every arriving input tuple Ti. A
conventional (CPU-based) implementation would probably
use a ring buffer to keep the last eight input values (we as-
sume unsigned integer numbers), then, for each input tuple
Ti,

(1) sort the window elements vi−7, . . . , vi to obtain an or-
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Figure 3: Median aggregate over a count-based slid-
ing window (window size 8).

dered list of values v′1 ≤ · · · ≤ v′8 and

(2) compute the mean value between v′4 and v′5,
v′
4+v′

5
2

, to
construct the output tuple T ′i (for an odd-sized window,
the median would be the middle element of the sorted
sequence instead).

We will shortly see how the data flow in Figure 3 directly
leads to an implementation in FPGA hardware. Before
that, we discuss the algorithmic the part of the problem
for Step (1).

4.1 Sorting
Sorting is the critical piece in the median operator and

known to be particularly expensive on conventional CPUs.
Even highly tuned and vectorized implementations [5] re-
quire in the order of fifty CPU cycles to sort eight numbers
on modern CPUs.

Sorting Networks. Interestingly, all of the efficient CPU-
based solutions use sorting algorithms that are also the pre-
ferred choice for an implementation in hardware. Sorting
networks are attractive in both scenarios, because they (i) do
not require control flow instructions or branches and (ii) are
straightforward to parallelize (because of their simple data
flow pattern). On modern CPUs, sorting networks suggest
the use of vector primitives, which has been demonstrated,
e.g., in [7, 9, 14].

Figure 4 illustrates two different networks that sort eight
input values. Input data enters a network at the left end.
As the data travels to the right, comparators each ex-
change two values, if necessary, to ensure that always the
larger value leaves a comparator at the bottom. The bitonic
merge network (Figure 4(a)) is based on a special property
of bitonic sequences (i.e., ones that can be obtained by con-
catenating two monotonic sequences). A component-wise
merging of two such sequences always yields another bitonic

sequence, easy to bring into monotonic (i.e., sorted) order
afterward.

In an even-odd merge sorting network (Figure 4(b)), an
input of 2p values is split into two sub-sequences of length
2p−1. After the two 2p−1-sized sequences have been sorted
(recursively using even-odd merge sorting), an even-odd mer-
ger combines them into a sorted result sequence. Other sort-
ing algorithms can be represented as sorting networks, too.
For details we refer to the work of Batcher [3] or a textbook
(e.g., [15]).

Sorting Network Properties. As can be seen in the two
example networks in Figure 4, the number of comparisons
required for a full network implementation depends on the
particular choice of the network. The bitonic merge sorter
for N = 8 inputs in Figure 4(a) uses 24 comparators in total,
whereas the even-odd merge network (Figure 4(b)) can do
with only 19. For other choices of N , we listed the required
number of comparators in Table 2.

The graphical representation in Figure 4 indicates another
important metric of sorting networks. Comparators with in-
dependent data paths can be grouped into processing stages
and evaluated in parallel. The number of necessary stages
is referred to as the depth S(N) of the sorting network. For
eight input values, bitonic merge networks and even-odd
merge networks both have a depth of six.

Compared to even-odd merge networks, bitonic merge
networks observe two additional interesting characteristics:

(i) all signal paths have the same length (by contrast, data
paths to output y0 in Figure 4(b) pass three comparators,
whereas those ending in y3 pass six),

(ii) the number of comparators in each stage is constant (4
comparators per stage for the bitonic merge network, com-
pared to 2–4 for the even-odd merge network).

CPU-Based Implementations. The two properties are
the main reason why many successful implementations have
opted for a bitonic merge network, despite its higher com-
parator count (e.g., [7, 9]). Differences in path lengths
may require explicit buffering for those values that do not
actively participate in comparisons at specific processing
stages. At the same time, additional comparators might
cause no additional cost in architectures that can evaluate
a number of comparisons in parallel, e.g., using the SIMD
instruction sets of modern CPUs.

4.2 An FPGA Median Operator
The data flow in Figure 3 can be used to build an im-

plementation in FPGA logic. Each of the solid arrows then
corresponds to 32 wires in the FPGA interconnect fabric,
carrying the binary representation of a 32-bit integer num-
ber. Sorting and mean computation can both be packaged
into logic components, whose internals we now look into.

Comparator Implementation on an FPGA. The data
flow in the horizontal direction of Figure 4 also translates
into wires on the FPGA chip. The entire network is obtained
by wiring a set of comparators, each implemented in FPGA
logic. The semantics of a comparator is easily expressible in
the hardware description language VHDL:
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Figure 4: Sorting networks for 8 elements. Dashed comparators are not used for the median.

bubble/insertion even-odd merge bitonic merge

exact C(N) = N(N−1)
2

C(2p) = (p2 − p+ 4)2p−1 C(2p) = (p2 + p)2p−2

S(N) = 2N − 3 S(2p) = p(p+1)
2

S(2p) = p(p+1)
2

asymptotic C(N) = O(N2) C(N) = O
`
N log2(N)

´
C(N) = O

`
N log2(N)

´
S(N) = O(N) S(N) = O

`
log2(N)

´
S(N) = O

`
log2(N)

´
N = 8 C(8) = 28 C(8) = 19 C(8) = 24

S(8) = 13 S(8) = 6 S(8) = 6

Table 2: Comparator count C(N) and depth S(N) of different sorting networks.
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Figure 5: FPGA implementation of a 32-bit com-
parator. Total space consumption is 48 slices (16 to
compare and 32 to select minimum/maximum val-
ues).

entity comparator is

port (a : in std_logic_vector(31 downto 0);

b : in std_logic_vector(31 downto 0);

min : out std_logic_vector(31 downto 0);

max : out std_logic_vector(31 downto 0));

end comparator;

architecture behavioral of comparator is

min <= a when a < b else b;

max <= b when a < b else a;

end behavioral;

The resulting logic circuit is shown in Figure 5. The
32 bits of the two inputs a and b are compared first (up-
per half of the circuit), yielding a Boolean output signal
c for the outcome of the predicate a ≥ b. Signal c drives
2 × 32 multiplexers that connect the proper input lines to
the output lines for min(a, b) and max(a, b) (lower half of
the circuit). Equality comparisons = and multiplexers

each occupy one lookup table on the FPGA, resulting
in a total space consumption of 48 FPGA slices for each

comparator.
The FPGA implementation in Figure 5 is particularly effi-

cient. All lookup tables are wired in a way such that all table
lookups happen in parallel. Outputs are combined using the
fast carry logic implemented in silicon for this purpose.

The Right Sorting Network for FPGAs. To imple-
ment a full bitonic merge sorting network, 24 comparators
need to be plugged together as shown in Figure 4(a), re-
sulting in a total space requirement of 1152 slices (or 8.4 %
of the space of our Virtex-II Pro chip). An even-odd merge
network (Figure 4(b)), by contrast, can do the same work
with only 19 comparators, which amount to only 912 slices
(≈ 6.7 % of the chip). Available slices are the scarcest re-
source in FPGA programming. The 20 % savings in space,
therefore, makes even-odd merge networks preferable over
bitonic merge sorters on FPGAs. The runtime performance
of an FPGA-based sorting network exclusively depends on
the depth of the network (which is the same for both net-
works).

Optimizing for the Median Operation. Since we are
only interested in the computation of a median, a fully
sorted data sequence is actually more than what we need.
Even with the dashed comparators in Figure 4 omitted, the
average over y3 and y4 will still yield a correct median result.

This optimization saves us 2 (3) comparators for the bito-
nic (even-odd) merge sorting network (respectively). More-
over, the even-odd-based network is now shortened by a full
stage, reducing the overall execution time of the network.
The optimized network in Figure 4(b) now consumes only
16 comparators, i.e., 768 slices or 5.6 % of the chip.

Averaging Two Values in Logic. To obtain the final
median value, we are left with the task of averaging the two
middle elements in the sorted sequence. The addition of two
integer values is a classic example of a digital circuit and,
for 32-bit integers, consists of 32 full adders. To obtain the
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linear shift register.

mean value, the 33-bit output must be divided by two or—
expressed in terms of logic operations—bit-shifted by one.
The bit shift, in fact, need not be performed explicitly in
hardware. Rather, we can connect the upper 32 bits of the
33-bit sum directly to the operator output.

Overall, the space consumption of the mean operator is
16 slices (two adders per slice).

Sliding Windows. The sliding window of the median op-
erator is implemented as a 32-bit wide linear shift register
with depth 8 (see Figure 6). The necessary 8× 32 flip-flops
occupy 128 slices (each slice contains two flip-flops).

5. SYSTEM DESIGN
So far we have looked at our FPGA-based database opera-

tor as an isolated component. To function as a co-processing
unit of an actual database setup, this component now has to
be wired into a system architecture that includes more tra-
ditional units such as general-purpose CPUs, memory con-
trollers, or I/O functionality.

The resulting architecture can be built as an embedded
system inside the FPGA chip by using the built-in PowerPC
CPUs and connecting it to vendor-provided soft IP-cores
that implement communication buses or controller compo-
nents for various purposes. As we will see in a moment,
such a system already reveals important design choices that
may have a critical impact on the effectiveness of FPGA
co-processing.

5.1 System Overview
Using the Virtex-II Pro-based development board described

in Section 3.2, we implemented the embedded system shown
in Figure 7. To simplify matters, we only use one of the two
available PowerPC cores (our experiments indicate that the
use of a second CPU core would not lead to throughput
improvements). The system further consists of two buses of
different width and purpose. The 64-bit wide processor local
bus (PLB) is used to connect memory and fast peripheral
components (such as network cards) to the PowerPC core.
The 32-bit wide on-chip peripheral bus (OPB) is intended
for slow peripherals, thereby preventing them to slow down
fast bus transactions. The two buses are connected over
a bridge. The driver code executed by the PowerPC core
(including code for our measurements) is stored in 128 kB
block RAM connected to the PLB.

Two soft IP-cores provide controller functionality to ac-
cess external DDR RAM and a serial UART connection link
(RS-232). They are connected to the input/output blocks

512 MB
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RAM
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Memory for
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Figure 7: Architecture of the on-chip system:
PowerPC core, 3 aggregation cores, BRAM for pro-
gram, interface to external DDR RAM and UART
for terminal I/O.

(IOBs) of the FPGA chip. We equipped our system with
512 MB external DDR RAM and used a serial terminal con-
nection to control our experiments.

Our streaming median operator participates in the sys-
tem inside a dedicated processing core, dubbed “aggregation
core” in Figure 7. As we will elaborate in the experimental
part of this work, more than one instance of this component
can be created at a time, which are all connected to the PLB.
An aggregation core consists of a user logic as described in
detail in the previous section. A parameterizable IP inter-
face (IPIF, provided by Xilinx as a soft IP-core) provides
the glue logic to connect the user component to the bus. In
particular, it implements the bus protocol and handles bus
arbitration and DMA transfers. A similar IPIF component
with the same interface on the user-logic side is also avail-
able for the OPB. Since we aim for high data throughput,
we chose to attach the aggregation cores to the faster PLB,
however.

5.2 Designing a Co-Processor Interface
While the PLB is a rather straightforward choice to es-

tablish a fast communication line between the controlling
PowerPC core and the hardware-accelerated streaming op-
erator, it is unclear how this bus can be used to achieve high
bandwidth and low latency. Four attachment strategies are
conceivable whose trade-offs turn out to be caused by rather
technical system aspects.

All four protocols described in the following make use of
registers that are connected to input signals of the IP-core,
then mapped into the memory space of the CPU. Informa-
tion can then be sent from/to the aggregation core by use
of CPU load/store instructions.

Method 1: Slave Registers. A very simple approach
uses two 32-bit registers DATA IN and AGG OUT as shown in
Figure 8. The IP interface is set to trigger a clock signal
upon a CPU write into the DATA IN register. This signal
causes a shift in the shift register (thereby pulling the new
tuple from DATA IN) and a new data set starts propagating
through the sorting network. A later CPU read instruction
for AGG OUT then will read out the newly computed aggregate

6



AGG_OUT

DATA_IN

32

+
33

: 2
median

sorting network

memory−mapped
registers

data write

32

IPIF

PLB

user logic

aggregation core

Figure 8: Attachment of aggregation core through
memory-mapped registers.

value.
To ensure reading the correct aggregate result, the CPU

read operation must occur no earlier than the total compu-
tation time, i.e., the combined delay for the shift, sort, and
arithmetic operations. To this end, the CPU store and load
instructions need to be separated far enough to guarantee
proper result reading. One way to enforce such separation
is to manipulate the acceleration core’s handling of the bus
protocol and delay the acknowledge signal for a CPU load
until the data is available. A serious side effect is that this
delay will result in a complete stall of the embedded CPU
(even including non-maskable interrupts).

Each tuple in this setup requires two 32-bit memory ac-
cesses to process (one write followed by one read). Given
that the CPU and the aggregation core are connected to
a 64-bit bus (and hence could transmit up to 2 × 32 bits
per cycle), this is an obvious waste of bandwidth. In addi-
tion, successive access to memory-mapped registers requires
explicit synchronization, e.g., using the eioeio (“enforce in-
order execution of I/O”) instruction, which introduces ad-
ditional wait cycles. On the plus side, the slave register is a
low-overhead protocol whenever data actually must be pro-
cessed tuple-by-tuple. If this is not strictly necessary, we
can use batching to optimize bandwidth, which inspires our
following protocol candidates.

Method 2: FIFO Queues. To decouple the CPU and the
aggregation core, i.e., CPU read and write operations from
the median computation, the implementation in Figure 9
uses FIFO queues. Existing streaming systems use queues in
a similar fashion to decouple operators. The CPU can write
one or more tuples into the Write-FIFO queue (WFIFO)
and independently read median values from the Read-FIFO
queue (RFIFO).

The two queues are implemented in the IPIF using addi-
tional block RAM components (see Figure 9). Read opera-
tions are now consuming, i.e., a CPU load instruction reads
and dequeues an item from the RFIFO queue. The aggre-
gation core independently dequeues items from the Write-
FIFO queue and enqueues the median result in the Read-
FIFO queue. Status registers in both queues allow the CPU

RFIFO

WFIFO_STATUS

RFIFO_STATUS

WFIFO memory−mapped
registers
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Figure 9: Attachment of aggregation core through
Write-FIFO and Read-FIFO queues.

to determine the number of free slots (write queue) and the
number of computed result items (read queue). The CPU
is in charge to properly enqueue and dequeue data elements
(using the status information provided).

The use of queues avoids the need to explicitly synchronize
I/O requests. On the back side, the interface still only uses
32 bits of the available 64-bit bandwidth on the bus. The
mismatch between a 64-bit access on the CPU side and a
32-bit semantics on the aggregation core side turns out to
be an inherent problem of using a general-purpose FIFO
implementation (such as the one provided with the Xilinx
IPIF interface). Re-implementing the FIFO functionality in
user logic can remedy this deficiency, as we describe next.

Method 3: Slave Attachment. By exposing the inter-
nal memory structure of the FIFO implementation to the
PowerPC CPU, the latter is enabled to send data to the ag-
gregation core in chunks of arbitrary size. Such exposition
can be achieved by memory mapping the block RAMs into
the address space of the CPU. By allocating a sufficient
number of BRAM components (two BRAMs with 32 bit
word size each) and accessing them in parallel, the full PLB
bandwidth can be used to provide the aggregation core with
data. To notify the co-processor about new data in the input
queue, the CPU writes into a dedicated CONTROL register.

An even more efficient way of filling the input queue (or
reading the output queue) is then the use of DMA (direct
memory access). In a slave attachment setting, the CPU can
instruct its own bus controller to directly move data to/from
the aggregation core-internal BRAM. By using burst ac-
cess mechanisms of the PLB, two input tuples can be sent
to/from the aggregation core in every bus clock cycle.

Method 4: Master Attachment. Instead of initiating
DMA transfers from the CPU side, we can also implement
the aggregation core as PLB master attachment (shown in
Figure 10). In this setup, the aggregation core is responsi-
ble for initiating payload data transfers, controlled by work
units that the CPU writes into memory-mapped configura-
tion registers (CONTROL through LENGTH in Figure 10). Dur-
ing work unit processing, the CPU is kept free to perform
other work.

A work unit consists of a source and destination address
in the external memory (SRC ADDR and DST ADDR registers),
as well as the number of input tuples at the source address
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supporting through DMA transfers to external
memory.

(register LENGTH). Once the CPU has stored the work unit
configuration into the aggregation core registers, it sets the
CONTROL bit to initiate processing. After successful process-
ing of the full unit, the aggregation core sets the STATUS

bit and triggers a CPU interrupt to notify the CPU of the
completion of the unit.

An interrupt handler in the CPU code then identifies the
source of the interrupt (more than one aggregation core can
be instantiated, see Section 6.4) and sets up the next work
unit to process the user input stream.

6. EVALUATION
We evaluate the median aggregation core on our Xilinx

XUPV2P development board. Because we only focus on the
details of the soft IP-core we abstract from effects caused
for example by I/O (network and disks). We directly place
the buffers for the data streams in the external memory
(512 MB DDR RAM). The input stream is initialized with
pseudo-random data (uniformly distributed 32-bit values).
The result stream is also written back to external memory.
The output data is verified using a software implementation
of the median operator on the CPU.

We first analyze the impact of different implementation
approaches for the median operator, particularly the perfor-
mance gains that result from an unclocked implementation.
Then, we evaluate the complete aggregation core embedded
in the system, including effects of the IPIF and the CPU, and
compare it with an implementation in software. Finally, we
show the performance implications and resource usage when
instantiating multiple aggregation cores on a single FPGA.

6.1 Asynchronous vs. Synchronous Designs
To judge the potential of FPGA-based hardware accelera-

tion, we start by looking at the characteristics of an isolated
sliding window operator as discussed in Section 4. The eight
32-bit signals are applied at the input of the sorting network
and then ripple down the stages of the sorting network. Un-
til the correct result has stabilized at the output of the op-

erator, signals have to traverse up to five comparator stages,
the main workers that determine the latency of the sorting
network. The exact latency, the signal propagation delay,
depends on the implementation of the comparator element
and on the on-chip routing between the comparators.

The total propagation delay is determined by the longest
signal path. For a single comparator, this path starts in
the equality comparison LUT, passes through 32 carry logic
multiplexers and ends at one min/max multiplexer. Accord-
ing to the FPGA data sheet [21] the propagation delay for a
single 4-input LUT is 0.28 ns. The carry logic multiplexers
and the switching network cause an additional delay. The
overall latency for the median output to appear after the
input is set can be computed with a simulator provided by
Xilinx that uses the post-routing and element timing data
of the FPGA.1

For our implementation the simulator returns a latency
of 13.3 ns. An interesting point of reference is the perfor-
mance of a tuned SIMD implementation on current CPU
hardware. The numbers in [5] indicate a minimum require-
ment of around 50 CPU cycles to sort 8 elements on a mod-
ern general-purpose CPU. For a fast 3.22 GHz processor,
this corresponds to ≈ 15 ns, 13 % more than our six-year
old FPGA. The latency of newer FPGA chips is signifi-
cantly lower.

Asynchronous Design. The short latency is a conse-
quence of a deliberate design choice. Our circuit operates
in a strictly asynchronous fashion, not bound to any exter-
nal clock. In a traditional synchronous implementation, by
contrast, all circuit elements operate according to a common
clock. A set of registers is then required in-between each of
the five stages of the sorting network.

A synchronous implementation of the sorting network of
Section 4 inherently uses six clocks (i.e., 60 ns in a 100 MHz
system) to sort eight elements. Both design choices are il-
lustrated in Figure 11. In this figure, the gray-shaded time
intervals indicate switching phases during which actual pro-
cessing happens (i.e., when signals are changing). During
intervals shown in white, signals are stable. The registers
are used as buffers until the next clock cycle.

The switching phase is shorter than the clock length. In
fact, the length of the longest switching phase determines
the maximum system clock. On our board, the maximum
system clock is determined by other peripheral IP compo-
nents (provided by Xilinx) which prevent us from increas-
ing the system clock much above 100 MHz, even though
the synchronous sorting network itself could be operated at
higher clock rates. Since the signal propagation latency of
the asynchronous sorting network implementation (13.3 ns)
is slightly larger than a single bus cycle (10 ns), correct val-
ues can be read from the output signals after two bus cycles.

In addition to the longer processing time, the synchronous
implementation requires additional hardware (flip-flops) to
implement the registers between the comparator stages.

(5 stages × 8 elements + 1 sum) × 32 bits =

1312 flip-flops/core ≡ 5% of the FPGA/core .

1One might be tempted to physically measure the latency of
the sorting network by connecting the median operator di-
rectly to the I/O pins of the FPGA. However, signal buffers
at the inputs and outputs (IOBs) of the FPGA and the
switching network in between add significant latency (up to
10 ns). Any such measurement is bound to be inaccurate.
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Figure 11: Synchronous implementation of the ag-
gregation core requires 6 clock cycles, i.e., 60 ns. In
asynchronous implementation output is ready after
13.3 ns. Therefore, the output signals can be read
after 2 cycles.

On the positive side, a synchronous implementation typi-
cally leads to a higher issue rate (one tuple per clock cycle,
i.e., every 10 ns compared to every 13.3 ns in the asyn-
chronous case). In asynchronous circuits, this can be com-
pensated with multiple instances of the same functional unit.

Design Guidelines. In general, an asynchronous circuit is
the design of choice. However, faced with the higher com-
plexity of such circuits, many research projects (e.g., [11])
still keep their hands off asynchronous designs and focus on
synchronous circuits instead.

Not all problems can expressed in an asynchronous way.
From a theoretical point of view, any pure function, i.e., ev-
ery problem where the only dependence of the output signal
are the input signals, can be converted into an asynchronous
circuit (a combinatorial circuit). The necessary circuit can
be of significant size, however (while synchronous circuits
may be able to re-use the same logic elements in more than
one stage). A more practical criterion can be obtained by
looking at the algorithm that the circuit mimics in hard-
ware. As a rule of thumb, algorithms that require a small
amount of control logic (branches or loops) and have a sim-
ple data flow pattern are the most promising candidates for
good asynchronous implementations.

6.2 Single Aggregation Core
We now provide an evaluation of the complete aggrega-

tion core, i.e., the combination of user logic and the IPIF.
Based on the discussion in Section 5.2, we chose the master
attachment method, with a DMA controller on the aggre-
gation core. We use maximum-sized DMA transfers (4 kB)
between external memory and the FPGA block RAM to
minimize the overhead spent on interrupt handling.

Figure 12 shows the execution time for processing data
sets up to a size of 64 kB. Up to a data size of 4 kB, the
processing of the full stream requires a constant execution
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Figure 12: Total execution time to process data
streams of different size on the FPGA-based aggre-
gation core.

time of 96 µs, then scales linearly with increasing data size
(this trend continues beyond 64 kB). The constant execution
time is due to the latency incurred by every DMA transfer
(up to 4 kB can be sent within a single transfer). 96 µs
are the total round-trip time, measured from the time the
CPU writes to the control register in order to initiate the
Read-DMA transfer until it receives the interrupt. This ob-
viously renders the DMA approach unsuitable to process
individual tuples. For that case, the slave register method
would require only 45 processor cycles or 150 ns. This is
the time we measured for a single round-trip between CPU
and aggregation core (i.e., a data write followed by a result
read).

6.3 CPU-based Implementation
In order to assess the effective gain obtained by using

an FPGA-based co-processor in a heterogeneous multi-core
setup, we compare our embedded solution with an imple-
mentation that is based on a general-purpose CPU only. To
ensure a fair comparison, we implemented eight different
sorting algorithms in software and optimized them for per-
formance. Seven are traditional textbook algorithms: quick
sort, merge sort, heap sort, gnome sort, insertion sort, selec-
tion sort, and bubble sort. The eighth is an implementation
of the even-odd merge sorting network of Section 4.1 using
CPU registers.

We used two different hardware architectures for the com-
parison, Intel x86-64 and PowerPC. Neither of them pro-
vides built-in comparator functionality in its instruction set.
We therefore emulate the functionality using conditional
moves (x86-64) or the carry flag (PowerPC). The follow-
ing two pieces of assembly code implement the comparator
operation for PowerPC and x86-64 processors:

[r8, r9] := [min(r8, r9),max(r8, r9)] .

PowerPC Assembly x86-64 Assembly
subfc r10,r8,r9 movl %r8d,%r10d

subfe r9,r9,r9 cmpl %r9d,%r8d

andc r11,r10,r9 cmova %r9d,%r8d

and r10,r10,r9 cmova %r10d,%r9d

add r9,r8,r11

add r8,r8,r5

Neither piece of code makes use of branching instruc-
tions. We already identified branch-less algorithms to be
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Figure 13: Execution time for processing a single
256 MB data set on different CPUs using different
sorting algorithms and on the FPGA.

good candidates for asynchronous FPGA circuits. The same
property has important consequences also in code for tradi-
tional CPUs. Branch instructions incur a significant cost
due to flushing of instruction pipelines (note that sorting al-
gorithms based on branching have an inherently high branch
mis-prediction rate). This is why the use of a sorting net-
work is a good choice also for CPU-based implementations.

Configuration. We ran the different algorithms on several
hardware configurations. We used an off-the-shelf desktop
Intel x86-64 CPU (2.66 GHz Intel Core2 quad-core Q6700,
introduced in 2007) and the following PowerPC CPUs: a
1 GHz G4 (MCP7457, introduced in 2003) and a 2.5 GHz G5
Quad (970MP, introduced in 2005), the PowerPC element
(PPE not SPEs, introduced in 2006) of the Cell, and the
embedded 405 core of our FPGA (introduced in 2002). All
implementations are single-threaded. For illustration pur-
pose, we limit our discussion to the most relevant subset of
algorithms.

We also measured the performance of the hardware-accel-
erated implementation. As before, we opted for the use of
master attachment, with DMA memory transfers initiated
by the aggregation core.

CPU-Only Results. Figure 13 shows the wall-clock time
we observed for processing 256 MB (as 32-bit tuples) through
the median sliding window operator. The horizontal line in-
dicates the execution time of the FPGA-accelerated system.
Timings for the merge, quick, and heap sort algorithms on
the embedded PowerPC core did not fit into scale (303 s,
116 s, and 174 s, respectively).

Observe that the race is not won by any of the classic algo-
rithms. Rather, the CPU-based even-odd merge network ex-
cels on all hardware architectures we considered. The good
asymptotic complexity of, e.g., heap and merge sort, is not
of significance here. In fact, bubble sort shows better perfor-
mance than merge sort, despite the lower asymptotic com-
plexity of the latter (O(N2) for bubble sort vs. O(N logN)
for merge sort).

Comparison CPU ↔ FPGA. To process the 256 MB
stream, the FPGA implementation requires a total of 6.173 s.
Given that we saw a very low signal propagation delay for
the isolated median operator circuit in Section 6.1, the FPGA-
accelerated system compares rather poorly to the perfor-
mance of the modern CPUs. In particular, the x86-64 and

cores flip-flops LUTs slices %

0 1761 1670 1905 13.9 %
1 3727 6431 4997 36.5 %
2 5684 10926 7965 58.2 %
3 7576 15597 11004 80.3 %
4 9512 20121 13694 100.0 %

Table 3: FPGA resource usage.

Cell PPE systems are 3.2 and 1.6 times faster, respectively.
Extrapolating from the latency measured for the isolated

median circuit (13.3 ns), one might expect a total runtime
. 1 s. This discrepancy is due to the DMA latency, which we
already identified as a bottleneck in Section 6.2. Improving
on the interfacing with FPGA logic is part of our current
research agenda.

The systems in Figure 13 represent a technology time
frame of five years, with the FPGA being at the older end.
A much more meaningful comparison, therefore, is with the
CPU core on the FPGA itself. This core and the FPGA use
the same 130 nm fabrication process, the principal factor
that determines performance. The FPGA aggregation core
outperforms the PowerPC 405 implementation by a factor
of seven.

6.4 Parallel Aggregation Cores
An advantage of FPGA technology is its inherent support

for parallelism. By instantiating multiple aggregation cores
in FPGA hardware, multiple data streams can be processed
truly in parallel. The number of instances that can be cre-
ated is determined both, by the size of the FPGA, i.e., its
number of slices, and by the capacity of the FPGA inter-
connect fabric.

Resource Usage. On the Virtex-II Pro we managed to
instantiate four instances of our median aggregation core
before we ran out of chip space. Table 3 shows the resource
usage depending on the numbers of cores. We also give
the usage in percent of the total number of available slices
(13,696). The micro-computer system without any aggrega-
tion itself uses 13.9 % of the available logic cells for the soft
IP-core peripherals (UART, DDR controller, etc.). Each
core then adds roughly 3000 slices (22 %). This is almost
three times as much as the slice counts we concluded for the
median operator in Section 4.2 (768+16+128 = 912 slices).

The remaining space is occupied by the IPIF soft IP-core.
In particular, the master attachment that we use contains
the full logic of a DMA controller. The IPIF actually con-
sumes the lion’s share of the overall logic of the aggregation
core.

Note that the 22 % space usage per aggregation core only
adds up for up to three instances (an extrapolation to four
would yield slightly more than 100 %). In fact, to accommo-
date four aggregation cores on the chip, the VHDL compiler
software has to give up its primary optimization goal: the
minimization of latency. It starts trading latency for space
by placing unrelated logic together into the same slice, re-
sulting in longer signal paths and thus longer delays. This
effect can also be seen in Figure 14, where we illustrated
the space occupation of the four aggregation cores. Occu-
pied space regions are not contiguous, which increases signal

10



aggr. core 0 aggr. core 1 aggr. core 2

aggr. core 3 CPU, BRAM,
UART, Interface
to ext. RAM, etc.

Figure 14: Resource usage on the FPGA by the 4
aggregation cores and the remaining system compo-
nents.

10-5

10-4

10-3

10-2

10-1

100

101

1kB 8kB 64kB 512kB 4MB 32MB 256MB

ex
ec

ut
io

n 
tim

e 
[s

]

data size

1 aggregation core
2 aggregation cores
3 aggregation cores
4 aggregation cores

Figure 15: Total execution time to process multiple
data streams using concurrent aggregation cores.

path lengths.
For four cores, we observed incorrect result data from the

median operator if read after two bus cycles as described in
Figure 11. The longer signal paths result in longer switching
phases in the sorting network, leading to an overall latency
of more than two cycles (20 ns). Incorrect data reading can
be avoided by introducing another wait cycle and reading
the aggregation result after three cycles after setting the
input signals.

Current FPGAs such as the Virtex-5 have significantly
larger arrays (7.6 times larger than our Virtex-II Pro) and
higher clocks (5.5 times). On such a chip, assuming that a
single core requires 3,000 slices, we estimate that ≈ 30 aggre-
gation cores can be instantiated, provided that the memory
bandwidth does not further limit this number.

Performance Evaluation. We used the four cores to run
four independent data streams in parallel. Figure 15 shows
the wall-clock execution times for processing multiple data
streams in parallel, each on a separate aggregation core. Ex-
ecution times still scale linearly with the size of the data set.
Table 4 summarizes the total execution times for a 64 MB

PowerPC 405 speedup
streams FPGA seq. alt. seq. alt.

1 1.54 s 10.1 s – 7× –
2 1.56 s 20.2 s 36.7 s 13× 24×
3 1.58 s 30.4 s 55.1 s 19× 35×
4 1.80 s 40.5 s 73.5 s 22× 41×

Table 4: Execution times for different number of
concurrent streams (64 MB data set per stream).

stream size.
Again, we observe a constant execution time for stream

sizes smaller then the 4 kB DMA transfer unit. The constant
increases from 96 µs for one aggregation core to 144 µs for
four cores. This is mainly due to contention in the interrupt
handling by the CPU. There is no significant increase in
execution time when going from one to three aggregation
cores. We observe a linear scale-out in throughput with the
number of aggregation cores.

To accommodate the fourth aggregation core, we had to
introduce a wait cycle. This wait cycle is responsible for
the gap in execution time when scaling from three to four
aggregation cores (1 cycle for each of the 16 mio data tuples
amounts to 0.17 ms in total). Nevertheless, with four cores
we did not reach a limit in memory bandwidth, neither on
the DDR RAM nor on the PLB.

For comparison, Table 4 also contains execution times ob-
tained with a CPU-only implementation for multiple streams,
assuming either sequential processing (one stream after the
other) or tuple-wise alternation between streams. Cache
conflicts lead to a significant performance degradation in
the latter case.

7. SUMMARY
Our work assessed the potential of using programmable

hardware, namely field-programmable gate arrays, for data-
base processing. By prototyping a simple database stream-
ing scenario, we demonstrated that hardware-accelerated
operator implementations can achieve performance charac-
teristics comparable to those obtained in modern high-end
CPUs, but by using low-cost hardware only.

To reach this performance, however, the FPGA imple-
mentation needs to be engineered with care. We particu-
larly emphasized the importance of an asynchronous opera-
tor design. The inherent parallelism of FPGA hardware can
be leveraged to achieve linear scale-out with respect to data
volume or number of streams. This scalability is only lim-
ited by the available chip space, a resource that can easily
be extended by using more or larger chips.

Our experiments indicate that it is not easy to unleash
the potential of the isolated FPGA circuit, once it has been
integrated into a real, serviceable system. The necessity of
a tight integration was lately also recognized by chip man-
ufacturers. Modern FPGAs can directly interface to high-
speed bus systems, such as the AMD HyperTransport bus,
or even intercept the execution pipeline of general-purpose
CPUs, opening up an whole new design space. As part of
our future work, we explore the opportunities and limita-
tions for data stream processing that come with this design
space.
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