
Data-Intensive XQuery Debugging with Instant Replay

Torsten Grust Jan Rittinger Jens Teubner

Technische Universität München
Munich, Germany

torsten.grust | jan.rittinger | jens.teubner@in.tum.de

ABSTRACT
We explore the design and implementation of Rover , a post-
mortem debugger for XQuery. Rather than being based
on the traditional breakpoint model, Rover acknowledges
XQuery’s nature as a functional language: the debugger fol-
lows a declarative debugging paradigm in which a user is
enabled to observe the values of selected XQuery subexpres-
sions. Rover has been designed to hook into Pathfinder , an
XQuery compiler that emits relational algebra plans for eval-
uation on commodity relational database back-ends. The
debugger instruments the subject query with fn:trace()

calls which, at query runtime, populate database tables with
relational representations of XQuery item sequences. Thanks
to Pathfinder ’s loop-lifting compilation strategy, a Rover
trace (1) may span multiple XQuery for iteration scopes
and (2) allows for interactive debugging sessions that can
arbitrarily replay iterations in a unique forward/backward
fashion. Since the query runtime as well as the debugger
are database-supported, Rover is scalable and supports the
observation of very data-intensive XQuery expressions.

1. DEBUGGING XQUERY
Our own experience has taught us that authoring a mod-

erately complex XQuery expression from scratch more often
than not tends to yield queries which exhibit unexpected
behavior. Such bugs may sometimes have obvious fixes, but
at times they might only occur with specific input XML in-
stances or are, generally, hard to track down. While we do
not postulate that XQuery authoring is inherently prone to
error, there are a number of language characteristics and
intricacies that may turn into pitfalls. Consider that
(1) much of the XQuery semantics is implicit and does not

surface at the language level (e.g., existential quantifi-
cation or casting),

(2) expression evaluation depends on different notions of or-
der (sequence and document order) some of which may
be locally disabled (e.g., via unordered { }),

(3) the interaction of atomic values and XML nodes calls for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XIME-P 2007, 4th International Workshop on XQuery Implementation,
Experiences and Perspectives, July 15, Beijing, China
Copyright 2007 ACM 978-1-59593-800-8 ...$5.00.

let $days := doc("http://xoap.wea· · ·?dayf=3")//day
$when := <when><today num="1"/>

<tomorrow num="2"/></when>
$nums := $when//@num

return
<lows>

{ for $day in $nums
return $days[$day]/low }

</lows>

Figure 1: Query Qlow: Extracting today’s and to-
morrow’s low temperatures from a 3-day forecast.

<weather>

<loc><dnam>Beijing, China</dnam></loc>

<dayf>

n×
{
<day t="Sunday"><hi>10</hi><low>2</low></day>...

</dayf>

</weather>

Figure 2: Sketch of the relevant WeatherChannel®

XML n-day weather forecast data.

special attention and care,
(4) XQuery is a functional language and, admittedly odd,

expressions like let $x := $x + 1 return e have a seman-
tics different to what might be expected, and

(5) XQuery’s orthogonal syntax and compositional nature—
typical for an expression-oriented language—encourages
(inexperienced) authors to write complex and deeply
nested expressions.

The inherent irregularity of XML data as well as issues re-
lated to validation and dynamic typing add to this list to
make a convincing case for appropriate XQuery debugging
technology.

Processing XML weather forecast data. As a real-life
example of an XQuery expression that unexpectedly went
wrong, let us turn to Query Qlow of Figure 1. Qlow and
the upcoming queries in this paper operate over Weather-
Channel® XML weather forecast data. Figure 2 shows the
relevant fragments of these XML instances.1 The query ex-
tracts today’s and tomorrow’s low temperature values from
a 3-day forecast. Variable $days will thus be bound to a
sequence of day elements of length 3 with today’s data at
sequence position 1. In $when, we mnemonically specify
1An n-day forecast (n = 1, 2, . . . , 10) may be retrieved via
URL http://xoap.weather.com/local/city?dayf=n where
city represents a city code (e.g., Beĳing, China =̂ CHXX0008).

the days of interest (today, tomorrow) and extract the rel-
evant sequence positions (1, 2) into $nums. Finally, the for

iteration indexes the $days sequence to extract the associ-
ated low elements. A result like <lows><low>2</low><low>5
</low></lows> is expected, but instead we get
<lows><low>2</low><low>5</low><low>3</low>

<low>2</low><low>5</low><low>3</low></lows> .

Oops. (Section 3 will shed light on this bug.)

1.1 Observing XQuery Expressions
The almost functional XQuery semantics, based on the

side-effect free evaluation of expressions, naturally leads to
a declarative style of debugging which centers around the
observation of expression values. Indeed, an imperative de-
bugging style that instead emphasizes the setting of break-
points and subsequent inspection of program state, e.g., the
current value of a loop index variable, is inappropriate: in
the XQuery expression for $x in (i1,. . . ,in) return e, loop
body emay be evaluated for all n bindings of $x in parallel—
a notion of “current” or “next state” seems inapplicable.

In declarative XQuery debugging, we observe the values
the expression e will have in the different iterations it will
be evaluated in. These evaluations only depend on e and
the values of all its free variables (like $x) but not on the
order of evaluation or any preceding computation.

1.2 Post-Mortem Debugging with Rover
Rover noninvasively implements a declarative debugger

for XQuery with the help of the standard built-in function
fn:trace():

fn:trace(e as item()*, s as xs:string) as item()* .

While fn:trace(e,s) simply evaluates and returns the value
of e, the runtime system is free to perform any side effect
during function call evaluation, e.g., print the debug mes-
sage s. Rover ’s specific iteration-aware implementation of
fn:trace() facilitates the post-mortem observation of ex-
pression e. To debug a complex XQuery expression, its au-
thor wraps interesting or suspect subexpressions in calls to
fn:trace(). Alternatively, an interactive debugger might
instrument a query with fn:trace() calls on the author’s
behalf. In such an interactive setup, it would also be feasible
to instrument all subexpressions of a query to obtain a full
evaluation trace.

Debugging data-intensive queries. XQuery has been
designed as a data processing language and queries may in-
spect as well as construct XML instances of significant size.
Since we want to strictly avoid to have authors rewrite their
queries only to touch less data during debugging—this may
hide old or introduce new bugs and generally gives way to
“Heisenbugs”—Rover is prepared to cope with massive trace
data. Unlike traditional program debuggers, Rover needs
to be able to observe expression values whose representa-
tion size exceeds heap memory, even more so since a trace
records the values of an instrumented subexpression for all
its iterations.

To this end, Rover , which has been designed to debug ex-
pressions that have been translated by the XQuery compiler
Pathfinder [9], receives excellent support from Pathfinder ’s
relational database back-end. Pathfinder emits relational
algebra plans which faithfully implement the XQuery se-
mantics in terms of operations over relational encodings of

sequences of items—XML nodes or atomic values—and tree
fragments. The execution of a Rover-instrumented query
will, as a side effect, populate the database with trace ta-
bles. With Rover , we may observe values of any type and
size: Pathfinder ’s item encoding has been designed both, to
embrace all XQuery types and to be stored in regular flat
relational tables—no DOM or similar pointer-based XML
representations are used.2

Finally, to perform interactive post-mortem debugging,
the Rover front-end connects to the relational database back-
end to access the trace tables.

We proceed as follows. The upcoming Section 2 reviews
the relevant aspects of Pathfinder ’s loop-lifting XQuery com-
pilation strategy and lays the ground for the observation
of expressions with forward/backward replay of iterations.
Section 3 shows how Rover helps to debug Query Qlow of
Figure 1 and also sketches an alternative XQuery-based de-
bugger client that operates over an XML serialization of the
trace tables. The creation and inspection of large evaluation
traces is the topic of Section 4. We review related research in
Section 5 and close with remarks on work in flux (Section 6).

2. LOOP-LIFTED XQUERY COMPILATION
The Pathfinder XQuery compiler has been developed un-

der the main hypothesis that the well-understood infrastruc-
ture of relational database kernels can also make for highly
efficient XQuery processors. This purely relational approach
to XQuery evaluation indeed yields scalable XQuery imple-
mentations [2]—provided that suitable relational encodings
of (1) XML tree fragments [7] and (2) the dynamic seman-
tics of XQuery [9] are used that allow the database back-end
to play its trump: set-oriented evaluation. In this mode of
evaluation, the database system applies an operation to all
rows in a table. In absence of inter-row dependencies, the
system may process the individual rows in any order or even
in parallel.

To actually operate the database back-end in this set-
oriented manner, Pathfinder draws the necessary amount
of independent work from XQuery’s for loops. In XQue-
ry, the evaluation of a subexpression e in the scope of a
for loop yields an ordered sequence of zero or more items
in each loop iteration. In Pathfinder ’s relational encoding,
these items are laid out in a single table for all loop itera-
tions, one item per row (we discuss the exact table layout
below). An algebraic plan consuming this loop-lifted or “un-
rolled” representation of e may, effectively, process the re-
sults of the individual iterated evaluations of e in any order
it sees fit—or in parallel. In some sense, such a plan is the
algebraic embodiment of the independence of the individ-
ual evaluations of an XQuery for loop body (Section 1.1).
A welcome consequence of loop-lifting is that the underly-
ing relational engine does not need to provide a dedicated
iteration primitive: the operators of the relational algebra
inherently iterate over the rows of their input table(s) which
already realizes the XQuery iteration semantics. Details of
the loop-lifting technique beyond the scope of this paper are
covered in [9].

2.1 Iteration Scopes
In the loop-lifting compiler, the XQuery for clause is the

core language construct. Any expression e is considered to
2Rover abbreviates Relational observation of expressions.

s0

for $city in ("CHXX0008","GMXX0087")

s1

let $dayf
2©

:= doc(concat("http:· · · ",$city
1©
,"?dayf=3"))

return

for $d in $dayf//day
3©

return

s2

[
<hi city="{ $dayf

4©
//loc/dnam

5©
}">

{ $d/@t, data($d/hi)
6©

}

</hi>

(<hi city="Beijing, China" t="Sunday">10</hi>,
<hi city="Beijing, China" t="Monday">11</hi>,
<hi city="Beijing, China" t="Tuesday">9</hi>,
<hi city="Munich, Germany" t="Sunday">4</hi>,
<hi city="Munich, Germany" t="Monday">8</hi>,
<hi city="Munich, Germany" t="Tuesday">7</hi>
)

Figure 3: Query Qhi: Beĳing and Munich high temperatures for the next three days, result on the right. The
si denote iteration scopes, the x© mark instrumented expressions (relational observations shown in Figure 4).

1© $city
iter pos item
1 1 "CHXX0008"
2 1 "GMXX0087"

2© $dayf (s1)
iter pos item
1 1 doc1
2 1 doc2

3© $dayf//day
iter pos item
1 1 day1
1 2 day2
1 3 day3
2 1 day4
2 2 day5
2 3 day6

4© $dayf (s2)
iter pos item
1 1 doc1
2 1 doc1
3 1 doc1
4 1 doc2
5 1 doc2
6 1 doc2

5©· · · /dnam
iter pos item
1 1 dnam1
2 1 dnam1
3 1 dnam1
4 1 dnam2
5 1 dnam2
6 1 dnam2

6© data(· · ·)
iter pos item
1 1 "10"
2 1 "11"
3 1 "9"
4 1 "4"
5 1 "8"
6 1 "7"

maps0,s1
outer inner

1 1
1 2

maps1,s2
outer inner

1 1
1 2
1 3
2 4
2 5
2 6

Figure 4: Relational observations (trace tables) recorded during the evaluation of the instrumented expres-
sions of the query in Figure 3. Right of dashed line: map relations connecting the iteration scopes s0, s1, s2.

be in the scope of its innermost enclosing for loop—in case e
is a top-level expression, we assume the presence of a “ghost
loop” for $_ in (0) return e iterating over a singleton where
$_ may not occur free in e. We will refer to this top-level
scope by s0. Due to XQuery’s compositionality, the for

iteration scopes in a query form a tree-shaped hierarchy.
In Query Qhi (Figure 3), the top-level scope plus the two
nested for loops form the linear scope hierarchy s0 s1 s2.
Query Q12 of the W3C XQuery Use Case STRONG [4], for
example, exhibits a scope nesting of the form s0 s1 s2

s3 .
Note how Query Qhi requests a 3-day weather forecast to

collect the high temperature values for Beĳing and Munich
into a sequence of hi elements. The result is shown on the
right of Figure 3. While the query’s scope s0 is iterated once
only, there will be two iterations in scope s1, one for each
binding of variable $city. In both iterations, variable $d
will iterate over a sequence of day elements. Since, for the
example run of Figure 3, the weather forecast data contained
three day elements for both cities, there will be a total of
2 × 3 = 6 iterations in the innermost scope s2. (For other
XML instances there might be more or less iterations—the
algebraic plan determines the exact number at query run-
time.)

2.2 Relational Observations
Given the algebraic plan for Query Qhi, what exactly will

we be able to observe if we instrument selected subexpres-
sions? In Figure 3, six subexpressions have been marked
for observation.3 For each observed subexpression e, the
Pathfinder compiler introduces a trace operator / in the
emitted plan that saves the relational observation for e in
the database (Section 4).

Figure 4 depicts the relational observations made for the
six instrumented subexpressions (left of dashed line). As
a consequence of the loop-lifting compilation strategy, each
trace table contains the expression values observed in all
iterations: a row [i, p, v] in such an iter|pos|item table in-
3An instrumentation fn:trace(e," x©") is indicated by e

x©in Figure 3.

dicates that, in iteration i, the observed expression eval-
uated to item v at sequence position p. Note that, even
though XQuery expressions evaluate to item sequences, the
relational representation still uses flat 1NF tables. Further,
trace tables only store XML node identifiers (as opposed to
whole XML fragments) in the item column. Since the in-
teractive post-mortem debugger acts as a database client, it
can use an element node identifier like day1 to look up and
serialize the element’s content on demand.

As expected, we find two observations (iter ∈ {1, 2}) for
the subexpressions 1©– 3© located in iteration scope s1 and
six observations (iter ∈ {1, . . . , 6}) for 4©– 6© which are in
scope s2. An interactive debugger can, for example, (1) read
table 2© to visualize that variable $dayf is bound to two
different document nodes (doc1, doc2) in separate itera-
tions, or (2) access table 3© to visualize that expression
$dayf//day evaluates to a sequence of three day elements
in each of the two iterations. To observe the three expres-
sions $city, $dayf, and $dayf//day (all in scope s1) to-
gether, the debugger would perform the relational equi-joins
1© 1iter 2© 1iter 3©. An interactive debugger UI could then
use the joined table data to let the user browse forward and
backward through iterations and learn how the values of the
expressions change in synchronization.

Note that there are occurrences of variable $dayf in two
scopes, s1 and s2 (observed at 2© and 4©, respectively).
Since $dayf is bound in s1, for each iteration of the outer
for loop, the variable’s value will appear constant in the
iterations of the inner for loop in scope s2. This corre-
spondence between the iterations of the outer and inner for
loops is captured by binary relation maps1,s2 with schema
outer|inner (Figure 4, right of dashed line). During the first
iteration of the outer loop, for example, the inner loop per-
forms its first three iterations, thus [1, inner] ∈ maps1,s2
with inner ∈ {1, 2, 3}. At query runtime, the Pathfinder-
generated algebraic plans use these inter-scope map relations
to derive the relational representation of variables in scopes
deeper than their binding site. For $dayf, we have (let πa:b
rename column b into a):

s0

let $days := doc("http:· · · ?dayf=3")//day
$when := <when><today num="1"/>

<tomorrow num="2"/></when>

$nums
4©

:= $when//@num
return

<lows>

{ for $day in $nums

return s1

[
$days[$day

3©
]

2©
/low

1©
}

</lows>

Figure 5: Instrumented buggy Query Qlow (instru-
mentations added in order 1©. . . 4©).

1©· · · /low
iter pos item
1 1 low1
1 2 low2
1 3 low3
2 1 low4
2 2 low5
2 3 low6

2© $days[$day]
iter pos item
1 1 day1
1 2 day2
1 3 day3
2 1 day4
2 2 day5
2 3 day6

3© $day
iter pos item
1 1 @num1
2 1 @num2

4© $nums
iter pos item
1 1 @num1
1 2 @num2

Figure 6: Relational observations made during the
debugging session for Qlow.

4© = πiter:inner,pos,item(2© 1iter=outer maps1,s2) .

At debug time, we can use the same mechanism to monitor
any expression e in the context of an arbitrary nested scope,
even if e did not occur in that scope in the subject query.
For example, to observe variable $city (bound in scope s1)
in synchronization with the expression $dayf//loc/dnam of
scope s2, e.g., to relate the city code and its Weather-
Channel® display name, the debugger would evaluate the
query

(
πiter:inner,pos,item(1© 1iter=outer maps1,s2)

)
1iter 5©.

Rover will, consequently, also place / operators on top of
those subplans that compute the map relations [9] to ensure
their availability at debug time. The number of saved trace
tables thus equals the number of fn:trace() occurrences
plus the number of edges connecting those scopes in the
scope hierarchy that contain instrumented expressions (i.e.,
6 + 2 for the example of Figure 3).

3. BUGS UNDER OBSERVATION
Let us return to the defective Query Qlow of Figure 1 and

try to find and fix the bug with the support of Rover ’s ob-
servations. Such a debugging session starts out with the
instrumentation of subexpressions. Here we choose to not
fully instrument every subexpression but instead work our
way back from the phenomenon that the resulting lows ele-
ment contains too many low child nodes (six instead of the
expected two).
(1) We let Rover wrap the path expression $days[$day]/low

in a call to fn:trace() (observation 1© in Figure 5) and
indeed observe an overall of six low elements, three per
iteration. (The debugger can group the trace table 1©
on column iter to render the relational observation in
the familiar XQuery syntax (<low>2</low>,. . .).) This
is unexpected, since a day element contains a single low

element (Figure 2).
(2) How many day elements are there? We instrument ex-

pression $days[$day] (observation 2©) to find six day

nodes, again three each for today and tomorrow instead

of the expected single node per iteration. The XPath
predicate does not seem to have any filtering effect.

(3) We observe variable $day and its binding sequence $nums
from scope s0 together (observations 3© and 4©). Both
contain @num attribute nodes with values "1" and "2".
But the effective Boolean value of an attribute node is
true, regardless of its contents [1]!

Thus, to fix this bug and to correctly index the $days se-
quence, we either (1) need to convert $day into a number and
could write $days[number($day)]/low or (2) validate the
incoming WeatherChannel® data to annotate the @num

attributes nodes with a numeric type and modify Query Qlow

to read let $nums := data($when//@num).

Since most XQuery authors tend to have quite a clear idea of
the expected value of a given subexpression, we have found
expression observation to be an effective debugging method-
ology. For example, an “imperative variable update” bug
like

let $x := 1
for $n in 1 to 3
let $x := $x + 1 return $x

1©
,

1© $x
iter pos item
1 1 2
2 1 2
3 1 2

surfaces as an unexpected constant observation
of variable $x being bound to value 2 (see column
item in the associated trace table on the right),
regardless of which iteration the user replays.

Debugging and static typing. Since Rover depends on
its side effect, the algebraic trace operator / is exempt from
being removed by Pathfinder ’s algebraic optimizer (see Sec-
tion 4). Nevertheless, a user’s instrumentation may vanish
already early in the compilation process if the XQuery com-
piler simplifies expressions during XQuery Core normaliza-
tion [5] or otherwise statically detects that a subexpression
does not contribute to the query’s result. In case the com-
piler implements XQuery’s static typing feature, one such
effect may be witnessed in Query Qlow: the static type of the
instrumented expression 3© (variable $day) in Figure 5 will
be inferred as attribute (num,untypedAtomic). The effec-
tive Boolean value of any expression of this type is true, so
that the compiler simplifies the path expression in scope s1
to $days/low. In effect, in an optimized subject query, ob-
servation 3© would be unavailable.4 In a functional language
like XQuery, however, such unexpected disappearances of in-
strumentations are quite dependable evidences of bugs (as
is the case for Qlow).

XQuery-based debugger clients. While Pathfinder orig-
inally records relational observations, Rover can reuse the
existing serialization infrastructure in the database back-end
to offer an integrated XML view of the trace tables (Fig-
ure 7). In this serialization, the nesting of the scope ele-
ments reflects the query’s scope hierarchy (Section 2). Ob-
servations (<trace>· · · </trace>) made in the same scope
and iteration are grouped below a common iteration par-
ent, i.e., the XML format already materializes the required
trace table equi-joins on column iter discussed in Section 2.2.

Since Rover inlines observed XML nodes as the contents of
the item elements, this serialization paves the way for purely
XQuery-based debugger clients. The interactive shell of such
a debugger can offer the already familiar XPath language to
4This relates to “No symbol "· · · " in current context.”
messages in procedural debuggers like GNU’s gdb.

<scope id="s0">
<iteration iter="1">
<scope id="s1">
<iteration iter="1">
<trace msg=" 1©">
<item pos="1"><low>2</low></item>
<item pos="2"><low>5</low></item>
<item pos="3"><low>3</low></item>

</trace>
<trace msg=" 2©">
<item pos="1"><day t="Sunday">· · ·</day></item>
<item pos="2"><day t="Monday">· · ·</day></item>
<item pos="3"><day t="Tuesday">· · ·</day></item>

</trace>
</iteration>
<iteration iter="2">· · ·</iteration>
</scope>
<trace msg=" 4©">· · ·</trace>
</iteration>

</scope>

Figure 7: XML-serialized observations of Query Qlow

(excerpt; iteration 2 in scope s1 omitted for brevity).

Q13 Q16

#items � #items �
Instrumentation (rows) (ms) (rows) (ms)

none 0 61.2 0 61.0
partial 16, 525 63.9 30, 302 65.1

full 38, 586 70.3 168, 898 92.3

Table 1: XMark queries Q13, Q16: size of rela-
tional observations and evaluation times for increas-
ing density of instrumentation (MonetDB/XQuery).

dissect and zoom into observations. For the Query Qlow, for
example, the XPath expression

//scope[@id > s0]//trace[item[@pos > 1]]

extracts all non-top-level observations that yield item se-
quences of two or more elements (the query author expected
all observed subexpressions in scope s1 to yield singletons).
Here, the debugger would display the two suspect trace ele-
ments with @msg values " 1©" and " 2©" that we have already
used earlier to successfully track down the bug.

4. LARGE EVALUATION TRACES
Rover has been designed to be unobtrusive on its hosting

XQuery processor. No changes are required on the language

e

/

trace

level (fn:trace() is a standard built-in function
[11]). In the algebraic Pathfinder XQuery compiler,
a call fn:trace(e,s) introduces trace operators /
(1) above the plan for subexpression e and (2) on
top of the map relations that chain e’s containing
for-iteration scope to the top-level scope s0. Sym-
bol / mnemonically indicates that Rover ’s imple-
mentation of trace, as a side effect, saves the incom-
ing relational representation of e’s result—a single

table—in the database for post-mortem inspection. Other
than that, the operator behaves like the identity and for-
wards the table to its upstream plan.

These straightforward semantics of / restricts Rover ’s
impact on the relational database systems that the retar-
getable Pathfinder compiler can use as its back-end. For the

MonetDB-based back-end5—an extensible database kernel
in which all tables undergo full vertical fragmentation—the
implementation of / simply marks its input table to persist
after query evaluation has completed. Because MonetDB’s
evaluation engine fully materializes all intermediate query
results, / neither leads to any extra table allocation nor
performs additional copy work.

This minimal runtime influence on a debugged query is
reflected in Table 1. The table reports on the overall num-
ber of observed items (one item =̂ one trace table row) and
the query evaluation times for the XMark [15] Queries Q13
and Q16 run against a 58 MB XML instance (≈ 2, 340, 000
nodes, XMark scale factor 0.5). The density of instrumenta-
tion was varied: none represents the original non-debugged
benchmark queries while the full case instrumented each
XQuery subexpression to obtain a full computation trace
that provides the maximum choice of possible observations
at debug time. For partial, only selected expressions were
instrumented (in the spirit of Figure 5).

The measurements of Table 1, made on a dual 3.2GHz
Intel Xeon™ processor system equipped with 8 GB main
memory, show Rover ’s typical performance penalty of about
5% for partially instrumented queries and 15–50% for full
traces.

However, most of the performance we sacrifice is not due
to the relatively small overhead incurred by /. Although
the introduction of / operators does not reshape the orig-
inal query plan, their presence may hinder such reshaping.
A full trace scatters / operators all over a plan which may
bring core parts of Pathfinder ’s algebraic optimizer to al-
most a standstill: the compiler is forced to faithfully pre-
serve the side effects of all / occurrences. In specific cases,
this can have significant consequences for both, the perfor-
mance of the observed query and trace table cardinality.
The instrumentation of a subexpression in the innermost for
loop of XMark Query Q8, for example, disables Pathfinder ’s
logic that otherwise would rewrite the query’s nested itera-
tion into a relational join [8]. Query evaluation time grows
from 225ms (none) to 2, 764 s (full) for the 58 MB XML
instance—the full computation trace observes no less than
1, 616, 694, 891 items.

Loop-lifted vs. iterated observation. While this num-
ber appears overwhelming, it is encouraging to see Rover ’s
set-oriented observation model scale to such extremes. In
a loop-lifted plan, there will be a single invocation of / for
each instrumentation, regardless of the number of iterations
or items the operator will observe. An XQuery processor
with an iterated evaluation strategy, on the other hand, will
not be able to share the overhead of tracing among observa-
tions: each iteration will invoke (the internal representation
of) fn:trace() anew. Saxon 8.9 [10], an XQuery processor
of the latter category, shows this behavior. For the 58MB
XMark instance, the for loop contained in Query Q16 will
be iterated 4,875 times, with the described negative impact
on any instrumentation placed inside the loop’s body: com-
pared to Saxon 8.9, MonetDB/XQuery requires 1/3 of the
evaluation time for the non-debugged query but less than
1/100 of the time for a full trace.

5Pathfinder and MonetDB form the relational XQuery pro-
cessor MonetDB/XQuery [2] (pathfinder-xquery.org).

“What if” debugging. Rover supports a style of ex-
ploratory debugging in which the user is enabled to force an
instrumented expression e to yield value v and then restart
query evaluation to answer the question “What if e had value
v instead?” Internally, this leads to updates on e’s trace
table. For example, to force the bindings {1, 2} instead of
{@num1, @num2} for variable $day in Query Qlow, Rover would
update column item of trace table 3© in Figure 6. To shield
the user and the query processor from havoc through arbi-
trary updates, Rover uses static sequence type information
(e.g., occurrence indicators) and derived relational proper-
ties of the original trace table (foremost functional depen-
dencies like iter, pos→ item [8]) to ensure consistent forcing.
The actual query restart process benefits from the fact that
the format of Rover ’s trace tables and Pathfinder ’s runtime
tables coincide: the algebraic subplan for e is removed and
its upstream plan is directly fed from e’s updated trace table
instead.

5. RELATED RESEARCH
The idea of declarative or algorithmic debugging which

centers around the construction and navigation of computa-
tion trees (=̂ full traces), has been introduced in [16], origi-
nally for Prolog. Such debuggers often rely on far-reaching
(source-level) transformations of the subject program [14]
to prepare the collection of traces—which renders Rover ’s
fn:trace()//-based approach even less invasive. Program
transformations like lambda-lifting [13] are necessary to ob-
serve expressions with free variables, for example. Instead,
Rover relies on scope map relations (Section 2.2).

The declarative debugging literature has repeatedly advo-
cated the use of database support to cope with the sizable
trace data generated by faulty real-world subject programs
[3, 6]. In [6], the program trace query language PTQL is
proposed to inspect such database-resident traces. While
PTQL is a SQL dialect, its basic idea is closely related
the XQuery-based debugger client we sketched in Section 3.
Loop-lifting further helps to control the fan-out of the com-
putation tree [3] whose shape remains isomorphic to the
query’s algebraic plan independent of the number observed
iterations.

Finally, Rover ’s replay of for iterations bears a close re-
semblance with the instant replay feature of debuggers for
concurrent programs [12]. A forward/backward traversal of
the trace tables leads to consistent “replays”, even for side-
effecting XQuery concepts like node constructors (e.g., two
nodes constructed in distinct trees will always exhibit the
same document order relationship) [1, § 2.4.1].

6. WORK IN FLUX
Rover already provides all the infrastructure required to

bring a diagnostic debugging approach to XQuery that goes
a step beyond what we have described so far. Debuggers
of this type, particularly widespread in the functional pro-
gramming language domain [14], traverse the computation
tree top-down to automatically generate a (minimal) set of
simple yes/no questions about the observed and expected
behavior of functions [16]. The user’s responses then guide
the tree traversal to identify suspect functions in the subject
program.

This truly declarative, functional style of debugging can
be applied to XQuery if we regard an XQuery expression as a

function of its free variables. Expression $days[$day]/low
in scope s1 of Qlow would be identified with the function
f(x) = $days[x]/low (the let-bound variable $days would
be considered a constant). To assess whether f(x) behaves
as expected, the debugger feeds observed bindings for x into
f to generate questions in the style of “If $day is @num1, is
(<low>2</low>,<low>5</low>,<low>3</low>) the expected
value of $days[$day]/low?” The presence of the database
back-end would enable Rover to mark rows as (un)expected.
Such marks help to minimize the question set (a no response
to the above question would immediately flag f and thus
$days[$day]/low as suspect) and recall user responses to
avoid tedious repetitive questions—a challenge posed in [3].

Acknowledgments. This research is supported by the
German Research Council (DFG) under grant GR2036/2-1.

7. REFERENCES
[1] S. Boag, D. Chamberlin, M. F. Fernández,

D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language. W3 Consortium, 2007.

[2] P. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In Proc. SIGMOD, 2006.

[3] R. Caballero, C. Herrmans, and H. Kuchen.
Algorithmic Debugging of Java Programs. In Proc.
WFLP, 2006.

[4] D. Chamberlin, P. Fankhauser, D. Florescu,
M. Marchiori, and J. Robie. XML Query Use Cases.
W3 Consortium, 2007.

[5] D. Draper, P. Fankhauser, M. F. Fernández,
A. Malhotra, K. Rose, M. Rys, J. Siméon, and
P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3 Consortium, 2007.

[6] S. Goldsmith, R. O’Callahan, and A. Aiken.
Relational Queries over Program Traces. In Proc.
OOPSLA, 2005.

[7] T. Grust. Accelerating XPath Location Steps. In Proc.
SIGMOD, 2002.

[8] T. Grust. Purely Relational FLWORs. In Proc.
XIME-P Workshop, 2005.

[9] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In Proc. VLDB, 2004.

[10] M. Kay. The Saxon XSLT and XQuery Processor.
http://www.saxonica.com/.

[11] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0
and XPath 2.0 Functions and Operators. W3
Consortium, 2007.

[12] C.E. McDowell and D.P. Helmbold. Debugging
Concurrent Programs. ACM Computing Surveys,
21(4), 1989.

[13] S. Peyton-Jones. The Implementation of Functional
Programming Languages. Prentice Hall, 1986.

[14] B. Pope and L. Naish. Practical Aspects of Declarative
Debugging in Haskell 98. In Proc. PPDP, 2003.

[15] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proc. VLDB, 2002.

[16] E.Y. Shapiro. Algorithmic Program Debugging. MIT
Press, 1983.

