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ABSTRACT
To compensate for the inherent impedance mismatch be-
tween the relational data model (tables of tuples) and XML
(ordered, unranked trees), tree join algorithms have become
the prevalent means to process XML data in relational data-
bases, most notably the TwigStack [6], structural join [1],
and staircase join [13] algorithms. However, the addition of
these algorithms to existing systems depends on a signifi-
cant invasion of the underlying database kernel, an option
intolerable for most database vendors.

Here, we demonstrate that we can achieve comparable
XPath performance without touching the heart of the sys-
tem. We carefully exploit existing database functionality
and accelerate XPath navigation by purely relational means:
partitioned B-trees bring access costs to secondary storage to
a minimum, while aggregation functions avoid an expensive
computation and removal of duplicate result nodes to com-
ply with the XPath semantics. Experiments carried out on
IBM DB2 confirm that our approach can turn off-the-shelf
database systems into efficient XPath processors.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems; H.3.4 [Information Systems]: Information Stor-
age and Retrieval—Systems and Software

General Terms
Performance, Experimentation, Languages

Keywords
XPath, SQL, Partitioned B-Tree, Relational Databases

1. INTRODUCTION
The use of suitable tree encodings can turn relational data-

base back-ends into highly efficient XPath processors, an
XML storage approach that has since become widely ac-
cepted in research and industry. With efficient RDBMS
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implementations in the back, relational XQuery implemen-
tations excel with a scalability to multi-gigabyte XML in-
stances (e.g., [5, 17]).

To compensate for the lack of tree-awareness in relational
systems, various algorithms have been established to process
encoded XML tree instances, most notably the TwigStack
[6], structural join [1], multi-predicate merge join [24], and
staircase join [13] algorithms. But although care has been
taken to limit the required change impact to a single data-
base operator, all of these proposals depend on modifications
to the internals of the underlying RDBMS kernel, a require-
ment that may be unacceptable in actual systems (e.g., if
the RDBMS does not allow kernel modifications).

In this paper, we demonstrate that existing and com-
monly available database techniques can make up for a large
part of this limitation. We deliberately use an off-the-shelf
RDBMS implementation for the task of evaluating XPath
location steps (IBM DB2 for that matter). A closer look
at the indexing and execution techniques that this system
uses reveals interesting insights into why relational systems
perform so well at XPath. Three common techniques from
the relational domain proved particularly effective for XML
tree processing:

(i) The use of partitioned B-trees, a technique recently de-
scribed by Graefe [9] significantly speeds up the evalu-
ation of non-recursive XPath axes (child, parent) and
XPath node tests (name and/or kind tests). The same
idea can implement TwigStack’s node streams [6] or
simulate schema-based encoding techniques [20, 22] in
a seamless fashion.

(ii) Aggregation functions provide a purely relational im-
plementation of the pruning idea, a key aspect in the
aforementioned tree join algorithms.

(iii) By purely relational means, RDBMS query optimiz-
ers embrace rewriting techniques for queries over tree-
structured data that required tailor-made XML sup-
port in earlier work.

We will motivate all these techniques with experiments
carried out in IBM DB2 (using its SQL functionalities only)
and closely look at the query plans employed by this sys-
tem. Among the tree encodings proposed in the litera-
ture, we chose the pre/size/level range encoding to perform
these experiments. The effects we describe, however, ap-
ply equally well to other node-based numbering schemes,
including those based on pre/post [10] or Dewey numbers
[23].



We will proceed as follows. Section 2 briefly reviews re-
lational XML tree encodings, the range encoding (pre/size/
level) in particular. Based on this encoding, we demonstrate
the use of partitioned B-trees to accelerate the evaluation of
XPath’s child and parent axes as well as XPath node tests
(Section 3). In Section 4, we realize staircase join’s pruning
idea [13] on an SQL-only system, before we exploit further
RDBMS facilities for efficient XPath processing in Section 5.
We compare our results with related work in Section 6 and
wrap up in Section 7.

2. RELATIONAL TREE ENCODINGS
Any relational XQuery implementation that strives for

compliance with the W3C specifications [4] is bound to rep-
resent XML document trees in a schema-oblivious fashion.
Acceptable support for the recursion inherent to XML data
is provided by Dewey-based encodings (e.g., [18, 23]) and en-
codings that use pre- and postorder ranks to describe node
relationships in terms of region conditions (e.g., [5, 7, 10,
15, 24]).

2.1 Zooming in: Range Encodings
We will focus on a representative of the latter category,

where the idea is to record for each node v a range that
hosts all nodes v′ in the subtree below v. More specifically,
we enumerate all nodes according to the XML document
order (v’s preorder rank pre(v)). Further, for each node v,
we maintain size(v) as v’s number of descendant nodes and
level(v), v’s distance from the tree’s root, which completes
the structural component of our encoding. Two properties
kind(v) ∈ {elem, text, comment, . . . } and prop(v) (holding
v’s tag name or textual content for text/comment nodes)
account for v’s semantical content. Figure 1(b) illustrates
this encoding for the XML fragment (see Figure 1(a) for the
corresponding tree):

<a><b>c<d><e/><f/></d></b><g><h>i<j/></h></g></a> .

The use of this range encoding variant is a reasonable
choice: it serves as the backbone of the open-source XQuery
implementation MonetDB/XQuery1 and, hence, has proven
its applicability for large-scale XML processing. Note that
the correlation

pre(v) − post(v) = level(v) − size(v)

for any tree node v (with post(v) denoting v’s postorder
rank) makes the encoding equivalent to other region-based
tree encodings described in the past.

2.1.1 Query Regions for XPath
Range encoding allows the characterization of XPath nav-

igation axes in a way that perfectly suits the relational pro-
cessing model. The recursive axis descendant, e.g., turns
into a simple range condition over preorder ranks:

v ∈ c/descendant ⇔
pre(c) < pre(v) ≤ pre(c) + size(c) .

(Desc)

This range query for the nodes v in the descendant region
of context node c is efficiently supported in commodity sys-
tems, e.g., in terms of a B-tree index on column pre . Similar
characterizations arise for other XPath axes as well, which
we illustrated in Figure 1(c), assuming a singleton context

1http://www.monetdb-xquery.org/

node sequence containing node d of the example document
in Figure 1(a).

3. PARTITIONED B-TREES FOR XPATH
While the range encoding efficiently describes the seman-

tics of recursive XPath axes, ideally this should not neg-
atively affect the efficient evaluation of steps along any of
the non-recursive axes. The two axes child and parent

seem particularly crucial here. On range-encoded data, we
characterize axis child based on Condition Desc and an
additional predicate on column level :

v ∈ c/child ⇔
pre(c) < pre(v) ≤ pre(c) + size(c)

∧ level(v) = level(c) + 1 .

(Child)

Assuming a context node sequence ctx encoded in the data-
base as table ctx, the path expression ctx/child::a then
compiles into the SQL expression

SELECT DISTINCT d.*

FROM ctx c, doc d

WHERE c.pre < d.pre AND d.pre ≤ c.pre + c.size
AND d.level = c.level + 1
AND d.kind = elem AND d.prop = ’a’

ORDER BY d.pre

The condition on pre values may efficiently be answered
in terms of an index scan along a B-tree on column pre . The
subsequent test on the level property (and the name test for
elements labeled a), however, will render a large share of
these tuples false hits.

Earlier work [10] has suggested to overcome these false
hits by explicitly modeling the parent/child relationship in
the relational tree encoding. A foreign key reference to
each node’s parent turns the navigation along the child and
parent axes into an operation particularly suited for rela-
tional systems: a join over key columns. The price we pay,
however, is the additional storage and maintenance overhead
involved in adding a reference parent to each node.

3.1 child Axis Evaluation on IBM DB2
To assess the apparent performance penalty due to false

hits with respect to the level column, we encoded XML in-
stances from the XMark benchmark [21] using the pre/size/
level range encoding. In addition, we included a parent
reference for each node in the document. We loaded gen-
erated documents of sizes up to 1.1 GB into an IBM DB2
UDB 9.1 ESE system, running on a SuSE Linux Enterprise
Server 9 system equipped with 2× 3.2GHz Xeon processors
and 8GB RAM. Two 10,000 rpm SCSI drives hosted the
tablespaces for DB2. We ran the DB2 index advisor util-
ity db2advis and created indexes as suggested for the given
workload.

Figure 2 documents the execution times we observed for
the path /descendant::open_auction/bidder/increase2

using both alternatives to express the navigation along the
child axis (based on Condition Child and using a foreign
key join on parent , respectively). The performance penalty
for the pre/size/level -based evaluation, however, remained
remarkably small over the entire range of document sizes:

2The step /descendant::open_auction provides the con-
text node sequence for the two child steps that are of actual
interest to our discussion.
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(a) Sample tree, annotated with
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pre size level kind prop
0 9 0 elem a
1 4 1 elem b
2 0 2 text c
3 2 2 elem d
4 0 3 elem e
5 0 3 elem f
...

...
...

...
...

(b) Relational tree encoding.
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gions of context node d.

Figure 1: Sample tree and associated relational encoding. An illustrative representation is the pre/level plane.
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Figure 2: XPath performance for edge mapping and
range encoding as observed for the path expression
/descendant::open_auction/bidder/increase.

both query variants returned their results in roughly 8 sec-
onds on, e.g., the 1.1 GB XML instance.

The reason for this unexpectedly efficient execution on
the pre/size/level encoding becomes apparent when we look
into the query plan that IBM DB2 employs to evaluate our
query. A (simplified) sketch of this plan is shown in Figure 3.
IBM DB2 implements the two child steps with the help of
a concatenated 〈level , pre〉 B-tree, with primary ordering on
column level . We will now see why this index is particularly
efficient in accelerating queries along the child axis.

3.2 Partitioned B-Trees
B-trees of this kind have also been referred to as parti-

tioned B-trees [9]. With typical XML tree heights height(t)
of only 10–20, the selectivity of column level is very low,
particularly for large document instances. Effectively, the
prepending of level to a concatenated B-tree thus leads to a
partitioning of the resulting index tree into height(t) parti-
tions (see Figure 4).

Fortunately, a low-selectivity prefix will only have a margi-
nal impact on the B-tree’s storage consumption in commod-
ity RDBMS implementations. Prefix compression [2] avoids
the repeated storage of the level information and minimizes
the CPU overhead for search key comparisons during B-tree
lookups. As discussed in [9], this economical dealing with
system resources may even allow the use of a 〈level , pre〉 as
a replacement for a pre-only key, e.g., to defeat the cost of

UNIQ
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NLJOIN
child::increase

NLJOIN
child::bidder

NLJOIN
desc::open_auction

IXSCAN
pre=0

doc

IXSCAN
pre

doc
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〈level,pre〉

doc

IXSCAN
〈level,pre〉

doc

Figure 3: DB2 execution plan corresponding to the
path /descendant::open_auction/bidder/increase.

· · ·
level = 1 level = 2 · · · level = height(t)

Figure 4: B-tree partitioning.

index maintenance incurring with updates.

3.2.1 Partitioned B-Trees for the child Axis
Most importantly, however, the partitioning leads to an

evaluation strategy that will never encounter false hits with
respect to the level property (see Figure 5 for an illustra-
tion). For each context node c, the system

1. initiates a scan of the partitioned B-tree using level(v) =
level(c) + 1 and pre(v) > pre(c) and

2. scans the index as long as pre(v) ≤ pre(c) + size(c).

All nodes encountered during this index scan will satisfy
Condition Child and, hence, qualify as children of c.

3.2.2 Reduced Complexity
Contrasted with a scan of an index with primary ordering

on the key column pre, the work required to evaluate child

on a partitioned 〈level , pre〉 B-tree no longer depends on the
size of the subtree below the context node c. To demonstrate
this effect, we chose /site/regions/africa as a path that
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Figure 5: The sequential scan of a concatenated
〈level , pre〉 index will answer an XPath child navi-
gation and not encounter any false hits.
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Figure 6: XPath child navigation using a parti-
tioned B-tree. (path: /site/regions/africa).

returns exactly one node for all document sizes, while the
subtree below the single context node grows proportionally
to the XML instance size. We then removed all indexes from
the pre/size/level table and left the system with only

(a) a 〈pre , level〉 B-tree or

(b) a partitioned 〈level , pre〉 B-tree

to evaluate the three child steps.3

Figure 6 documents how the partitioned B-tree decouples
the query complexity from the total document size. While
the use of the 〈pre , level〉 B-tree requires an execution time
linear in the size of the XML document, the partitioned B-
tree leads to sub-millisecond response times independent of
the XML instance size.

3.2.3 Partitioned B-Trees and ORDPATH
ORDPATH labels [18] encode the XML tree structure in

terms of a sequence of ordinals. To access a node’s subtree,
the encoding depends on the lexicographic order among la-
bels, which coincides with the preorder rank pre(v). Thus,
a navigation along the descendant axis amounts to a range
scan equivalent to Condition Desc. Likewise, the charac-
terization of the XPath child axis on ORDPATH labels is
equivalent to Condition Child, where a regular expression
match assumes the place of the test on property level .

We therefore expect similar performance advantages from
a partitioned 〈level , ordpath〉 B-tree in ORDPATH-based sys-
tems. Microsoft SQL Server does not currently maintain

3Both combinations allow the evaluation of Condi-
tion Child based on the index data only.

level information in its XML storage. Functional indexes,
however, provided by most of the commercial systems (in-
cluding SQL Server), allow tuple indexing based on com-
puted values and could implement a 〈level , ordpath〉 index
without the need for an explicit storage of level .

3.3 More Partitioned B-Trees
So far we have only exploited the presence of low-selectivity

columns for the structural component of the XML encoding
(column level). The same idea, however, applies to the data
component as well. The kind column is an enumeration of
only six XML node kinds, and even large XML instances are
build from only few tag names.4

Both columns are suitable candidates to prefix a parti-
tioned B-tree. A leading kind column (such as 〈kind , pre〉
or 〈kind , level , pre〉) effectively pushes XPath kind tests (*,
text(), comment(), . . . ) into the index scan, while a prefix
〈kind , prop〉 (e.g., 〈kind , prop, pre〉 or 〈kind , prop, level , pre〉)
will similarly speed up the evaluation of name tests.

We have reported on the effectiveness of predicate push-
downs in XPath location steps in earlier work [13]. Parti-
tioned B-trees provide an efficient implementation on com-
modity systems. In fact, we found the DB2 index advi-
sor db2advis to seize this chance and suggest appropri-
ate indexes for workloads that made use of XPath name
and/or kind tests. Note also how an index scan along a
〈kind , prop, pre〉 index readily provides an implementation
of the element streams required by the TwigStack algorithm
in [6] using established indexing techniques only.

3.4 Benefit from Early-Out: parent Axis
Unfortunately, the idea of scanning a concatenated 〈level ,

pre〉 index to evaluate the child axis on range-encoded data
cannot directly be transferred to an evaluation of XPath’s
parent axis. This axis is described by a constraint on two
independent columns in the pre/size encoding:

v ∈ c/parent ⇔
pre(v) < pre(c) ≤ pre(v) + size(v)

∧ level(v) = level(c) − 1 .

(Parent)

B-tree indexes, however, can only be used to answer queries
for ranges in a single dimension and, hence, cannot be used
to find tuples qualifying for Condition Parent.

Yet, if we consider tree-specific properties inherent to the
pre/size encoding, we can still remedy this restriction and
evaluate a parent step in terms of a single index lookup.
The idea is illustrated in Figure 7 (assuming node d as the
context). Given the properties level(d) and pre(d) of the
context node d, we can trigger a reverse index scan5 on a
concatenated 〈level , pre〉 index, starting at the index posi-
tion 〈level(d)−1, pre(d)〉. As shown in Figure 7, such a scan
will always encounter d’s parent node as its first hit (if d has
a parent at all).

This approach to the evaluation of the parent axis blends
perfectly with the execution model of existing database sys-
tems. IBM DB2, e.g., allows index scans to be executed
as single record scans, a feature that precisely matches the
evaluation strategy we are after here. If evaluated as a single

4The XMark [21] DTD, e.g., lists 77 tag names.
5The functionality to scan indexes in a reverse fashion may
presuppose an explicit declaration during index creation,
e.g., in terms of DB2’s CREATE INDEX ... ALLOW REVERSE
SCANS instruction.
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Figure 8: (Desired) DB2 execution plan to evaluate
QParent (/descendant::description/parent::node()).

record scan, index scans will only return their first match-
ing tuple for each index re-scan, which exactly matches our
needs. In Figure 8, we illustrated the corresponding execu-
tion plan for the path

/descendant::description/parent::node() . (QParent)

Unfortunately, the decision to use a single record execu-
tion strategy requires an explicit knowledge about the data’s
tree origin, knowledge that is hardly expressible on the SQL
level. Therefore, we cannot evoke our intended execution
strategy using an SQL-only interface to the database sys-
tem. An XQuery front-end with direct access to the planner
component of the underlying system, however, could easily
generate the desired execution plan as an implementation
of the parent step. Note that an XQuery extension of this
kind would not require any modifications to the system’s
execution engine but merely recycle existing functionality.

To evaluate the potential of a 〈level , pre〉-based parent

evaluation, we simulated the respective query plan on our
DB2 instance in terms of a modified version of Query QParent:

/descendant::description [ parent::node() ] .

(Q′
Parent)

This path essentially computes the result for Query QParent,
but returns description nodes instead of their parents. Ex-
pressed in SQL, Query Q′

Parent reads:

SELECT DISTINCT d.*

FROM doc d

WHERE d.kind = elem AND d.prop = ’description’

AND EXISTS ( SELECT *

FROM doc p

WHERE p.level = d.level − 1
AND p.pre < d.pre
AND d.pre ≤ p.pre + p.size )

ORDER BY d.pre .
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Figure 9: The evaluation of parent using a
partitioned 〈level , pre〉 index is almost on par
with the foreign key-based alternative (path
/descendant::description[parent::node()]).

The most selective condition in this query is the restric-
tion on description nodes, which DB2 will evaluate first.
The EXISTS clause allows the system to choose an early-out
strategy, a feature that DB2 implements in terms of a single
record scan. The outcome is the plan in Figure 8, where the
only difference to our initially intended plan lies in the set
of attributes that are returned at the plan’s root.

We benchmarked this evaluation strategy against an ex-
plicit foreign key join (property parent) as mentioned earlier.
We created a partitioned 〈level , pre〉 B-tree to support the
pre/size/level -based evaluation and a pre index to support
lookups of the foreign key reference. The execution times
for both evaluation strategies (illustrated in Figure 9) are
indeed almost on par. The use of the partitioned B-tree,
however, fully eliminates the need to maintain an explicit
parent column in the relational encoding.

4. CONTEXT PRUNING
IN A CONVENTIONAL RDBMS

Generally, an XPath location step originates in an entire
sequence of context nodes. If multiple of these lead to the
same result node, an evaluation on a node-by-node basis
will consequently face a large number of duplicates in the
intermediate step result. An expensive duplicate removal
is then required to comply with the XPath semantics of a
duplicate-free location step result. Assuming the document
in Figure 1(a), e.g., nodes g, h, i, and j are reachable via
the following axis from both nodes of the context sequence
(c, d) (context node c will additionally contribute d, e, and
f).

4.1 Pruning in the pre/level Plane
In the pre/level plane, this situation surfaces as an overlap

of the corresponding query regions, indicated in Figure 10
with different shadings for the following regions of nodes
c and d. To avoid the overlap in the pre/level plane (and
thus the generation of intermediate duplicates), we could
remove node d from the context set before processing the
step, retaining only the node with the minimum following

(i.e., pre + size) boundary.
This idea of context sequence pruning has already been

suggested as a part of staircase join [13], an algorithm that
invariably requires a modification of the underlying data-
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Figure 10: Nodes g, h, i, and j are located in the
following regions of both context nodes c and d.

base kernel. We can achieve the same effect, though, with
purely relational plan rewrites in an off-the-shelf system.
To illustrate, we use the SQL representation of the step
ctx/following:

SELECT DISTINCT d.*

FROM doc d, ctx c

WHERE d.pre > c.pre + c.size
ORDER BY d.pre ,

(1)

essentially a semi-join between the persistent document con-
tainer doc and a set of context nodes ctx. Due to the
DISTINCT clause, this semi-join may be rewritten into

SELECT d.*

FROM doc d

WHERE d.pre > ANY ( SELECT c.pre + c.size
FROM ctx c )

ORDER BY d.pre ,

(2)

which is most efficiently computed by aggregating over the
context relation ctx first:

SELECT d.*

FROM doc d

WHERE d.pre > ( SELECT MIN (c.pre + c.size)
FROM ctx c )

ORDER BY d.pre .

(3)

The rewritten query now captures the idea of pruning by
purely relational means. In contrast to the technique sug-
gested in [13], however, the rewrites do not depend on an
explicit tree-awareness in the underlying kernel. Moreover,
both rewrites are universally applicable to relational plans
and could speed up query execution even on data that does
not originate from an XML document encoding.

4.2 Context Pruning on IBM DB2
Apparently, both rewrites are not among the rule set of

the DB2 query optimizer. To assess their potential, we used
the two SQL equivalents (1) and (3) to translate the XPath
expression /descendant::city/following::zipcode.

Figure 11 illustrates the resulting query execution times,
where our pruning-enabled SQL code clearly outperforms
the original SQL query. The same experiment also demon-
strates how the demand for duplicate removal in the XPath
semantics puts a serious strain on the relational system. On
XMark-generated documents, the number of result nodes
retrieved from the base tables scales quadratically with the
XML document size. On large instances, we thus have to
pay the toll for a growing sort overhead (8.1× 109 nodes to
sort for the 1.1 GB instance) and DB2 significantly falls back
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Figure 11: Context set pruning speeds up the evalu-
ation of /descendant::city/following::zipcode by or-
ders of magnitude.

behind quadratic scaling. The rewritten query, in contrast,
reaches sub-linear scaling across the entire size range.

5. XPATH OPTIMIZATION ON RDBMSS
Their effective measures to rewrite query execution plans

for most efficient evaluation certainly are key aspects that
made relational database systems so successful. It is in-
teresting to see, since, how the same techniques will natu-
rally lead to efficient XPath evaluation plans on off-the-shelf
RDBMS implementations.

5.1 Existential Quantification and Early-Out
The XPath language specification [3] makes extensive use

of existential quantification, e.g., to define the semantics of
XPath predicate expressions. It has been demonstrated in
[8] that the lack of an early-out evaluation strategy to im-
plement predicates can seriously hamper the scalability of
any XPath implementation.

Such a strategy perfectly blends with the aforementioned
single record execution strategy. A single record scan in the
relational plan tree will immediately abort the processing of
its subplan as soon as the first matching tuple is found. In
Section 3.4 we took advantage of this feature to demonstrate
an enhanced evaluation strategy for the XPath parent axis.

The Pathfinder XQuery compiler6 implements a compila-
tion procedure that translates arbitrary XQuery expressions
into SQL:1999 queries [12, 11]. In the execution plans result-
ing from this compilation, we found DB2 to make frequent
use of its single record functionality: the execution plan that
evaluates the SQL counterpart of XMark Query Q1, e.g.,
contains seven instances of a single record scan. On our test
platform, this allows the evaluation of the query in less than
one second over a 1.1 GB XMark instance.

5.2 Bottom-Up Location Step Processing
The same query plan also demonstrates how the applica-

tion of join reordering mechanisms—a well-studied problem
in the relational domain—enables the system to perform ef-
fective rewrites that proved to be quite a challenge to native
XPath processors in the past. As discussed by [16], a step-
by-step evaluation of XPath location paths usually leads to

6http://www.pathfinder-xquery.org/



Strategy exec. time [s]

(a) arbitrary join order 129.1
(b) step-by-step evaluation 1.037
(c) simulation of “binary associations” 0.001

Table 1: DB2 execution times for XMark Q15 using
(a) a system-determined join order, (b) step-by-step
join order, and (c) a 〈path , pre〉 B-tree that simulates
a binary associations encoding (111 MB document).

a top-down navigation in the XML document tree. Depend-
ing on the selectivity of the individual steps, however, it may
be advantageous to process a path in a backward fashion and
navigate the tree bottom-up or use a hybrid combination of
both.

On the relational back-end, the same alternatives surface
as different join orders in the query execution plan, a sit-
uation that modern RDBMSs know well how to deal with.
Commodity systems typically rely on statistical information
about the underlying tables to decide for a specific join or-
der. These statistics turn out to be a suitable measure also
to find appropriate evaluation strategies for XPath, even if
the system is completely unaware of the tree structure that
defines the relational table content.

XMark Query Q1 is essentially a measure for the system’s
XPath performance for the path

/site/people/person [ @id = "person0" ] .

The query plan that corresponds to the full XMark query
amounts to 45 operators (as obtained with DB2’s plan ana-
lyzer db2expln). Despite this complexity, DB2 detected the
chance to evaluate this path in a backward fashion. Start-
ing from the highly selective predicate on the @id attribute
(accessed via an index on attribute values), the system pro-
cesses the above path from the leaf to the root. For other
XMark queries, we found DB2’s optimizer to opt for a top-
down strategy or even hybrid combinations of both. For
an equivalent decision, earlier work [16] had depended on
specialized tree statistics (e.g., data guides).

Taking a good decision on one of the possible join orders
can be a serious challenge to the underlying RDBMS opti-
mizer. Paths that involve a large number of location steps
can quickly exceed the limits of eager join re-ordering algo-
rithms. XMark Q15 essentially consists of a sequence of 13
child steps—apparently too much for the query optimizer of
DB2. Assuming an XMark instance of 111 MB, this lead to
an execution time of 129 seconds on our test platform. If we
trick the system into using a step-by-step path evaluation by
rewriting the SQL code, we can reduce the execution time
to now only one second (see Table 1(b)).

5.3 Schema-Awareness with Partitioned Trees
The evaluation techniques we described assume a schema-

oblivious storage, where each tree node maps to one tuple
of a single database table in absence of any XML Schema
information. Others have suggested to incorporate such in-
formation and collect nodes with a common root-to-node
path into a unique database table [20, 22]. The resulting
semantical grouping may—depending on the specific query
workload—improve data access patterns to the underlying
tables at the cost of an increased assembly overhead to com-
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Figure 12: Relational XPath performance (light and
medium gray) vs. DB2’s built-in XQuery support
(dark) as observed for a 111 MB XML instance.

bine (intermediate) results from multiple base tables [22].
The use of partitioned B-trees covers both situations in

a surprisingly simple manner. To this end, we enrich our
encoding with a column path that records the root-to-node
path for each XML tree node. The XML storage of Mi-
crosoft’s SQL Server, in fact, comes with an implementation
of a path column (dubbed PATH ID) [19]. Used as the pre-
fix of a partitioned B-tree, this new column will partition
the single document table doc into separate ranges for each
path in the tree. For example, a concatenated 〈path , pre〉 B-
tree readily realizes the binary association encoding of [20]
over range-encoded data.

We implemented this idea on DB2. For queries that con-
tain long sequences of child steps, the impact can be sig-
nificant: the execution time for Query Q15 from the XMark
benchmark, e.g., drops to one milli-second if a 〈path , pre〉
B-tree is used to simulate the binary association encoding
(see Table 1(c)).

6. RELATED TECHNIQUES
Much like other commercial database systems, the latest

version of IBM DB2 ships with the integrated “pureXML”
XQuery execution engine. Obviously, this functionality pro-
vides an interesting baseline for the relational XPath evalu-
ation strategies that we investigate here.

We have run all aforementioned queries on the same sys-
tem over an 111 MB XMark instance using the pureXML
query processor.7 Since the figures of our relational XPath
evaluation do not include serialization time, we wrapped the
respective path expressions into a call of fn:count () to also
eliminate this cost factor for DB2’s native XPath processor.

Figure 12 contains the execution times shown in previous
figures (Figures 2, 6, and 9) for the relational path evalua-
tion, along with execution times achieved with the pureXML
processor for the same queries.

The workload we are using here is quite different to the
typical pureXML workload. The DB2 column type XML is
designed to hold small but many XML instances, such as

7DB2’s built-in XQuery processor does not support the
XPath following axis, which is why we omitted a test for
the query of Figure 11.



they arise, e.g., in message processing systems. Such data
can optionally be indexed with XML pattern indexes that in-
dex all values that are reachable via a given path expression.
Since the focus of our experiments is raw XPath navigation
performance, DB2 cannot benefit from any of its value-based
indexes, which puts a serious strain on the built-in XPath
processor. The resulting performance, shown in Figure 12,
indicates that—at least for certain query workloads—a re-
lational approach to XPath evaluation can significantly out-
perform an industrial-strength native XQuery processor.

6.1 More Related Work
To add efficient tree processing capabilities to relational

systems, earlier work proposed to modify the existing data-
base engine and add highly specialized XPath processing
algorithms to the DBMS kernel. The multi-predicate merge
join (MPMGJN) has been suggested in [24] to address con-
tainment queries by relational means, a generalization of
XPath descendant/child navigation steps. A natural ex-
tension of MPMGJN are the structural join [1] and stair-
case join [13] algorithms. Considering data dependencies
that originate from the encoded tree structure, they target
the full set of axes in the XPath language. Similarly, the
PathStack and TwigStack algorithms [6] are tailor-made to
process tree navigation primitives in relational systems.

While these proposals make profitably use of relational
processing paradigms, we feel that the inherent invasion of
the database kernel to add the new functionality is an unac-
ceptable option for most real-world systems. The techniques
we described here solely depend on existing DBMS technol-
ogy, available in off-the-shelf database implementations.

Crucial to these techniques is the use of concatenated B-
tree indexes. This distinguishes our work from earlier ap-
proaches that depended on specialized index variants, such
as XB- or XR-Trees [6, 14].

7. SUMMARY
In the interest of efficient XML processing on relational

systems, earlier work has proposed a number of novel data-
base operators that provide specialized tree processing sup-
port in the database kernel. As an invasion of the system’s
kernel seems hardly an option for any DBMS vendor, we
evaluated how much existing and widely available database
functionality is suited to efficiently process XML data.

Among this functionality, the use of partitioned B-trees
proved particularly effective. Low-selectivity prefixes in con-
catenated B-trees implement a semantical grouping which
allows for efficient XPath evaluation strategies. Further,
well-known rewrite techniques from the relational domain
turned out to readily implement tree-processing function-
ality that proved challenging in the past. Most notably,
we realized staircase join’s pruning idea and bottom-up path
processing by purely relational means.

The techniques we saw are of universal nature and equally
applicable to any of the established tree encodings, including
pre/post - [10] and Dewey-based [23] numbering schemes. As
such, they may prove fruitful for RDBMS vendors, as well
as XQuery implementors.
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