
Pathfinder:
A Relational Query Optimizer Explores XQuery Terrain

Jan Rittinger Jens Teubner Torsten Grust

Technische Universität München, Institut für Informatik
{jan.rittinger,jens.teubner,torsten.grust}@in.tum.de

1 Purely Relational XQuery

Relational encodings of the static aspects of the XQuery data model, i.e., tabular repre-
sentations for XML documents and ordered sequences of items, are widely used today.
Since 2002, the Pathfinder and MonetDB/XQuery companion projects [BGvK+06] pursue
the primary goal to also embrace the complete dynamic semantics of XQuery (expression
evaluation and runtime aspects) with the help of relational database systems.

In earlier work [GT04], we have shown that relational algebra makes for a suitable target
language in an XQuery compiler. This purely relational approach to XQuery inherits the
scalability advantages of the underlying relational database back-end and makes proven
optimization techniques immediately applicable to the construction of XQuery processors.
MonetDB/XQuery, an open-source system that implements this approach, is found among
the fastest and most scalable XQuery processors available today [BGvK+06].

This is a demonstration of the relational optimizer of Pathfinder1, the query compiler be-
hind MonetDB/XQuery. To account for the significant size and unusual shape of the rela-
tional query plans (see Figure 1) derived from input XQuery expressions, Pathfinder im-
plements various optimization techniques in a peephole-style fashion and provides support
for graph-shaped plans from the ground up.

2 Relational Query Optimization in an XQuery Compiler

Pathfinder’s XQuery compiler turns incoming XQuery expressions into relational query
plans according to the loop-lifting compilation strategy we devised in [GT04]. In a nut-
shell, loop-lifting trades iteration (esp. the XQuery FLWOR construct) for efficient bulk-
oriented processing. The compiler emits expressions of a relational algebra whose opera-
tors have been chosen to match the actual capabilities of modern SQL query engines. A
few representative operators are shown in Table 1 (note that non-standard operators like
the XPath step join� are synonyms for relational “micro-plans” with an optimized imple-
mentation in Pathfinder’s back-end database system MonetDB).

1MonetDB/XQuery and Pathfinder are available via http://www.pathfinder-xquery.org/.

SERIALIZE

¶ (iter:outer, pos:pos1, item)

ROW# (pos1:<sort, pos>/outer)

|X| (iter = inner)

@ (pos), val: #1

¶ (outer:iter, sort:pos, inner)

ROOTS

NUMBER (inner)

ELEM (iter, item:<iter, item><iter, pos, item>)

ELEM_TAG

@ (item), val: item

¶ (iter, pos:pos1, item)

@ (pos), val: #1

ROW# (pos1:<ord, pos>/iter)

¶ (iter)

@ (pos), val: #1

¶ (iter:inner, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element person { item* } (iter, item)

¶ (iter, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element people { item* } (iter, item)

¶ (iter, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element site { item* } (iter, item)

¶ (iter, item)

@ (pos), val: #1

ROOTS

DOC

¶ (iter, item)

@ (item), val: "auctionG.xml"

@ (pos), val: #1

TBL: (iter)
[#1]

U

@ (ord), val: #1 @ (ord), val: #2

¶ (iter, pos, item:res) @ (pos), val: #1

ROOTS

ATTR (res:<item, item1>)

|X| (iter = iter1)

@ (item), val: person

¶ (iter1:iter, item1:item)

@ (pos), val: #1

fn:string_join

¶ (iter:outer, pos:pos1, item) ¶ (iter, item)

ROW# (pos1:<sort, pos>/outer) @ (item), val: " "

|X| (iter = inner)

¶ (iter, pos, item:res)

¶ (outer:iter, sort:pos, inner)access textnode content (res:<item>)

NUMBER (inner)

@ (pos), val: #1

¶ (iter:inner, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::text (iter, item)

¶ (iter, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element name { item* } (iter, item)

¶ (iter, item)

¶ (iter, item:res)

ROOTS

TEXT (res:<cast>)

CAST (cast:<item>), type: str

@ (pos), val: #1

U

COUNT (item:/iter)

@ (item), val: 0

¶ (iter)

DIFF

¶ (iter:outer, pos:pos1, item)

ROW# (pos1:<sort, pos>/outer)

|X| (iter = inner)

U

¶ (outer:iter, sort:pos, inner)

¶ (iter, pos, item)

EMPTY_TBL: (iter | pos | item)

NUMBER (inner)

|X| (iter = iter1)

@ (pos), val: #1

¶ (iter1:iter)

¶ (iter:inner, item)

¶ (iter)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element closed_auction { item* } (iter, item)

¶ (iter, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element closed_auctions { item* } (iter, item)

¶ (iter, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element site { item* } (iter, item)

¶ (iter, item)

¶ (iter:inner, pos, item)

|X| (iter = outer)

SEL (item)

¶ (iter, pos, item:res)

NOT (res:<item>)

¶ (iter, pos, item:cast)

CAST (cast:<item>), type: bool

@ (pos), val: #1

U

@ (item), val: false @ (item), val: true

DISTINCTDIFF

¶ (iter)

¶ (iter:outer, pos:pos1, item)

ROW# (pos1:<sort, pos>/outer)

|X| (iter = inner)

U

¶ (outer:iter, sort:pos, inner)

@ (item), val: 1

NUMBER (inner)

@ (pos), val: #1

¶ (iter)

SEL (item)

¶ (iter, pos, item:res)

NOT (res:<item>)

¶ (iter, pos, item:cast)

CAST (cast:<item>), type: bool

@ (pos), val: #1

U

@ (item), val: false @ (item), val: true

DISTINCTDIFF

¶ (iter)

¶ (iter:outer, pos:pos1, item)

ROW# (pos1:<sort, pos>/outer)

|X| (iter = inner)

U

¶ (outer:iter, sort:pos, inner)

@ (item), val: 1

NUMBER (inner)

@ (pos), val: #1

¶ (iter)

SEL (item)

¶ (iter, pos, item:res)

= (res:<item, item1>)

|X| (iter = iter1)

¶ (iter, pos, item:cast) ¶ (iter1:iter, item1:cast)

CAST (cast:<item>), type: str CAST (cast:<item>), type: str

¶ (iter, pos, item:cast)

CAST (cast:<item>), type: str

¶ (iter:inner, pos, item)

|X| (iter = outer)

@ (pos), val: #1

¶ (iter:inner, item)

¶ (iter:outer, pos:pos1, item)

ROW# (pos1:<sort, pos>/outer)

|X| (iter = inner)

¶ (iter, pos, item:cast)

¶ (outer:iter, sort:pos, inner)CAST (cast:<item>), type: uA

NUMBER (inner)

¶ (iter, pos, item:res)

access attribute value (res:<item>)

@ (pos), val: #1

¶ (iter:inner, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| attribute::attribute person { atomic* } (iter, item)

¶ (iter, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| child::element buyer { item* } (iter, item)

¶ (iter, item)

¶ (iter:outer, pos:pos1, item)

ROW# (pos1:<sort, pos>/outer)

|X| (iter = inner)

¶ (iter, pos, item:cast)

¶ (outer:iter, sort:pos, inner)CAST (cast:<item>), type: uA

NUMBER (inner)

¶ (iter, pos, item:res)

access attribute value (res:<item>)

@ (pos), val: #1

¶ (iter:inner, item)

ROW# (pos:<item>/iter)

DISTINCT

¶ (iter, item)

ROW# (pos:<item>/iter)

/| attribute::attribute id { atomic* } (iter, item)

¶ (iter, item)

¶ (iter:inner, pos, item)

|X| (iter = outer)

¶ (iter:inner, pos, item)

|X| (iter = outer)

¶ (iter, pos, item:cast)

CAST (cast:<item>), type: str

@ (pos), val: #1

¶ (iter:inner, item)

¶ (iter)

¶ (iter)

¶ (iter)

(a) Original plan.

SERIALIZE

¶ (item, pos)

ROW# (pos:<pos1>)

¶ (pos1, item)

|X| (iter = iter1)

NUMBER (iter)

ROOTS

ROW# (pos1:<item1>)

ELEM (iter1, item:<iter1, item><iter1, pos, item>)

¶ (item1)

/| child::element person { item* } (iter, item1)

/| child::element people { item* } (iter, item1)

¶ (iter, item1:item)

/| child::element site { item* } (iter, item)

ROOTS

DOC

TBL: (iter | item)
[#1,"auctionG.xml"]

ELEM_TAG

@ (item), val: item

¶ (iter1, item, pos)

¶ (iter1:iter)

ROW# (pos:<pos1>/iter1)

U

@ (pos1), val: #1 @ (pos1), val: #2

¶ (iter1, item) ¶ (iter1, item)

ROOTS

ATTR (item:<item2, item1>)

@ (item2), val: person

fn:string_join

¶ (iter1, item1, pos) @ (item1), val: " "

ROW# (pos:<pos1>/iter1)

¶ (iter1, pos1, item1)

access textnode content (item1:<item>)

ROW# (pos1:<item>/iter1)

/| child::text (iter1, item)

/| child::element name { item* } (iter1, item)

¶ (item:item1, iter1:iter)

ROOTS

TEXT (item:<item2>)

CAST (item2:<item1>), type: str

U

COUNT (item1:/iter1)

@ (item1), val: 0

¶ (iter1:iter3)

DIFF

DISTINCT

¶ (iter2, iter3)

|X| (item = item1)

¶ (iter2, item)

¶ (iter3, item1)

access attribute value (item:<item1>)

access attribute value (item1:<item>)

/| attribute::attribute person { atomic* } (iter2, item1)

/| child::element buyer { item* } (iter2, item1)

¶ (item1:item, iter2:iter1)

NUMBER (iter1)

¶ (item)

/| child::element closed_auction { item* } (iter, item)

/| child::element closed_auctions { item* } (iter, item)

¶ (item, iter3:iter2)

/| attribute::attribute id { atomic* } (iter2, item)

¶ (item:item1, iter2:iter)

¶ (iter1)

(b) Optimized plan.

Q (a) (b)

1 138 37
2 91 34
3 385 135
4 325 67
5 132 40
6 53 23
7 79 46
8 227 66
9 371 101

10 500 243
11 234 91
12 316 110
13 87 43
14 86 54
15 100 31
16 149 51
17 97 42
18 101 48
19 142 76
20 392 147

Figure 1: Plans for XMark query Q8, (a)
before and (b) after relational optimiza-
tion. Table: Operator counts for the 20
XMark queries.

To correctly reflect the complex XQuery semantics—
different notions of order, side-effecting node con-
struction and node identity, existential predicate se-
mantics, and implicit casting and atomization—the
resulting plans are of significant size (50–500 opera-
tors). Figure 1 gives an impression of the relational
plan for XMark query Q8 [SWK+02] along with the
total number of plan operators for each of the XMark
queries.

Loop-lifted evaluation plans typically exhibit plenty
of opportunities to share common subexpressions.
Pathfinder represents query plans as directed acyclic
graphs (DAGs) to account for this sharing. XQuery
is a compositional expression-oriented language in
which subexpressions are stacked upon each other to
form complex queries. Note how the stretched shape
of the plans in Figure 1—which is somewhat differ-
ent from the well-known SQL-induced π–σ–on query
pattern—reflects this compositionality.

2.1 Rewriting Large Plan DAGs

To obtain a bird’s eye view of these large plans and
maintain focus during optimization, Pathfinder iden-
tifies basic blocks (straight-line operator sequences in
the DAG with no sideways entries), much like com-
pilers for programming languages. A further tech-
nique that saves the optimizer from getting lost in
large plan DAGs is peephole-style inspection that
considers one operator at a time. To compensate
for this restricted peephole view, a property infer-
ence phase precedes the actual rewriting. The infer-
ence carries additional information about the relevant
vicinity of each plan node into the operator itself. We
highlight some of these inferred plan characteristics
in the following.

π column projection, renaming % row numbering
σ row selection ·∪ disjoint union (UNION ALL)
on equi-join } arithmetic/comparison operator ◦
× Cartesian product � XPath step join

Table 1: Subset of the relational algebra emitted by the loop-lifting compiler. Operator % is the
equivalent of SQL:1999’s ROW_NUMBER operator—see [GT04] for details.

2.2 Column Pruning

Pathfinder’s fully compositional compilation may lead to relational plans that generate
table columns whose contents may not be relevant to the semantics of a given query. Se-
quence order (maintained in column pos [GT04]), for example, is not relevant to compute
the result of the XQuery general comparison operators (=, <, . . .). To avoid the runtime
overhead incurred by the generation and maintenance of such columns, Pathfinder an-
notates each relational plan operator with the set of columns that is strictly required to
process its upstream plan. These annotations are then used to drive a variant of projection
pushdown [Gru05, JK84].

Loop-lifted XQuery evaluation plans are very susceptible to this optimization. Columns
carrying the type annotations derived by XQuery’s validate { } construct, for exam-
ple, will only be retained in the optimized plans if the surrounding XQuery expressions
indeed inspect these types (e.g., via typeswitch or instance of). Similarly, we are cur-
rently extending Pathfinder’s internal data model with a score column intended to support
XQuery Full-Text retrieval [AYBB+06]. Column pruning will ensure that this will not
negatively affect the performance of queries that do not use XQuery Full-Text features.

2.3 Functional and Multi-Valued Dependencies

Due to loop-lifting, optimization opportunities like the occurrence of invariant subexpres-
sions inside (deeply nested) XQuery FLWOR blocks or the presence of value-based joins,
surface as functional and multi-valued dependencies in the relational plans. During the
property inference phase, Pathfinder derives the validity of degenerate functional depen-
dencies of the form ∅ → c for all columns c produced by sub-plans of the query DAG.
If ∅ → c holds for a relation, all its rows carry the same value in column c—an indicator
for Pathfinder’s optimizer to initiate constant propagation and folding in the plan vicin-
ity. Likewise, the presence of a degenerate multi-valued dependency ∅ � c1, . . . , cn in a
relation signals that its columns c1, . . . , cn are independent of all its remaining columns.
In a loop-lifted query plan, this multi-valued dependency is the relational expression of
the fact that a loop-invariant computation occurs inside an XQuery for-iteration. In such
cases, Pathfinder performs a variant of loop hoisting to improve the original plan.

Note that relational dependency analysis is indifferent to XQuery’s syntactic diversity—in
XQuery syntax, value-based joins are not as prominent as in SQL and come in various
flavors—and will detect the value-based join in let $d := fn:doc(· · ·) for $a in
$d//a return $d//b[@c = $a/@d], for example.

2.4 Data Flow Analysis Based on Active Domains

Pathfinder’s join recognition logic is further supported by data flow analysis on relational
plan DAGs. For all intermediate result tables t, the system infers an approximation αc of
the active domain for each column c in t [Klu80]. The data flow may then be inferred
from the inclusion (or disjointness) of these active domains: for two columns c1 and c2 of
arbitrary intermediate result tables, the inclusion αc1 ⊆ αc2 indicates data flow between

the respective plan operators.

Among many other uses, data flow analysis helps to maintain the correspondence between
the pair of branches that results from the compilation of an XQuery if-then-else clause:
the active domain relationships remain intact even if extensive rewrites move the then
and else DAG branches far apart. Further, active domain information is an essential
building block of a procedure that provides cardinality estimates for arbitrary XQuery
subexpressions (not just the overall query result).

3 Demonstration Setup

We demonstrate an instance of MonetDB/XQuery against which users may run arbitrary
queries in an interactive fashion. The system will be preloaded with various XMark XML
instances (of 100 KB–1 GB serialized size). Most importantly, users will be able to look
under the hood of the Pathfinder compiler and experience the effect of the aforementioned
relational optimization techniques. The demonstration system renders the relational query
plans (much like the plans in Figure 1) to enable the inspection of plan characteristics at
various stages of Pathfinder’s highly-configurable optimizer pipeline. Stages may be sep-
arately enabled to judge their impact on plan quality and XQuery evaluation performance.

Acknowledgment. This research is supported by the DFG (Deutsche Forschungsge-
meinschaft) under grant GR 2036/2-1. We thank the MonetDB development team at CWI,
Amsterdam, for the lasting and fun collaboration.

References
[AYBB+06] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, M. Holstege, D. McBeath,

M. Rys, and J. Shanmugasundaram. XQuery 1.0 and XPath 2.0 Full-Text. W3C
Working Draft, May 2006.

[BGvK+06] P. Boncz, T. Grust, M. v. Keulen, S. Manegold, J. Rittinger, and J. Teubner. Mon-
etDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine. In Proc. of
the 2006 ACM SIGMOD Conf., Chicago, IL, USA, June 2006.

[Gru05] T. Grust. Purely Relational FLWORs. In Proc. of the 2nd Int’l XIME-P Workshop,
Maryland, MD, USA, June 2005.

[GT04] T. Grust and J. Teubner. Relational Algebra: Mother Tongue—XQuery: Fluent. In
Proc. of the 1st Twente Data Management Workshop (TDM), Enschede, The Nether-
lands, June 2004.

[JK84] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Computing
Surveys, 16(2), June 1984.

[Klu80] A. Klug. Calculating Constraints on Relational Expressions. ACM TODS, 5(3),
September 1980.

[SWK+02] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
XMark: A Benchmark for XML Data Management. In Proc. of the 28th Int’l VLDB
Conf., Hong Kong, China, August 2002.

