
MonetDB/XQuery—Consistent and Efficient
Updates on the Pre/Post Plane

Peter Boncz1, Jan Flokstra3, Torsten Grust2, Maurice van Keulen3,
Stefan Manegold1, Sjoerd Mullender1, Jan Rittinger2, and Jens Teubner2

1 CWI Amsterdam, The Netherlands
{boncz, manegold, sjoerd}@cwi.nl

2 Technische Universität München, Germany
{grust, rittinge, teubnerj}@in.tum.de
3 University of Twente, The Netherlands

{keulen, flokstra}@cs.utwente.nl

1 Introduction

Relational XQuery processors aim at leveraging mature relational DBMS query
processing technology to provide scalability and efficiency. To achieve this goal,
various storage schemes have been proposed to encode the tree structure of XML
documents in flat relational tables. Basically, two classes can be identified: (1)
encodings using fixed-length surrogates, like the preorder ranks in the pre/post
encoding [5] or the equivalent pre/size/level encoding [8], and (2) encodings
using variable-length surrogates, like, e.g., ORDPATH [9] or P-PBiTree [12].
Recent research [1] showed a clear advantage of the former for efficient evalua-
tion of XPath location steps, exploiting techniques like cheap node order tests,
positional lookup, and node skipping in staircase join [7]. However, once updates
are involved, variable-length surrogates are often considered the better choice,
mainly as a straightforward implementation of structural XML updates using
fixed-length surrogates faces two performance bottlenecks: (i) high physical cost
(the preorder ranks of all nodes following the update position must be modified—
on average 50% of the document), and (ii) low transaction concurrency (updat-
ing the size of all ancestor nodes causes lock contention on the document root).

In [4], we presented techniques that allow an efficient and ACID-compliant
implementation of XML updates also on the pre/post (respectively pre/size/level
encoding) without sacrificing its superior XPath (i.e., read-only) performance.
This demonstration describes in detail, how we successfully implemented these
techniques in MonetDB/XQuery1 [2, 1], an XML database system with full-
fledged XQuery support. The system consists of the Pathfinder compiler that
translates and optimizes XQuery into relational algebra [6], on top of the high-
performance MonetDB relational database engine [3].

1 MonetDB/XQuery and the Pathfinder compiler are available in open-source:
http://monetdb-xquery.org/ & http://pathfinder-xquery.org/; the second ver-
sion including XML updates will be released well before EDBT 2006.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1190–1193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://monetdb-xquery.org/
http://pathfinder-xquery.org/

MonetDB/XQuery—Consistent and Efficient Updates on the Pre/Post Plane 1191

h

i
j

0
1
2
3
4
5
6
7
8
9

pre size level

9
3
2
0
0
4
0
2
0
0

0
1
2
3
3
1
2
2
3
3

b
c
d
e
f
g
h
i
j

a

a

d
e

f

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

g

precedingb

c

following

ancestor

descendant

pre

insert−first(<k><l/><m/></k>,/a/f/g) k

l
m

h

i
j

a

d
e

f

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

g

precedingb

c

following
pre size level

3
2
0
0
7
3

0
1
2
3
3
1
2

a
b
c
d
e
f
g

0
1
2
3
4
5
6

descendant

ancestor

2
0
0

2
3

h
i
j

2
0
0

3
4
4

k
l
m9

size+3

new
nodes

pre+3

12

3
7
8

10
11
12

pre

Fig. 1. The impact of Structural Updates on pre/size/level XML Storage

2 XML Updates

XML updates can be classified as: (i) value updates, which include node value
changes (be it text, comment or processing instructions), and any change concern-
ing attributes (attribute value changes, attribute deletion and insertion). Other
modifications are (ii) structural updates, that insert or delete nodes in an XML
document. With the pre/size/level encoding, value updates map quite trivially
to updates in the underlying relational tables. Therefore, we focus on structural
updates in the remainder.

W3C has not formulated a standard for XML updates, yet. However, we
expect that a future standard will include the functionality of the UpdateX
language as proposed in [11]. Given that there is no standard XML update
language (and hence syntax), yet, we decided to keep the changes in our XQuery
parser limited by not using the syntax proposed in [11], but rather implement
the same update functionality by means of a series of new XQuery operators
with side effects.

Consistent Bulk Processing. Semantically, which nodes are updated and with
what values is determined solely using the pre-image (i.e. snapshot semantics).
Still, updates need to be applied in the order mandated by XQuery evaluation,
which conflicts with the bulk relational query execution employed in MonetDB/
XQuery (where optimized query execution may use a different order). To over-
come this problem, the update operators initially just produce a tape of intended
updates. This tape is represented by an XQuery item sequence, and thus in the
end is yielded in the correct order. Finally, after optimization (in which duplicate
updates or updates on deleted nodes are pruned), these updates are applied and
committed. In our opinion, this optimized bulk approach to updates is unique to
MonetDB/XQuery. Note that the update tape, which separates query evaluation
and update execution, bears some resemblance to the idea of monad-based I/O
[10] in purely functional programming languages, e.g., Haskell.

Structural Update Problems. Figure 1 illustrates how the pre/size/level
document encoding is affected by a subtree insert (a delete raises similar issues):
all pre values of the nodes following the insert point change, as well as the size
of all ancestor nodes. The former issue imposes an update cost of O(N), with

1192 P. Boncz et al.

N the document size, because on average half of the document are following

nodes. The latter issue is not so much a problem in terms of update volume
(the number of ancestors is bound by the tree’s height, remaining small even
for large XML instances) but rather one of locking: the document root is an
ancestor of all nodes and thus must be locked by every update. This problem,
however, can be circumvented by maintaining for each transaction a list of nodes
of which the size is changed, together with the delta rather than the absolute
changed value. This allows transactions to release locks on size immediately, and
commit anyway later (even if the size of a node has been changed meanwhile
by another committed transaction, we can just apply the delta to set it to a
consistent state).

With the problem of locking contention on size removed this way, in the sequel
we concentrate on the problem of the shifts in pre here.

Page-Wise Remappable Pre-Numbers. Figure 2 shows the changes intro-

0
1
2
3
4
5
6
7
8
9

pre nodesize level

9
3
2
0
0
4
0
2
0
0

0
1
2
3
3
1
2
2
3
3

a
b
c
d
e
f
g
h
i
j

first try to handle the insert inside a page

if full, append pages (NULL padded)

pre/size/level is a memory−mapped view with pages in logical order

pre is a virtual column (void), therefore it adapts automatically

vs. Updatable RepresentationRead−Only

pos

6
7
8
9

size level

0
0

0
1
2
3
4
5

3
2
0
0

0
1
2
3
3

a
b
c
d
e

10
11
12
13
14
15

1
0

2
null
null

null

1 f
2 g

null

null
null4

3

2
0
0

2
3
3

h
i
j

pagesize = 8
unused space:

level = NULL
size set to unite

 consecutive space

pos

6
7

size level

3

0
1
2
3
4
5

3
2
0
0

0
1
2
3
3
1
2

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2 3

1
0

2
null
null
null
null4

3

0
0
5

4
4
null

null

1
0

2
null
null

null
null
null4

3

2
0
0

2
3
3

pre size level

3

3
2
0
0

0
1
2
3
3

a
b
c
d
e

1 f
2 g

1
0

2
null
null

null
null
null4

3

1
0

2
null
null

null
null
null4

3

0
0
5

4
4

l
m

2
0
0

2
3
3

h
i
j

null

2 3 k
6
7

0
1
2
3
4
5

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

10

5

18 18

1313

insert−first(<k><l/><m/></k>,/a/f/g)

Fig. 2. Updates With Logical Pages

duced in MonetDB/XQuery to handle
structural updates in the pre/size/level
table. The key observations are:

– the table is called pos/size/level now.
– it is divided into logical pages.
– each logical page may contain unused

tuples.
– new logical pages are appended only

(i.e., at the end).
– the pre/size/level table is a view

on pos/size/level with all pages in
logical order. In MonetDB, this is
implemented by mapping the under-
lying table into a new virtual memory
region.

Figure 2 shows the example document being stored in two logical pages. The
logical size is measured in a number of tuples (here: 8) instead of bytes. The
document shredder already leaves a certain (configurable) percentage of tuples
unused in each logical page. Initially, the unused tuples are located at the end of
each page. Their level column is set to NULL, while the size column holds the
number of directly following consecutive unused tuples. This allows the staircase-
join to skip over unused tuples quickly. For the same reason, the size of existing
nodes now also embraces the unused tuples within the respective subtrees.

The advantage of unused tuples is that structural deletes just leave the tuples
of the deleted nodes in place (they become unused tuples) without causing any
shifts in pre numbers. And since unused tuples are counted in the size of their
ancestors, deletes do not require updates of the size of their ancestors. Also,
inserts of subtrees whose sizes do not exceed the number of unused tuples on the
logical page, do not cause shifts on other logical pages. Larger inserts, only use
page-wise table appends. This is the main reason to replace pre by pos. The pos

MonetDB/XQuery—Consistent and Efficient Updates on the Pre/Post Plane 1193

column is a densely increasing (0,1,2,...) integer column, which in MonetDB can
be efficiently stored in a virtual (non-materialized) void column.

We introduced new functionality in MonetDB to map the underlying disk
pages of a table in a different non-sequential order into virtual memory. Thus,
by mapping in the virtual memory pages of the pos/size/level table in logical
page order, overflow pages that were appended to it, become visible “halfway”
in the pre/size/level view.

In the example of Figure 2, three new nodes k, l and m are inserted as children
of context node g. This insert of three nodes does not fit the free space (the first
page that holds g only has one unused tuple at pos=7). Therefore, a new logical
page must be inserted in-between. Thus, we insert eight new tuples, of which only
the first two represent real nodes (l and m), the latter six are unused. Thanks to
the virtual column feature of MonetDB, in the resulting pre/size/level view, all
pre numbers after the insert point automatically shift, at no update cost at all!

3 Conclusion

In our demonstration, we will show the performance and scalability of both
read-only and update queries on potentially huge XML databases, provided by
MonetDB/XQuery. The demonstration will graphically show how the key tech-
niques described here influence the behavior of the system.

References

1. P. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teubner. Pathfinder: Rela-
tional XQuery Over Multi-Gigabyte XML Inputs In Interactive Time. Technical
Report INS-E0503, CWI, 2005.

2. P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
Pathfinder: XQuery—The Relational Way. In Proc. VLDB Conf., 2005. (Demo).

3. P. Boncz and M.L. Kersten. MIL Primitives For Querying a Fragmented World.
The VLDB Journal, 8(2), 1999.

4. P. Boncz, S. Manegold, and J. Rittinger. Updating the Pre/Post Plane in Mon-
etDB/XQuery. In Proc. XIME-P, 2005.

5. T. Grust. Accelerating XPath Location Steps. In Proc. SIGMOD Conf., 2002.
6. T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. VLDB Conf.,

2004.
7. T. Grust, M. v. Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS

to Watch its (Axis) Steps. In Proc. VLDB Conf., 2003.
8. T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath evaluation in Any

RDBMS. ACM Trans. on Database Systems, 29(1), 2004.
9. P.E. O’Neil, E.J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATH:

Insert-Friendly XML Node Labels. In Proc. SIGMOD Conf., 2004.
10. S. Peyton-Jones and P. Wadler. Imperative Functional Programming. In Proc.

POPL Conf., 1993.
11. G. M. Sur, J. Hammer, and J. Simeon. UpdateX - An XQuery-Based Language

for Processing Updates in XML. In Proc. PLAN-X, 2004.
12. J. Xu Yu, D. Luo, X. Meng, and H. Lu. Dynamically Updating XML Data: Num-

bering Scheme Revisited. World Wide Web Consortium, 8(1), 2005.

	Introduction
	XML Updates
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

