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ABSTRACT
Relational XQuery systems try to re-use mature relational data man-
agement infrastructures to create fast and scalable XML database
technology. This paper describes the main features, key contribu-
tions, and lessons learned while implementing such a system. Its
architecture consists of (i) a range-based encoding of XML docu-
ments into relational tables, (ii) a compilation technique that trans-
lates XQuery into a basic relational algebra, (iii) a restricted (or-
der) property-aware peephole relational query optimization strat-
egy, and (iv) a mapping from XML update statements into rela-
tional updates. Thus, this system implements all essential XML
database functionalities (rather than a single feature) such that we
can learn from the full consequences of our architectural decisions.
While implementing this system, we had to extend the state-of-the-
art with a number of new technical contributions, such as loop-
lifted staircase join and efficient relational query evaluation strate-
gies for XQuery theta-joins with existential semantics. These con-
tributions as well as the architectural lessons learned are also deemed
valuable for other relational back-end engines. The performance
and scalability of the resulting system is evaluated on the XMark
benchmark up to data sizes of 11 GB. The performance section also
provides an extensive comparison of all major XMark results pub-
lished previously, which confirm that the goal of purely relational
XQuery processing, namely speed and scalability, was met.

1. INTRODUCTION
We describe MonetDB/XQuery, an XML database system that

fully supports the W3C XQuery language. It consists of the Path-
finder XQuery compiler [17] on top of the MonetDB RDBMS [4],
and is available now, both for real use and as a research and exper-
imentation platform under a nonrestrictive open-source license1.
To complete its functionality as an XML database, we also out-
line a mechanism for supporting efficient updates. This system is a
purely relational engine in the sense that it does not strictly require
any XML storage nor query execution extensions. In this sense,
Pathfinder could be deployed on top of any RDBMS.

1See http://monetdb-xquery.org/
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We evaluate and compare performance on the XMark benchmark
and some synthetic tests to benchmark document shredding and
serialization performance, and also include a survey of previously
published XMark results.

Contributions. The main contribution of our system is to show
that the relational XQuery paradigm can indeed leverage the power
of mature relational database technology to deliver speed and scal-
ability in the XML domain. Specifically, our system stores XML
and manipulates XQuery sequence data purely using relational al-
gebra on relational tables, without data type extensions or changes
to the RDBMS storage manager. We do extend the relational query
evaluator with a staircase join [19] operator, but this is not strictly
needed; it only accelerates XPath location steps.

In building the system, we learned valuable lessons regarding
RDBMS functionality that can help to improve the performance of
relational XQuery. One prominent opportunity is the use of po-
sitional algorithms to support lookup into SQL autoincrement key
columns. We also present here the two most significant technical
innovations to the relational XQuery paradigm (i.e., those that im-
prove performance by more than an order of magnitude).

First, we discovered that staircase join, as a technique originally
developed for XPath evaluation, falls short of adequately evaluat-
ing XQuery, as it cannot efficiently deal with XPath expressions
embedded in nested for-loops. The new loop-lifted staircase join
presented here addresses this problem as a fast execution algorithm
suitable for an XQuery processor providing the full axis feature.

Second, we formulate relational query optimization strategies
that are specifically suited to efficiently evaluate the query plans
originating from XQuery compilation. We define a small number
of column properties that are used to drive a peephole optimization
stage just before relational code generation. It allows to recog-
nize join patterns in a way that is immune to syntactic variance in
XQuery queries, and also allows to avoid expensive sorting opera-
tions. We also formulate relational XQuery join evaluation strate-
gies that exploit the existential semantics of general comparisons
in XQuery (in contrast to plain relational joins).

Outline. Section 2 introduces the basic concepts of relational XML
storage and the XQuery compilation scheme we use. Sections 3 and
4 discuss our contributions in the area of loop-lifted staircase join
and join optimization, respectively. In Section 5, we fill in a number
of details of our implementation regarding the storage scheme used,
and the way query optimization and updates are handled. Section 6
focuses on XMark and provides performance results up to XML
documents of 11 GB. We also summarize all previously published
XMark results to put our system in its proper perspective. We wrap
up by discussing related work in Section 7 and outlining our con-
clusions in Section 8.
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Figure 1: Pruning: we can prune con-
text nodes c, f as they are inside the an-
cestor regions of e, i and thus only
generate duplicate results that would
need to be eliminated later.
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Figure 2: Partitioning: the overlapping fol-
lowing regions covered by c,g, i are parti-
tioned along the pre axis at p1, p2, p3. Thus, re-
sult generation for c is cut-off at p2, avoiding
any remaining duplicate generation.
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Figure 3: Skipping: after hitting f ,
the descendant staircase join infers
that no results can occur until h and
thus skips a potentially large part of the
pre|size|level table.

2. RELATIONAL XML
In [19], Grust et al. described a relational encoding of XML frag-

ments that is a true isomorphism with respect to the tree structure.
The encoding is based on preorder and postorder traversal ranks
to encode the XML tree structure.

<a>
<b>

<c>
<d/>
<e/>

</c>
</b>
<f>

<g/>
<h>
<i/>
<j/>

</h>
</f>

</a>

pre size level post
a 0 9 0 9
b 1 3 1 3
c 2 2 2 2
d 3 0 3 0
e 4 0 3 1
f 5 4 1 8
g 6 0 2 4
h 7 2 2 7
i 8 0 3 5
j 9 0 3 6

Figure 4: XML encoding.

Here, we use an equivalent en-
coding variant in which the loca-
tion of a node v in the document
tree is represented as the triple
〈pre(v),size(v), level(v)〉, recor-
ding v’s preorder rank, the num-
ber of nodes in the subtree below
v, and the distance from the tree’s
root, respectively. (From this, the
postorder rank may be recovered
via post(v) = pre(v) + size(v)−
level(v).) The preorder rank
pre(v) simultaneously serves as a
node identifier. Figure 4 depicts an XML fragment and the encod-
ing we assign to this fragment. The system maintains further tables
to capture more node properties (e.g., tag name, node kind, text
content), as described in Section 5.

Our tree representation exhibits a number of useful characteris-
tics, among which element (or tree) construction through pasting
of encodings and highly efficient XPath processing with staircase
join are especially relevant in the XQuery context.

Staircase Join. While the pre|size|level table storage already al-
lows accelerated (B-tree powered) relational XPath evaluation, ad-
ditional performance can be won if the relational join operator is
aware of the XPath semantics and the tree properties encoded in
the pre|size|level table. Staircase join scans the pre|size|level ta-
ble sequentially at most once, never delivers duplicate nodes, and
produces result nodes in document order, so no post-processing is
needed to comply with XPath semantics. Figures 1, 2, and 3 show
the three techniques that distinguish it from similar approaches:

(i) Pruning: given a context node, the main XPath axes descen-
dant, ancestor, following and preceding correspond to the
four quadrants in the pre/post plane. Any context node ci that is
inside the quadrant covered by another context node c j will gener-
ate a subset of c j’s result nodes. In order to avoid these duplicates,
we can simply omit (prune) those covered context nodes.

(ii) Partitioning: when covered regions overlap partially, duplicate
nodes may still be generated. This can be avoided by partitioning
the regions along the pre axis. This eliminates all duplicate result
generation.

(iii) Skipping: sometimes we may infer from the properties of the
pre|size|level encoding and the particular XPath step at hand, that
certain regions cannot contain results. The effectiveness of skip-
ping in the four main XPath axes is high. For each node in the con-
text, we either hit a node to be copied into the result, or encounter
a node of type v which leads to a skip. To produce the result, we
thus never touch more than |result|+ |context| nodes [18].

The XPath child axis provides similar skipping opportunities.
We know that if a context node c has children (i.e., size(c) > 0),
node v1 = c + 1 is the first child, and the other children can be
found iteratively by skipping over all their descendants: vi+1 = vi +
size(vi)+1. We will further exploit this observation in Section 3.

2.1 From XQuery To Relational Algebra
Apart from XML trees, item sequences constitute the principal

data structure manipulated by XQuery. It will turn out that once
the relational representation of item sequences is fixed, much of
the relational XQuery processing strategy may be rather straight-
forwardly derived.

Representing Sequences as Tables. The evaluation of any XQuery
expression yields an ordered sequence of n > 0 items xi, denoted
(x1,x2, . . .,xn). In the XQuery data model, a single item x and the
singleton sequence (x) are identical.

pos item
1 x1
2 x2
...

...
n xn

We will use a relational sequence encoding that ex-
plicitly reflects sequence order by means of a pos col-
umn as depicted here. Item x is represented as the
singleton relation of type pos|item containing the tu-
ple 〈1,x〉, the empty relation of type pos|item encodes
the empty sequence (). An XQuery item is either of an atomic
type or of type node. To represent the former, we choose an imple-
mentation type t supported by the relational back-end such that the
domain of t either (i) can represent the corresponding XQuery type
directly (e.g., integer, string), or (ii) allows encoding the domain of
the XQuery type (e.g., a string of the form "--MM-DD" can encode
values of the XQuery type gMonthDay).

We represent nodes by their preorder rank pre(v) which reflects
document order and node identity, i.e., for two nodes v1, v2, we
have that v1 <<v2 ⇔ pre(v1) < pre(v2) and v1 isv2 ⇔ pre(v1) =
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1 3 "odd"
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Figure 5: Relational XQuery evaluation: (a) loop relation in scope sv, (b) evaluation of conditional, (c) final result in outermost scope.

pre(v2). Any node surrogate that satisfies these requirements may
serve as a node representation equally well, and the database com-
munity has devised a variety of alternative ways to implement them
[25, 30].

In XQuery, sequences host items of arbitrary type. The sequence
(2,"x",<a/>) leads to the depicted relational encoding (where γa
denotes the surrogate of the XML node constructed by the node
constructor <a/>) with a polymorphic item column. For simplicity,

pos item
1 2
2 "x"
3 γa

we stick to this representation here, see [5] for more de-
tails on how a back-end that implements monomorphic
columns only may support this encoding nevertheless.

XQuery to Relational Algebra Compilation. Since the XQuery
processor is hosted by a relational back-end, relational algebra is
the target language of XQuery compilation. A number of research
teams have investigated such relational XQuery compilers [12, 13],
but here we will adopt the approach developed in [17].

Relational algebra is a combinator style language and thus lacks
variables, a core XQuery concept. We will thus discuss compila-
tion of variables bound in for-loops first. Consider the following
XQuery for-loop:

for $v in (x1,x2, . . .,xn) return e .

This expression successively binds each xi to variable $v and eval-
uates the loop body e in each iteration. We have already derived
a relational representation for the sequence (x1,x2, . . . ,xn) above.

iter pos item
1 1 x1
2 1 x2
...

...
...

n 1 xn

The relation shown here suitably encodes all bindings
of $v in a single relation. This iter|pos|item encoding
will be pervasive in the following: a tuple 〈i, p,x〉 in-
dicates that in the i-th iteration, the item at position p
in the represented sequence has value x. Note that the

database system can easily derive the representation of a variable
from the representation of the sequence it gets bound to: (i) attach
a new iter column, densely numbered from 1 . . .n in the order given
by the pos column, (ii) then set the pos column to constant 1.

The row-numbering in step (i) is characteristic for this approach
and we assume the availability of a respective relational operator
ρA:〈C1,...,Cn〉/Cg

(R) that, for each tuple group defined by column Cg,
extends relation R with a densely numbered column A respecting
the ordering specified by the columns Ci.2

iter
1
2
...
n

Note how the iter column encodes the iteration performed by
the for-loop. The principal idea of this compilation approach
is that each query subexpression is compiled in dependence
of all enclosing for-loops, the latter being represented by
a unary iter relation (this unary relation is referred to as the

loop relation in the sequel). In the query above, loop body e is
in the scope of the n-fold iteration encoded by the relation loop

depicted here on the left.

2As observed in [17], ρ exactly embodies the functionality of
SQL:1999’s OLAP extension DENSE RANK() OVER (PARTITION
BY Cg ORDER BY C1, . . . ,Cn).

When a constant subexpression e′ of loop body e is compiled into
its relational algebra equivalent, q′ say, q′ is lifted according to the

iter pos item
1 1 42
2 1 42
...

...
...

n 1 42

current loop to give loop× q′. To exemplify, the
XQuery constant 42 represented by the pos|item tu-
ple 〈1,42〉, is lifted to give the relation on the right
(to be read as: in each of the n iterations, the con-
stant assumes the value 42).

It is both a consequence of the XQuery semantics and this ap-
proach, that in a nested iteration like3

for $v1 in (x1,x2, . . .,xn) return

sv1

{
for $v2 in (y1,y2, . . .,ym) return

sv1·v2

{
e

,

the representation of the sequence (y1,y2, . . .,ym) in scope sv1 as
well as the representation of variable $v2 in the innermost scope
sv1·v2 contain n∗m tuples due to the necessary loop-lifting (each yi
occurs n times). The avoidance of the computation of such “Carte-
sian products” will be discussed in Section 4.

In order to provide an intuition of the typical algebraic plans
emitted by the XQuery compiler, let us briefly review the compila-
tion and execution of the XQuery expression

for $v in (3,4,5,6) return

sv
{
if ($v mod 2 eq 0

︸ ︷︷ ︸

e1

) then "even"
︸ ︷︷ ︸

e2

else "odd"
︸ ︷︷ ︸

e3

.

The current loop relation in scope sv is shown in Figure 5(a). For
brevity, we already show the intermediate result obtained through
the evaluation of the predicate subexpression e1 on the very left
of Figure 5(b). In the third iteration, for example, the predicate
evaluates to the single item false. Depending on the outcome of
the predicate, we need to either evaluate the then branch e2 or the
else branch e3. Two independent selections compute the respec-
tive set of iter values (σA(R) selects all tuples with value true in
column A, σ¬A(R) selects the complement). Figure 5(b) shows the
resulting loop relations which are used for loop-lifting in the then
and else branches, respectively. The evaluation of the conditional
is completed by forming the disjoint union of the intermediate re-
sults in both branches. Note that this result is still represented with
respect to scope sv (each iteration contributes one item to the re-
sult). A back-mapping step (a single equi-join of the intermediate
result with a so-called scope map relation [17]) then yields the final
result sequence of length 4 (Figure 5(c)).

To wrap up, note that this type of XQuery compiler targets a
rather standard logical relational algebra—in addition to ρ men-
tioned above, we require σ, π, 1, ×, \,

.
∪ (disjoint union) as well

as a means to evaluate arithmetic and comparison operators.

3We denote a variable scope by sv1···vn if variables $v1, . . . ,$vn are
visible in that scope.



3. FROM XPATH TO XQUERY:
LOOP-LIFTING STAIRCASE JOIN

It is the gist of the original staircase join algorithm that it evalu-
ates an XPath location step for an entire context sequence in a sin-
gle sequential scan over a pre|size|level encoded XML document.

In XQuery, however, expressions occur in nested iteration scopes.
The same is true for XPath sub-expressions. Consider the query

for $v in (x1,x2, . . .,xn) return
e($v)/child::t . (Q1)

The evaluation of the loop body of queries such as (Q1) requires n
invocations of staircase join and thus as many sequential scans over
the document encoding table. This surely seems wasteful. To avoid
the overhead of repetitive scans, we may loop-lift (see Section 2.1)
the staircase join algorithm, so that it can evaluate the axis step for
all context node sequences of all iterations with one sequential scan
over the document encoding table.

iter pos item
1 1 γ1,1
1 2 γ1,2...

...
...

1 s1 γ1,s1...
...

...
n 1 γn,1...

...
...

n sn γn,sn

The loop-lifted staircase join performs a single se-
quential scan over both its inputs: the relation with
all context node sequences and the document en-
coding table. To achieve this, it expects the for-
mer to be sorted on pre|iter, so the context nodes
appear in document order and for each context node
all related iterations appear clustered and in order.
At runtime, the relational encoding of the n context
node sequences (resulting from the n evaluations of
e($v) in (Q1)) will take the form depicted here: in each of the n
iterations, encoded in column iter, e($v) evaluates to a sequence of
node preorder ranks (γi,1, . . .,γi,si) of length si (1 6 i 6 n). We
might have si = 0 for some i: in this case, no tuple with iter value i
will occur. This is the input of the loop-lifted staircase join.

Note that, at this point, the system does not need to maintain the
actual sequence order of the γi, j: the semantics of an XPath loca-
tion step is unaffected by the context node sequence order and stair-
case join will process the context nodes in document order anyway.
Therefore, our algorithm ignores the pos column.

The general idea of loop-lifted staircase join is best explained
using the three main techniques that exploit XPath semantics and
the tree properties of the relational encoding:

(i) Pruning: now that context sequences of multiple iterations are
evaluated together, the standard pruning method would eliminate
too many context nodes. To be precise, the context set now con-
sists of pre|iter tuples, and each pre value may appear for multiple
iter values. The same pruning rules from plain staircase join are
used on pre|iter context values, but only delete context values from
the same iter.

(ii) Partitioning: while in plain staircase join only a single context
node could be active, in the loop-lifted version each context node
may be active for a set of iterations, and stays active for that itera-
tion until we hit another context node that belongs to that iteration.
Implementation-wise, this means that the algorithm now manages
a stack of active context values pre|iter, with at most one value on
the stack for each different iter. In this sense, loop-lifted staircase
join becomes more similar to alternative stack-based approaches
such as structural join [1] and holistic twig join [7], though these
algorithms lack pruning and skipping, and support the descendant
axis only (and child relatively inefficiently, as a post-filter).

(iii) Skipping: the skipping logic in general remains the same. In
particular, the algorithm will touch at most |result|+|context| nodes

from the document relation to produce its result. Furthermore, we
retain the sequential access pattern on the pre|size|level table for
highly efficient cache usage.

Note that loop-lifted staircase join is capable of evaluating all
XPath axes (not only descendant or child). As we lack space
to provide detailed algorithms for all XPath steps, we focus in our
detailed explanation on child.

3.1 Detailed Algorithm: The child Axis
The way the algorithm of Figure 6 processes both input relations

is illustrated in Figure 7. Suppose we evaluate a child step in a
query where there are two iterations. In the first, the context node
sequence is (c1) and in the second it is (c1,c2). Because of par-
titioning, the algorithm skips any nodes preceding c1 1©. Context
node c1 is pushed on the stack with some associated information:
the end of the associated partition (eos), the next child to be pro-
cessed (nxtChld), and in which iterations it is active (fstIter, lstIter).
Then, inner loop child scans the document encoding table to
produce all children up to the preorder rank of c2 2©. Note that all
children are produced twice, because c1 is active in both iterations.

c2 is pushed on the stack 3© and its children are produced in the
same way 4©. When the end of the partition associated with c2 is
encountered, it is popped from the stack 5© and production of the
remaining children of c1 resumes 6© until the end of its partition is
encountered as well 7©.

Note that for each context node c, procedure inner loop child

directly accesses a child in doc using its preorder rank for positional
(or index) lookup. By exploiting the knowledge of sub-tree size, it
effectively skips any document nodes that do not appear in the re-
sult 2©. Pruning does not apply to the child axis and, hence, is not
mentioned in our example. Other axes benefit from the technique
nevertheless. This child algorithm guarantees document order,
avoids the generation of duplicate result nodes within iterations,
and ensures that result nodes that belong to multiple iterations oc-
cur in iteration order. The imposed access pattern is forward-only
and hence I/O and CPU cache-friendly.

3.2 Predicate Pushdown
The basic version of our loop-lifted staircase join ignores name

tests and/or arbitrary predicates following the XPath step. Such
selections can be applied as post-filters on the result of the loop-
lifted staircase join. In practice, however, predicates are often more
selective than the pure location steps. Due to the commutativity
of both operations, it is possible to first evaluate the predicates on
the whole document, and then execute the location step only on
the reduced document, avoiding the creation of possibly large in-
termediate results. Obviously, the decision whether to push-down
predicates underneath a location step should be taken by the query
compiler/optimizer based on estimations of the respective selectiv-
ities. On a reduced document (i.e., a reduced pre|size|level table),
however, we cannot perform skipping with positional lookup.

We developed a version of our loop-lifted staircase join that al-
lows predicate pushdown. It expects a list of candidate nodes (in
document order for the forward axes, and in reverse order for the
reverse axes); which is typically delivered by an index structure.
Where the normal loop-lifted staircase join generates results di-
rectly, the predicate pushdown version checks whether a result node
is in the candidate list, and only then generates it. As results are
generated in (reverse) document order for the (reverse) XPath axes,
this relies on an efficient two-way merge operator between emitted
results and candidate list. Also, the skipping logic for several axes
such as child and descendant is extended to skip context nodes
that given the next candidate can never yield a result.



ll scj child (doc : TABLE(pre,size), ctx : TABLE(iter,pre))
BEGIN

ASSERT (doc.pre IS DENSE AND ASCENDING); // for positional lookup
ASSERT (ctx IS SORTED ON (pre, iter)); // document order
result ← NEW TABLE(iter,pre); // the result
active ← NEW STACK(eos,nxtChld, fstIter, lstIter); // stack of active context nodes
nxtCtx ← 0; lstCtx ← SIZE(ctx); // first & last context node
WHILE (nxtCtx ≤ lstCtx ) DO // iterate over all context nodes

IF (active IS EMPTY) THEN // stack is empty
1© nxtCtx ← push ctx(nxtCtx); // push current context on stack

ELIF (TOP(active).eos ≥ ctx[nxtCtx].pre) THEN// next context is descendant of current context
2© inner loop child(ctx[nxtCtx].pre); // process children of current context until next context
3© nxtCtx ← push ctx(nxtCtx); // push next context on stack

ELSE // next context is not descendant of current context
4© inner loop child(TOP(active).eos); // process all children of current context
5© POP(active); // pop finished context from stack

WHILE (active IS NOT EMPTY) DO // fini sh all remaining active scopes
6© inner loop child(TOP(active).eos); // process all remaining children of current context
7© POP(active); // pop finished context from stack

RETURN result; // return result
END

push ctx (nxtCtx)
BEGIN

curPre ← ctx[nxtCtx].pre; // preorder rank of current context
eos ← curPre+doc[curPre].size; // end of current scope
nxtChld ← curPre+1; // first child of current context
fstIter ← nxtCtx; // first iter of current context
WHILE (ctx[nxtCtx].pre = curPre) DO // iterate of all iters of current context

nxtCtx ← nxtCtx+1; // next iter of current context
lstIter ← nxtCtx−1; // last iter of current context
PUSH 〈eos,nxtChld, fstIter, lstIter〉 ON active; // push current context on stack
RETURN nxtCtx; // return next context

END

inner loop child (eos)
BEGIN

nxtChld ← TOP(active).nxtChld; // next child of current context
fstIter ← TOP(active).fstIter; // first iter of current context
lstIter ← TOP(active).lstIter; // last iter of current context
WHILE (nxtChld ≤ eos) DO // iterate of all children in current scope

FOR iter FROM fstIter TO lstIter DO // iterate over all iters of current context
APPEND 〈ctx[iter].iter,nxtChld〉 TO result; // append (iter,pre) to result

IF (nxtChld ≤ TOP(active).eos) DO // current context not yet finished
TOP(active).nxtChld ← nxtChld; // recall where to proceed

RETURN; // return
END

Figure 6: Loop-lifted staircase join: child axis.
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Figure 7: Example child traversal (left), illustrated with calls in the algorithm of Figure 6 (right).



4. RELATIONAL QUERY OPTIMIZATION
Over the entire history of database research, query optimization

has been one of the most active topics, and relational XQuery pro-
cessing just adds new challenges to it. The purely relational compi-
lation approach used here, creates query plans of considerable size,
due to the representation of sequences, iterations, and maps via ta-
bles. Therefore, the relational optimizer should exploit the particu-
lar properties exhibited by the generated plans. As we currently
do not expect relational back-ends to properly do this, our cur-
rent XQuery compiler performs algebraic rewrites itself, and gen-
erates physical relational algebra plans. This approach in a sense
defeats the aim of re-using mature relational query optimization
techniques. On the other hand, we think the purely relational query
optimization techniques outlined here are quite general, and should
be a fine addition to the current generation of relational query opti-
mizers that will benefit other relational applications as well.

4.1 Peephole Optimization
In case of the XMark benchmark, the generated query plans con-

tain 86 relational algebra operators on average, of which 9 are joins.
These joins are the result of loop-lifting input sequences over for
loops and map old iteration numbers into new ones. The only
“real” value-based joins actually appear in the expected places in
join queries Q8–Q12. The other joins are lookups into ordered and
even dense integer iter and pos key columns in the temporary tables
that we use to represent item sequences.

The latest version of the SQL standard introduces a number of
features for sequence-generating or identity columns. Such columns
containing densely increasing sequences 〈1,2,3, . . .〉 are used as
key in almost all our temporary result tables, which in addition are
materialized always, as they tend to be re-used multiple times in
the query plan. Our RDBMS back-end already provides efficient
support for these sequence columns in read-only materialized in-
termediate results, in that it can use positional join and selection
algorithms when equality clauses are used on such key columns.

A key observation for these joins on dense sequence-number
keys is that they have a fixed join hit rate of 1, and the optimal
physical algorithm to choose is obvious (positional join). Thus, the
optimizer should not waste effort considering various join ordering
permutations for them. In our system, we therefore restrict the abil-
ity of the RDBMS optimizer to change the query plan order, and in-
stead perform property-driven peephole optimization of linear com-
plexity on the intermediate relational plans. The plan emitted after
this optimization is in order-aware physical relational algebra, and
currently enforces that all intermediate iter|pos|item temporary ta-
bles representing item sequences are ordered on [iter,pos]. This
order-awareness avoids the need for expensive re-sorting.

The peep-hole optimizer maintains the following column prop-
erties on intermediate table results:

dense(c) column c is a sequence 1,2,3,..
key(cD) column c is unique from domain D
const(cv) column c has constant value v
ord([cD

i ]) tuples are lexicographically ordered on columns [ci]
grpord([cD

i ],gD) all sub-sequences of the table formed by
tuples with the same value in g, are ord([ci])

indep({cD
i }) table is independent of columns [ci]

The dense and key properties are used to recognize the opportu-
nity for positional join and selection algorithms, and to exclude
such joins from join-order selection. The const property is used to
omit columns from the generated intermediate tables if their value
is constant. The ord and grpord are used to prune sort operators
from the physical plan (if we can conclude that the required or-
der is already present) and to choose more efficient merge algo-

rithms when possible. The grpord property is a generalization of
the secondary sorting property [39], with the difference that it does
not require the groups within which the secondary ordering exists,
to appear clustered in the input (i.e. as consecutive tuples). This
property is especially useful for efficiently executing the SQL:1999
DENSE RANK() OVER (PARTITION BY g ORDER BY c1..cn ) operator in
a streaming fashion, by using a hash-based numbering algorithm
that increments a counter stored in a hash table for each active
group value from g, rather than the default re-numbering algorithm
that requires a full sort on [g,c1, ..,cn].

Finally, the indep property is used to detect independence be-
tween sub-expressions e1 and e2. Typically, the XQuery compiler
emits plans where e1 is loop-lifted over e2 using a join over a scope
map relation. If independence is detected, the loop-lifting is sub-
stituted by a Cartesian product between e1 and e2. If the XQuery
contains some subsequent comparison expression between e1 and
e2; this resulted in the presence of a selection operator in the re-
lational plan. The combination of Cartesian product and selection
can then easily be rewritten into an algebraic join. The beauty of
this approach is that it is guaranteed to detect XQuery joins in any
syntactic form. More details on this join recognition method and
the property propagation rules used can be found in [16].

4.2 Exploiting Existential Join Semantics
In XQuery, a general comparison e1 = e2 (<, <=, . . . ) uses exis-

tential semantics: if any item in sequence e1 is equal to any item in
sequence e2 the comparison yields true. The W3C XQuery Work-
ing Draft specifies that an implementation may process a general
comparison using shortcut evaluation: as soon as a matching pair
of items is found, the processor may return true.

Since general comparisons are pervasive in XQuery, the XQuery
compiler generates the corresponding relational plans with care, es-
pecially if such comparisons are used in join predicates. Consider

for $u in e1, $v in e2
where $u/p1/@a1 = $v/p2/@a2
return $u ,

(Q2)

Figure 8(a) exemplifies the evaluation of the corresponding rela-
tional join plan (in this example, the atomization of the path expres-
sion $u/p1/@a1 shall evaluate to the sequences (20) and (30,20)
for the bindings of $u to the two items of e1, respectively). Mon-
etDB/XQuery executes a theta-join using the corresponding value
comparison (here: eq) in the predicate. In general, this leads to

1item1 eq item2

,,,
iter1 item1

1 20
2 30
2 20

��
�iter2 item2

1 20
1 20
2 10
2 30

πiter1,iter2 ≡

iter1 iter2
1 1
1 1
2 1
2 1
2 2

δ · · ·

(a)

1item1 lt item2

minitem1/iter1
iter1 item1

1 5
2 20
2 15

maxitem2/iter2

iter2 item2
1 1
1 10
2 25
2 30

πiter1,iter2 ≡

iter1 iter2
1 1
1 2
2 2

(b)

Figure 8: Implementing the existential semantics of XQuery’s
general comparison operators: (a) duplicate elimination after
join, (b) join pushed beyond aggregates.



duplicate 〈iter1, iter2〉 pairs in the join result. A subsequent dupli-
cate elimination (operator δ) reduces this to unique pairs and thus
implements the required existential semantics.

As mentioned, the physical algebra emitted by MonetDB/XQuery
is order-aware and ensures that intermediate result relations are
sorted on [iter,pos] (and thus iter). The hash-join used by Mon-
etDB/XQuery for eq theta-predicates respects the [iter1] order of
its left input and due to the the [iter2] order of its right input will
construct the hash-table in such a way that multiple matches on the
equal inner iters occur consecutively. Thus, the δ can use a merge
algorithm to eliminate duplicates, making this step highly efficient.

One should note that the use of efficient ordered duplicate elimi-
nation we mention here only concerns elimination of duplicate iter
combinations generated by the join. MonetDB/XQuery always first
materializes both join input sequences. As the join needs [iter,pos]
order for its inputs, such materialization is inevitable for results of
XPath expressions, because those are delivered by loop-lifted stair-
case join in document order (i.e., in item column order), and thus
need to be re-sorted first.

If a theta-join predicate employs one of XQuery’s general com-
parison operators (<, <=, >=, >) the generation of duplicates may
be avoided a priori. Consider Figure 8(b) in which < occurs in
the predicate. Since, in each iteration, it suffices to find any pair
of items in the lt-relationship, we might as well only compare the
smallest and largest items of the sequences. To exploit this observa-
tion, the system applies min and max aggregates in each iter-group
of the left and right inputs, respectively. Note that the grouping is
for free due to the [iter] order of both inputs. After aggregation, the
iter values are unique per join input. The theta-join thus delivers
unique 〈iter1, iter2〉 pairs directly.

The choice of algorithm for non-equi theta-join can either fall on
an index-lookup based algorithm (that creates a temporary index
on-the-fly) or nested-loop join. Only if the join hit-ratio is mod-
erate, the former approach is better, otherwise result construction
cost dominates and the performance of both is about the same. In
that case, however, nested-loop join is to be preferred, as it deliv-
ers its result ordered on [iter1, iter2], as required. In contrast, the
output of the index-lookup join is only ordered on [iter1] and must
be refine-sorted on iter2 within equal chunks of iter1 (the MonetDB
RDBMS already provides such an incremental, pipelinable refine-
sorting algorithm). Given that the join inputs are materialized any-
way, MonetDB/XQuery generates a “choose-plan” that at run-time
decides between nested-loop and index-lookup join, by estimating
the actual join hit-rate by computing a small join sample first.

5. SYSTEM IMPLEMENTATION

− Core Optimization
− Type Checking
− Core Simplification
− Core Generation

MIL

− Normalization
− XQuery Parsing

− MIL Generation
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MonetDB/XQuery consists of
the Pathfinder compiler [17] on
top of the an extensible open-
source MonetDB RDBMS [4].
MonetDB has been extended
with an XQuery runtime mod-
ule that adds the loop-lifted
staircase join (Section 3) as a
physical operator.

5.1 Document Representation
For any XQuery Core construct, the compiler emits a physical

relational algebra sub-plan. The translation follows the ideas in
[17] followed by the peephole optimization described in Section 4.

The backbone of any XQuery processor is the storage of XML
trees and fragments. The pre|size|level document table contains
additional columns storing node properties. Relevant properties

(attributes + elements)
qualified names processing

instructions
text comments

attributes attribute values

2

level

pre|size table
X.xml
Y.xml
tmp

23
7

For each query, there is a

name height

(for transient nodes)

doc

−each query creates a transient container

index on
element
names

pre

container

ref contkindsize frag
doc container = instance of schema

XML Storage Schema

−each doc is a persistent container
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   refer to persistent containers)

’kind’ determines to which table ’ref’ refers
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Figure 9: Partitioned XML storage in document containers.

depend on the node’s kind (e.g., element, text node,. . . ). We use
a set of property containers for the different node kinds. Figure 9
lists the property containers and their schemata (name space and lo-
cal name for XML elements, textual content for text and comment
nodes, and a target/value pair for processing instructions).

With possibly multiple documents contributing to the query, we
hold a separate instance of this storage layout (that we refer to
as a document container) for any referenced document. An addi-
tional document container hosts all transient nodes computed dur-
ing query evaluation (e.g., the result of XQuery’s element construc-
tion operator). To keep nodes from disjoint tree fragments apart in
this container, we introduce the frag column that uniquely identifies
each XML tree fragment.4 A loaded document table keeps track of
any document container currently active.

The pre|size encoding allows for a particularly efficient imple-
mentation of subtree copying: the corresponding region may sim-
ply be copied verbatim from the pre|size table to capture the struc-
tural properties of the subtree. Our implementation extends this
idea and provides shallow copying for the further node properties.
We introduce the cont column that references the document con-
tainer in which each node’s properties are to be found. We copy
ref, kind, and cont along with the structural part, retaining cont as a
reference to its original container.

5.2 XML Updates
Only recently, W3C has formulated its first proposal for an XML

update language [10]. Here, we implemented the same update func-
tionality by means of a series of new XQuery operators with side
effects [6], minimizing the required changes in our XQuery parser.

XML updates can be classified as: (i) value updates, which in-
clude node value changes (be it text, comment or processing in-
structions), and any change concerning attributes (attribute value
changes, attribute deletion and insertion). Other modifications are
(ii) structural updates, that insert or delete nodes in an XML doc-
ument. With the pre|size|level encoding, value updates map quite
trivially to updates in the underlying relational tables. Therefore,
we focus on structural updates in the remainder.

Structural Update Problems. Figure 10 illustrates how the pre|
size|level document encoding is affected by a subtree insert (cf.
delete): all pre values of the nodes following the insert point re-
quire renumbering, as well as the size property of all ancestor
nodes. The former issue imposes an update cost of O(N), with
N the document size, because on average half of the document are
following nodes. The latter issue is not so much a problem in terms
of update volume (renumbering affects at most height(t) nodes,
which remains small even for huge XML instances) but rather one

4Column frag provides a natural means to implement document or-
der across multiple XML fragments in line with the XQuery seman-
tics. MonetDB/XQuery sorts tuples on the [frag,pre] combination.
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Figure 10: The impact of Structural Updates on pre|size|level
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Figure 11: Updates With Logical Pages.

of locking: the document root is an ancestor of all nodes and thus
must be locked by every update. This problem, however, can be
circumvented by maintaining for each transaction a list of nodes of
which the size is changed, together with the delta rather than the
absolute changed value. This allows transactions to release locks
on size immediately, and commit anytime later (even if the size of
a node has been changed meanwhile by another committed trans-
action, we can just apply the delta to set it to a consistent state).
With the problem of lock contention on size removed this way, in
the sequel we concentrate on the problem of the shifts in pre here.

Page-Wise Remappable Pre-Numbers. Figure 11 shows the ap-
plied changes to handle structural updates in the pre|size|level table.
The key observations are:
• the pre column has been replaced by the row id rid,
• the document table is divided into logical pages,
• each logical page may contain unused tuples,
• new logical pages are appended only (i.e., at the end), and
• the pre|size|level table is a view on rid|size|level with all pages

in logical order.
Figure 11 shows the example document being stored in two logical
pages. The logical size is measured in an amount of tuples (here:
8) instead of bytes, and is always a power of two, such that pre-
numbers can be quickly converted into rid numbers using a swiz-

zling technique that uses the higher bits as a lookup value into a
page-mapping table. This page-mapping table has a tuple for each
logical page and contains both its sequence number in the rid table
as well as the sequence number of its appearance in the pre view.

The document shredder already leaves a certain (configurable)
percentage of tuples unused in each logical page. Initially, the un-
used tuples are located at the end of each page. Their level column
is set to NULL, while the size column holds the amount of directly
following consecutive unused tuples. This allows the staircase-join
to skip over unused tuples quickly.

The advantage of unused tuples is that structural deletes just
leave the tuples of the deleted nodes in place (they become unused
tuples) without causing any shifts in pre numbers5. Also, inserts of
subtrees whose size do not exceed the amount of unused tuples on
the logical page, do not cause shifts on other logical pages. Larger
inserts only use page-wise table appends. This is the main reason
to replace pre by rid. The rid column is a densely increasing (0, 1,
2, . . . ) integer column, such as generated by a SQL autoincrement
column. A key feature of the update scheme is that we only append
tuples to the rid|size|level table, and modify only non-key values
(obviously); even in case of XML deletes.

In our RDBMS back-end, the append-only nature of the table is
expressed using access rights, and allows the RDBMS to conclude
that the generated sequence key column rid always corresponds to
physical tuple order, such that it can use efficient positional key
lookup and foreign key join algorithms.

In the example of Figure 11, three new nodes k, l and m are in-
serted as children of context node g. This insert of three nodes does
not fit the free space (the first page that holds g only has one unused
tuple at rid = 7). Therefore, a new logical page must be inserted in-
between. Thus, we append eight new tuples, of which only the first
two represent real nodes (l and m), the latter six are unused.

We also introduced new functionality in our RDBMS back-end
to create a table view that map the underlying disk pages of a ta-
ble in a different non-sequential order, given a pre↔ rid mapping
table. Thus, by re-arranging the logical pages of the rid|size|level
table in logical page order, overflow pages that were appended to
it, become visible “halfway” in the pre|size|level view. Alternative
to this table view, the same effect could be obtained by making the
staircase join operators aware of the pre↔ rid page-mapping table.
Each time the staircase join during its forward or backwards scan
over the rid|size|level table crosses a logical page boundary, it must
swizzle the destination pre number into a rid number using the map-
ping table. The resulting rid key can then be located using a B-tree
lookup, or better, using a positional lookup algorithm.

All in all, an XML insert leads to writing at least one new logical
page (plus the volume of the insert). Depending on how the logical
page size is configured (as a number of tuples) with respect to the
disk page size, this leads to a constant number of I/Os (typically
one or two per logical page). Thus this scheme keeps the I/O vol-
ume caused by updates limited to a minimum. Its weakness may
stem from the fact that these page-wise inserts and updates cause
the database back-end to employ page-wise locking. In this respect,
relational systems that use (derivatives of) the Dewey encoding to
represent XML node-IDs can achieve a higher degree of transac-
tion concurrency. We expect on the other hand that the simpler
pre integer representation that allows for highly efficient node or-
der comparisons, and XPath evaluation in loop-lifted staircase join
backed by positional algorithms gives our system the upper hand in
raw query performance, which (depending on the application work-
load) may offset the concurrency limitations of page-wise locking.

5Deletes may lead to concatenation of text nodes, but these are
stored outside the rid|size|level table, leaving its tuple order intact.



6. QUANTITATIVE ASSESSMENT
In our experiments, we focused on XMark [36], which is the

most frequently used benchmark for evaluating XQuery efficiency
and scalability. The experimentation platform was a 1.6 GHz AMD
Opteron 242 (1 MB L2 cache) processor with 8 GB RAM and a
RAID-5 disk subsystem (3ware 7810, configured with eight 250 GB
IDE disks of 7200 RPM). The operating system was Linux 2.6.11,
using a 64-bit address space. We ran MonetDB/XQuery version
0.10.2 in client-server mode, making use of its physical query plan
caching feature. We used the XMark benchmark on documents
ranging from 1.1 MB to 11 GB. For all experiments, we report the
best of five runs. Once a document is loaded by MonetDB/XQuery,
run-time variations tend to be small.

We tested the latest snapshot of eXist (January 2006) [28], a
popular open-source XML DBMS. Precise query timings for eXist
were extracted from its execution log. The eXist system failed to
import the XMark documents larger than 11 MB, stating that the
auction document is too large or irregular for its indexing scheme.
We also tested Galax (0.5.0) [14], an open-source XQuery system
developed in the research community. We tested the standard ver-
sion without the Jungle storage back-end, such that Galax parses
the XML file on each query. We thus used the Galax ”monitor” fea-
ture to account for the separate query processing phases and —for
all systems— excluded document loading as well as result serial-
ization times. Galax failed to process the queries once the XMark
documents were beyond a size of 110 MB.

As for commercially developed systems, we tested BerkeleyDB
XML 2.2 (BDB) [2] and X-Hive (6.0) [40]. For BDB, we used the
timing feature of its administrative console, whereas for X-Hive we
executed the XMark queries using a Java program that kept internal
timings. For both system we tried to improve performance by creat-
ing structure indices as well as value indices (creating those on the
XPath paths and text/attribute values used by the XMark queries).
For both systems, however, it is hard to increase overall perfor-
mance, as the effect of an index tends to be that one query becomes
faster, while others become slower. Only for X-Hive, we were able
to significantly improve a result reported in [12] without negative
side-effects, by creating a value index on the path buyer/@person.
This reduced the run time of XMark query Q8 from quadratic to
linear. A similar result could not be achieved for BDB.

Loop-Lifted Staircase Join. Figure 12 shows the effect of us-
ing loop-lifted staircase join. Loop-lifted staircase join evaluates
a path step in one sequential pass over the pre|size table for mul-
tiple sequences of context nodes in one go. The normal (i.e., it-
erative) staircase join needs to make a sequential pass for each
set. As we can see, on the 110 MB XMark document, query per-
formance improves by a factor of 10-30. Some queries (Q11-14),
where path step cost is relatively small, in general benefit less (fac-
tor 3-6.5). Query Q15 processes a particularly long path expression
of 13 axis steps. In this case, loop-lifted staircase join suffers from
the additional internal state keeping overhead (the active stack) and
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Figure 12: Benefits of loop-lifted staircase join.

performs worse than the iterative version. Pushing the nametests
below the respective location steps reduces the intermediate result
sizes handled by the location steps and thus the overhead. Queries
Q6 & 7 perform only one iteration, hence, loop-lifted staircase join
does not yield any improvement. However, since both queries per-
form descendant steps from the document root (respectively a sin-
gle top-level document node), nametest push-down becomes cru-
cial: Without nametest push-down, location steps produce (almost)
the whole document as intermediate result. Once pushed below the
location steps, the (quite selective) nametests (now accelerated by
indices on the element tables) reduce the intermediate result—and
thus the total execution time—significantly.

Join Optimization. Before we developed the join recognition and
evaluation strategies described in Section 4, MonetDB/XQuery was
unable to evaluate the XMark join queries Q8–Q12 on document
sizes beyond 110 MB. This turned out to be due to the generation
of huge intermediate Cartesian products, a consequence of loop-
lifting. Figure 13 contrasts the results for the 11 MB document
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Figure 13: XQuery join op-
timization.

with the performance we ob-
tained with join recognition en-
abled in our relational algebra
generation. This makes clear
that queries with join predicates
simply require join recognition
when run on XML documents
of significant size.

Sort Reduction. The next step is to analyze the performance im-
provements that are provided by our peephole optimization ap-
proach that maintains column order properties and thus is able to
eliminate unnecessary sorting operators, converts full sorts into re-
fine-sorts, and sorting DENSE RANK() operators into a streaming
ones. Figure 14 shows that XMark performance on the 110 MB
document is boosted by a factor 2 using these order optimizations.
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Figure 14: Benefits of Sort Reduction.

Scalability. Figure 15 shows the performance results of MonetDB/-
XQuery, where all numbers are normalized to the elapsed time on
the 110 MB document. The graph shows that our system scales lin-
early with document size. The only outliers are queries Q11-12.
The bottleneck in both queries is a theta-join (comparison via >)
that generates an intermediate result with about 120 K up to 120 G
tuples for the 11 MB and 11 GB document sizes, respectively. Note
that this concerns the query result, whose computation cannot be
avoided (though the end result becomes small, due to subsequent
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Figure 15: Scalability with respect to document size.



1.1 MB 11 MB 110 MB 1.1 GB 11 GB
Q MXQ Galax XHive BDB eXist MXQ Galax XHive BDB eXist MXQ Galax XHive BDB MXQ XHive BDB MXQ
1 .013 .000 .170 .007 .011 0.01 0.06 0.37 0.05 0.10 0.12 0.72 1.29 0.51 1.3 9.9 5.9 14
2 .008 .002 .090 .014 .140 0.02 0.03 0.45 0.13 5.67 0.19 0.31 1.75 1.38 1.8 33.0 43.1 19
3 .029 .012 .120 .035 .176 0.14 0.14 0.65 0.34 6.61 1.20 1.76 5.66 3.55 11.5 25.1 37.1 176
4 .013 .026 .070 .042 .378 0.03 0.22 0.10 0.39 15.40 0.42 2.91 1.00 4.07 4.5 18.1 43.3 44
5 .006 .005 .040 .011 2.419 0.01 0.05 0.13 0.10 185.47 0.08 0.63 0.90 1.05 0.8 20.7 11.4 10
6 .003 .117 .100 .107 .002 0.00 1.30 1.07 1.14 0.01 0.00 13.29 10.17 13.23 0.0 178.1 DNF .1
7 .003 .277 .110 .122 .007 0.00 2.68 1.57 1.31 0.01 0.01 30.01 24.84 14.70 0.1 278.4 DNF .6
8 .014 .013 .220 .447 .660 0.04 0.16 0.85 51.21 429.89 0.47 2.12 3.51 9316.72 9.6 49.1 DNF 223
9 .022 .113 .580 .407 .783 0.05 113.23 32.25 47.03 333.47 0.52 DNF 12280.66 DNF 11.8 DNF DNF 460

10 .163 .136 .500 .153 16.533 2.54 1.74 5.28 5.15 1559.17 5.18 18.61 442.37 DNF 62.8 DNF DNF 2413
11 .018 .042 .160 1.26 2.064 0.11 2.62 98.91 121.75 374.46 3.62 DNF 19927.29 DNF 367.7 DNF DNF DNF
12 .044 .028 .310 .486 3.067 0.09 1.44 23.39 118.70 1584.91 2.11 DNF 5100.19 DNF 121.1 DNF DNF DNF
13 .022 .002 .010 .009 .008 0.03 0.03 0.10 0.08 0.03 0.10 0.66 1.03 0.79 0.9 12.9 8.1 8
14 .026 .109 .060 .106 .228 0.12 1.92 0.72 1.07 0.44 0.93 99.53 11.16 14.18 7.5 110.2 DNF 452
15 .026 .001 .010 .015 .015 0.03 0.02 0.03 0.13 0.05 0.07 0.20 0.49 1.37 0.4 10.6 28.5 3
16 .030 .003 .010 .016 .597 0.03 0.03 0.03 0.14 22.21 0.08 0.46 0.52 1.52 0.5 10.9 17.6 4
17 .022 .005 .010 .021 .018 0.03 0.06 0.09 0.20 0.18 0.15 0.82 0.85 2.08 1.4 11.8 34.1 31
18 .013 .007 .010 .020 .009 0.02 0.07 0.08 0.19 0.12 0.05 0.73 0.64 2.09 0.5 14.8 21.7 7
19 .029 .089 .070 .056 .037 0.06 1.17 0.67 0.57 0.51 0.38 14.73 12.15 6.74 7.0 254.5 135.6 128
20 .075 .030 .020 .037 .061 0.11 0.28 0.11 0.34 0.98 0.62 2.98 1.40 3.42 7.0 24.6 37.4 70

Table 1: XMark query evaluation (elapsed time in seconds).

aggregation). Any XQuery system is bound to exhibit quadratic
scaling with document size on Q11-12. Queries Q6, 7, 15, and 16
actually show sub-linear scaling: Here, the pushed-down nametests
benefit from indices used in MonetDB/XQuery.

Other Systems. Table 1 lists our full experimental results. For the
1.1 MB size, average query run time is 150ms or lower on all sys-
tems except eXist. On the 11 MB dataset, eXist already becomes
slow for Q4-5 and all join queries (Q8-12). On larger data sizes,
those join queries also become very slow for BDB and X-Hive (ex-
cept that, as mentioned, X-Hive can execute Q8 with linear com-
plexity thanks to a value index). Queries that Did Not Finish within
an hour are scored as ”DNF”. Galax is able to handle some joins
(Q8,10) in linear time, but at 110 MB the other join queries crashed
with materialization out of bounds errors.

Shredding and Serialization. To complete the performance as-
sessment of MonetDB/XQuery, we also measured the times for
shredding and serializing documents of various sizes. For the latter,
we ran a query that constructs a copy of the entire input document.
The results revealed that MonetDB/XQuery handles both tasks in
interactive time and scales linearly as the documents grow larger,
e.g., for the 11 MB and 1.1 GB documents, shredding took 0.84
and 89.69 seconds, and serialization took 1.88 and 190.48 seconds,
respectively. Considering that the pre|size|level encoding stores tu-

System Source CPU MHz SPEC Factor
M MonetDB/XQuery (MXQ) Tab. 1 Opteron 1600 1068 1.00
E eXist [28] Tab. 1 Opteron 1600 1068 1.00
R BerkeleyDB XML 2.2 (BDB) [2] Tab. 1 Opteron 1600 1068 1.00
H X-Hive 6.0 [40] Tab. 1 Opteron 1600 1068 1.00
G Galax 0.5.0 [14] Tab. 1 Opteron 1600 1068 1.00
Y Dynamic Interval Encoding [12] PentiumIII 1000 451 2.36
I IPSI-XQ v1.1.1b [20] [12] PentiumIII 1000 451 2.36
K Kweelt [24] [12] PentiumIII 1000 451 2.36
Q QuiP [34] [12] PentiumIII 1000 451 2.36
D Pathfinder + IBM DB2 UDB V8.1 [17] Pentium4 2200 780 1.37
F FluX [22] AthlonXP 1670 697 1.53
A Anonymous commercial system [22] AthlonXP 1670 697 1.53
X TurboXPath [21] PentiumIII 700 332 3.22
T Timber [32] PentiumIII 866 411 2.60
L Li [26] PentiumIII 933 421 2.53
Z Qizx/Open (Version 0.4/p1) [33] [26] PentiumIII 933 421 2.53
S Saxon (Version 8.0) [35] [26] PentiumIII 933 421 2.53
B BEA/XQRL [15] Pentium4 1800 669 1.59
V VX [8] Pentium4 1800 669 1.59

Table 2: Sources for XMark results in Figure 16.

ples in the same order as they appear in the XML document, shred-
ding causes sequential write access into the relational tables, and
serialization sequential read access (the same holds for the property
tables, which are either kept small due to duplicate elimination, or
if not, are also accessed sequentially). This sequential access leads
to relatively fast shredding/serialization.

Public Experimental Results. In addition to the above experi-
mental comparison, we also collected representative XMark perfor-
mance results from recent literature in order to perform a broader
comparison in Table 2. These results exclude document parsing
(shredding) and serialization (except system F, which did not pro-
vide separate timings). Since the various experiments were run on
different hardware platforms, we divide the original results by the
factor that the SPECINT-CPU2000 score of the respective CPU dif-
fers from the SPECINT-CPU2000 score of the CPU used in our ex-
periments (see Table 2 for details). This method does assume that
all systems ran CPU-bound, but it should bring all results in the
right ballpark to enable a rough comparison in a log-scale plot. Fig-
ure 16 depicts the results for XMark documents of 11 MB, 110 MB,
and 1.1 GB, respectively. For ease of comparison, we show the nor-
malized performance relative to MonetDB/XQuery.

Four systems (B, S, K, Q) were reported to be able to handle
only document sizes smaller than 11 MB, depicted by ”DNF” in the
plots. Next to our own measurements for systems M, E, R, H, and
G, only [32] reports results for all 20 XMark queries (for system
T on a 110 MB document); we use lines to depict these systems’
results in Figure 16. For all other systems, we only found results
for selected XMark queries, depicted by points in Figure 16.

This broader comparison confirms the results of our experiment
reported above. With simple queries on small documents, the dif-
ferences between the various systems are rather small. With more
complex queries (e.g., the joins queries 8-12), the differences are
more significant, even on small documents, and the purely rela-
tional approach of MonetDB/XQuery shows to be one of the most
efficient solutions. For larger documents, the differences become
more significant. For the documents of 1.1ĠB size, only very few
results have been published, let alone larger data sizes.

The overall conclusion of the experiments is that MonetDB/XQuery
is highly scalable, can handle XPath-intensive queries well (due to
the loop-lifted staircase join), handles queries with theta-join pred-
icates in linear time, and appears to outperform the current genera-
tion of XQuery systems by quite a big margin.
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Figure 16: XMark performance comparison of the systems listed in Table 2.

7. RELATED RESEARCH AND SYSTEMS
The present work builds on both an XPath-aware relational en-

coding of XML trees [19] and relational XQuery compilation tech-
niques [17] to turn a relational database back-end into an XQuery
processor. To date, as suggested by a recent survey article [23], this
work developed the first instance of a relational XQuery processor
that really exhibits the efficiency and scalability needed to process
XML input documents of up to 11 GB size in interactive time.

Note that the node surrogates γ (Section 2) constitute a rather
generic concept: any XML tree encoding that is true to document
order and node identity may be used in place of preorder ranks.
The database research and industry communities have developed
a variety of possible alternatives, among these [30, 25, 41, 38].
Preorder ranks provide node surrogates of fixed byte-width, which
greatly simplifies their storage and manipulation. Such fixed-size
node encodings are known to incur significant inherent costs if gen-
eral structural tree updates (e.g., node insertions, subtree deletions)
are to be processed [11]. In contrast, variable-length surrogates
such as, for example, ORDPATH labels [30], are designed to allow
“low-cost” updates while still encoding document order. However,
these features come at the expense of higher storage and manipu-
lation costs, and, more importantly, non-denseness, prohibiting the
application of staircase join for efficient location step evaluation.

In our work, we do not assume any knowledge of the schema of
the XML documents stored in the database (as ,e.g., in [9]). In [12],
the authors describe a similar schema-free XQuery compiler that
was originally designed to emit SQL code. Since the compiler is
aware of the XQuery order semantics—at least partially: the system
does not distinguish between sequence and document order—the
generated SQL queries contain the expected necessary yet signif-
icant sorting overhead. Experiments with a prototypical relational
engine led the authors to observations that match those we have
made here: (i) built-in order-awareness and (ii) XQuery join recog-
nition are key features if the system is to process XML documents
of serious size. Performance-wise, we really reap the benefits of
using an extensible RDBMS kernel as an XQuery runtime environ-
ment: the XMark benchmark figures obtained here surpass those

reported in [12] by two orders of magnitude.
Recently, the major commercial RDBMS vendors have started

to roll out XQuery capable extensions of their products SQL Ser-
ver [31], Oracle [27] and DB2 [3]. All extend the SQL type system
with a new XML type, that can be queried using XQuery expres-
sions or mixed with SQL in SQL/XML. It is interesting to note the
architectural diversity of these three implementations: DB2 chose
to implement a separate XML-specific evaluation engine, Oracle
followed a hybrid approach where some (/most) XQuery queries
can be compiled to relational algebra and the rest is handled by
a separate XQuery processor, whereas SQL Server compiles all
XQuery expressions into relational algebra plans. In that sense,
SQL Server most resembles our approach, though it uses the ORD-
PATH node encoding [30], a compressed variant of update-friendly
Dewey codes. This represents in our eyes a trade-off that favors
update performance over query performance; in the future we hope
to obtain insight in the true performance characteristics of these
systems.

Quite timely, the order-aware optimization of relational queries
has received renewed attention [39, 29]. Inspired by the founda-
tional work on “interesting orders” in System R and based on the
idea to derive order properties of intermediate results from func-
tional dependencies introduced by the application of operators of
the relational algebra [37], Wang and Cherniack describe order
property inference rules [39]. These rules are capable of inferring
secondary orderings, i.e., minor orderings respected in a group of
tuples. As described, possibilities to exploit such orderings, here
denoted by grpord([O1],O2), pervade in the algebraic plans emit-
ted by our XQuery compiler.

As mentioned at the end of Section 3, loop-lifted staircase join is
related to the Structural Join [1] and Holistic Twig Joins [7] algo-
rithms. Both Structural Join and Holistic Twig Join could be used
in a loop-lifted scenario with the iter|pre table of context nodes as
one of their input tables (sorted on pre). However, neither algo-
rithm is aware of the different iterations and thus does not perform
(i) pruning within each iteration. Consequently, duplicate nodes
will be in their output, mandating the use of duplicate elimina-



tion afterwards. In the case of Structural Join, pruning could be
a preprocessing step, but in the case of Holistic Twig Join with
e.g., a child step followed by a descendant step (both with, e.g.,
name tests), the most useful pruning (for descendants) cannot be
done beforehand. We think that adapting the Holistic algorithms
to allow pruning would be worthwhile. The stack-based nature of
both Structural Join and Holistic Twig Join support (ii) partition-
ing, but they use less (iii) skipping. In the child step, staircase join
skips over all descendants of a child to arrive at the next, whereas
both Structural Join and Holistic Twig Join perform a child-test on
all descendants. Similar skipping opportunities arise in the other
XPath axes; which are all supported by loop-lifted staircase join.

8. CONCLUSIONS
In this work, we have described a new XML database system

built purely on relational database technology. It provides a full
XQuery implementation supporting both document and sequence
order (including such features as XQuery modules and recursive
user defined functions). We have also outlined an update scheme
that addresses the difficult task of efficiently maintaining a range-
based XML numbering scheme under structural updates. The main
ideas behind this mechanism are a page-wise indirection scheme to
limit the impact of node shifts to a single logical page, and the use
of deltas to record changes in the size property of XML tree nodes,
which avoids locking the root node during the entire transaction.

One of the striking features of this system is its outstanding query
performance, especially when large XML documents are traversed
with XPath location steps and when joins are involved. We com-
pared this performance on the XMark benchmark both with some
openly available XML database systems that can handle large sin-
gle documents and with other (not openly available) systems that
were described in literature. Our conclusion of this extensive per-
formance evaluation is that MonetDB/XQuery is among the fastest
and most scalable, thus showing that relational technology can in-
deed be leveraged in XML databases, without strict need for a na-
tive XML storage subsystem nor a native query processing algebra.

We described two main contributions that improved performance
by an order of magnitude. First, the loop-lifted staircase join adapts
the original staircase join as proposed in [19] for XPath location
step evaluation, for use in XQuery. The crucial change is to add a
stack-based mechanism to allow execution of XPath location steps
for multiple sequences of context nodes—e.g., when XPath ex-
pressions are nested in XQuery for-loops—in a single sequential
pass. Second, a carefully designed join processing framework re-
duces the quadratic complexity of XQuery joins to scale linearly
with the input document size, exploiting the existential semantics
of XQuery joins. Join optimization is part of a wider property-
driven peephole optimization framework that also is used to avoid
unnecessary sorting, and to detect join patterns in XQuery queries
in a way that is immune to any syntactic variation.

A MonetDB feature that we think would also benefit relational
XQuery in other RDBMS’s is positional lookup, which finds a
record by address computation (without index access). This is ap-
plicable on (foreign) key access to a densely increasing (0, 1, 2,
. . . ) integer column such as generated by a SQL autoincrement
column, that is not updated. Such columns are found in intermedi-
ate result tables (pervasive in our XQuery translation) and in persis-
tent append-only tables such as pre|size|level. This benefits foreign
key joins, but also staircase join (positional skipping) as well as the
page-wise update scheme (fast pre− rid swizzling).

MonetDB/XQuery is available in open source as a fast and scal-
able XQuery system for application developers, but also as experi-
mentation platform for future research on relational XQuery.
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