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Abstract

Relational database systems may be turned
into efficient XML and XPath processors if the
system is provided with a suitable relational
tree encoding. This paper extends this rela-
tional XML processing stack and shows that
an RDBMS can also serve as a highly efficient
XQuery runtime environment. Our approach
is purely relational: XQuery expressions are
compiled into SQL code which operates on the
tree encoding. The core of the compilation
procedure trades XQuery’s notions of variable
scopes and nested iteration (FLWOR blocks) for
equi-joins.

The resulting relational XQuery processor
closely adheres to the language semantics,
e.g., it respects node identity as well as doc-
ument and sequence order, and can support
XQuery’s full axis feature. The system ex-
hibits quite promising performance figures in
experiments. Somewhat unexpectedly, we will
also see that the XQuery compiler can make
good use of SQL’s OLAP functionality.

1 Introduction

It is a virtue of the relational database model that its
canonical physical representation, tables of tuples, is
simple and thus efficient to implement. Typical opera-
tions on tables, e.g., sequential scans, receive excellent
support from current computing hardware in terms of
prefetching CPU caches and read-ahead in disk-based
secondary memory. If linear access is not viable, the
regular table structure is sufficiently simple to allow
for the definition of efficient indexes.

At the same time, the table proves to be a generic
data structure: it is often straightforward to map other
data types onto tables. Among others, such encodings
have been described for ordered, unranked trees, the
data type that forms the backbone of the XML data
model. These mappings turn RDBMSs into relational

XML processors. Furthermore, if the tree encoding is
designed such that core operations on trees—XPath
axis traversals—lead to efficient table operations, this
can result in high-performance relational XPath im-
plementations. In [9,10] we developed a tree encoding
with this property: axis traversals lead to sequential
table scans.

This work extends the relational XML processing
stack: we devise a compilation procedure that trans-
forms XQuery [2] expressions into SQL code. The emit-
ted SQL query operates on a relational encoding of
both, trees and ordered sequences of atomic values and
nodes. By design, we assume only a minimalistic tree
encoding which preserves node identity, document or-
der, and subtree sizes—requirements which are met by
several XML mapping schemes [3, 14]. The compiler
can be modified to target any such scheme.

We exercise special care in translating the XQuery
FLWOR construct. There is some tension between
XQuery’s concept of iterating the evaluation of an ex-
pression e2 for successive bindings of a variable $v
(for $v in e1 return e2) and the set- or table-oriented
processing model of SQL. In a nutshell, we thus map
for-bound variables like $v into tables containing all
bindings and translate expressions in dependence of
the variable scopes in which they appear. The result-
ing SQL code implements iteration via equi-joins, a
table operation which RDBMS engines know how to
execute most efficiently.

The procedure generates SQL code which does not
depend on particularly advanced or “exotic” language
features. It is interesting to observe, however, how
the compiler can take advantage of widely available
SQL/OLAP functions to speed up the evaluation of
a number of XQuery constructs, e.g., sequence and
element construction as well as for expressions.

The paper proceeds as follows. Section 2 discusses
relational encodings of trees and sequences, both sim-
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ple by design. Support for nested variable scopes and
efficient iteration affects the overall compilation pro-
cess and is introduced in Section 3. Section 4 presents
a compositional compilation procedure for a subset of
XQuery Core in terms of inference rules. We will also
see what is to be gained if OLAP ranking functionality
is available. Compiler extensions and optimizations
are the topic of Section 5: we will discuss bundling
of XPath axis steps and how to exploit disjointness
properties of tree fragments to evaluate element con-
structors. Section 6 reports on experiments in which
IBM DB2 runs XQuery benchmarks before a review of
related research and systems concludes (Sections 7, 8).

2 Encoding Trees and Sequences

The dynamic evaluation phase of XQuery operates
with data of two principal types: nodes and atomic

values (collectively referred to as item-typed data).
Nodes may be assembled into ordered, unranked trees,
i.e., instances of XML documents or fragments thereof.
Nodes and atomic values may form ordered, finite se-

quences. We will now briefly review minimalistic re-
lational encodings of trees as well as sequences. Both
encodings exhibit just those properties necessary to
support a semantically correct and efficient XQuery to
SQL compilation.

2.1 Trees and XPath Support

We assemble the components of the relational tree
encoding piece by piece. Two basic concepts of the
XQuery tree data model are node identity and docu-

ment order (the latter orders nodes according to the
order of their opening tags in the serialized tree in-
stance). To represent both concepts, we assign to each
node v its unique preorder traversal rank [9] in the tree,
v.pre. The XQuery node comparison operators is and
<< then compile into comparisons of ranks.

XQuery embeds XPath as a sublanguage to navigate
tree structures. Given a sequence of context nodes e,
an XPath axis step e/α returns the sequence of nodes
which are reachable from e via axis α. If we extend
the tree encoding for node v by (1) v.size, the num-
ber of nodes in the subtree below v, and (2) v.level ,
the length of the path from the tree root to v, we can
express the semantics of all 13 XPath axes—and thus
support XQuery’s full axis feature—via simple con-
junctive predicates. To illustrate, for the ancestor
axis and two nodes v and c, we have that

v ∈ c/ancestor ⇔
v.pre < c.pre AND c.pre 6 v.pre + v.size .

More axes are illustrated in Table 1. Note that we do
not require v.size to be exact: as long as the XPath
axes semantics are respected, v.size may overestimate
the number of nodes below v. Via the pre property we
can ensure that the node sequence resulting from an

Axis α Predicate axis(c, v, α): v
?
∈ c/α

descendant v.pre > c.pre AND v.pre 6 c.pre + c.size
child axis(c, v, descendant) AND v.level =c.level+1
following v.pre > c.pre + c.size
preceding v.pre + v.size < c.pre

Table 1: Predicate axis represents XPath axes seman-
tics (selected axes).

axis step is free of duplicates and in document order
as required by the XPath semantics.

Support for XPath name and kind tests is added
by means of two further node properties, v.prop and
v.kind ∈ {"elem", "text"}.1 For an element node v
with tag name t, we have v.prop = "t", for a text
node v′ with content c, v′.prop = "c".

XQuery is not limited to query single XML doc-
uments. In general, query evaluation involves nodes
from multiple documents or fragments thereof, possi-
bly created at runtime via XQuery’s element construc-
tors. The query

(element a { element b { () }}, element c { () })

creates three element nodes in two independent frag-
ments, for example. We thus record the fragment of a
node v in its v.frag property.

The database system maintains a table doc of live

nodes (i.e., nodes of persistent XML documents as well
as nodes constructed at runtime) and their properties.
Figure 1 depicts two XML fragments as well as their
relational encoding. Note that the document order
of two nodes v, v′ in separate fragments is consistent
with the XQuery semantics: if v precedes v′ (v << v′ ≡
v.pre < v′.pre), the same is true for any pair of nodes
taken from these two fragments.

Any XML encoding which provides the above prop-
erties or allows for their derivation may be plugged
into the compilation procedure. One example of such
an encoding is the XPath accelerator [9], others in-
clude [3, 14].

2.2 Sequences

XQuery expressions evaluate to ordered, finite se-
quences of items. Since sequences are flat and can-
not be nested, a sequence may be represented by a
single relation in which each tuple encodes a sequence
item i. We preserve sequence order by means of a
property i.pos > 1. In sequences, nodes are repre-
sented by their unique preorder rank (property i.pre)
while atomic values, i.e., values of type xs:float,
xs:string, etc., are recorded with their lexical rep-
resentation i.val as defined by XML Schema [1].

1We omit the discussion of further XML node kinds for space
reasons.
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<a>

<b><c/></b>

<d/>

<e/>

</a>

<f>

s<g/>t

</f>

(a) Two XML fragments.

0a4

1b1

2c0

3d0 4e0

5f3

6"s"0 7g0 8"t"0

(b) Fragment trees.

pre size level kind prop frag
0 4 0 "elem" "a" 0
1 1 1 "elem" "b" 0
2 0 2 "elem" "c" 0
3 0 1 "elem" "d" 0
4 0 1 "elem" "e" 0
5 3 0 "elem" "f" 1
6 0 1 "text" "s" 1
7 0 1 "elem" "g" 1
8 0 1 "text" "t" 1

(c) Tree encoding (table doc).

Figure 1: Relational encoding of two XML fragments. Nodes in the fragment trees (b) have been annotated with
their pre and size properties. Both trees are encoded as independent fragments 0 and 1 in (c).

pos pre val
1 NULL "1.0"
2 NULL "x"
3 0 NULL
4 5 NULL

Figure 2: Rela-
tional sequence
encoding.

The relational representation of
the sequence (1.0,"x",v,v′)
where v and v′ denote the root
nodes of the two XML fragments
of Figure 1 is shown in Figure 2.
The empty relation encodes the
empty sequence (). A single item
i and the singleton sequence (i)
are represented identically, which

coincides with the XQuery semantics. Note that
XQuery’s positional predicates e[p], p > 1, are easily
evaluated if the pos column is populated densely

starting at 1 as is the case in Figure 2.

3 Relational FLWORs: Turning Variable
Scopes and Iteration into Joins

The core of the XQuery language, with syntactic sugar
like path expressions, quantifiers, or sequence compar-
ison operators removed, has been designed around a
looping primitive, the for-return construct. A for-
loop iterates the evaluation of loop body e for succes-
sive bindings of the loop variable $v:

for $v in (x1,x2, . . . ,xn) return e ≡
(e[x1/$v],e[x2/$v], . . . ,e[xn/$v])

where e[x/$v] denotes the consistent replacement of all
free occurrences of $v in e by x. XQuery is a side-effect
free language: it is semantically sound to evaluate e for
all n bindings of $v in parallel.

3.1 Loop Lifting for Constant Subexpressions

This property of XQuery inspires our loop compilation
strategy:

(1) A loop of n iterations is represented by a rela-
tion loop with a single column iter of n values
0, 1, . . . , n − 1.

(2) If a constant subexpression c occurs inside a loop
body e, the relational representation of c is lifted

(intuitively, this accounts for the n independent
evaluations of e).

For a constant atomic value c, lifting with respect to
a given loop relation is performed as follows:

SELECT iter , 1 AS pos, NULL AS pre, c AS val

FROM loop .

Figure 3(a) exemplifies how the constant subexpres-
sion 10 is lifted with respect to the loop

for $v0 in (1,2,3) return 10 .

If, for example, 10 is replaced by the sequence (10,20)
in this loop, we require the lifting result to be the
relation of Figure 3(b) instead.

Generally, a tuple (i, p, NULL, v) in a loop-lifted re-
lation for subexpression e may be read as the assertion
that, during the ith iteration, the item at position p
in e has value v—an analogous interpretation applies
for a tuple (i, p, n, NULL) which represents a node with
preorder rank n (Section 2.1). With this in mind, sup-
pose we rewrite the for-loop as

for $v0 in (1,2,3) return (10,$v0) . (Q1)

Consistent with the loop lifting scheme, the database
system will represent variable $v0 as the relation
shown in Figure 3(c). We will shortly see how we
can derive this representation of a variable from the
representation of its domain (in this case the sequence
(1,2,3)).

Finally, to evaluate the query Q1, the system solely
operates with the loop-lifted relations to compute the
result shown in Figure 3(d). The upcoming discussion
of nested variable scopes and Section 4 will fill in the
missing details.

3.2 Nested Scopes

In XQuery, for-loops nest arbitrarily and we will now
generalize the loop lifting idea to support nesting.

Assume an expression with three nested for-loops
as shown here:

s



























( for $v0 in e0 return
s0 { e′0 ,

for $v1 in e1 return

s1

{

for $v10 in e10 return
s10 { e′10

)
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iter
0
1
2

|{z}

loop

pos pre val
1 NULL "10"

| {z }

encoding of 10

iter pos pre val
0 1 NULL "10"
1 1 NULL "10"
2 1 NULL "10"

| {z }

lifted encoding of 10

(a) Lifting the constant 10.

iter pos pre val
0 1 NULL "10"
0 2 NULL "20"
1 1 NULL "10"
1 2 NULL "20"
2 1 NULL "10"
2 2 NULL "20"

(b) Loop-lifted
sequence.

iter pos pre val
0 1 NULL "1"
1 1 NULL "2"
2 1 NULL "3"

(c) Encoding of
variable $v0.

iter pos pre val
0 1 NULL "10"
0 2 NULL "1"
0 3 NULL "10"
0 4 NULL "2"
0 5 NULL "10"
0 6 NULL "3"

(d) Result of query
Q1.

Figure 3: Loop lifting.

The curly braces visualize the variable scopes in this
query: variable $v0 is visible in scope s0, variable $v1

is visible in scopes s1 and s10, while variable $v10 is
accessible in scope s10 only. No variables are bound in
top-level scope s. (In the context of this section, only
for expressions are considered to open a new scope;
let expressions are treated in Section 4.)

Note that the compositionality and scoping rules of
XQuery, in general, lead to a tree-shaped hierarchy of
scopes. For the above query, we obtain

s

s0 s1

s10

.

In the following, we write sx·y, x ∈ {0, 1, . . . }∗, y ∈
{0, 1, . . . } to identify the yth child scope of scope sx.
Furthermore, let qx(e) denote the representation of ex-
pression e in scope sx.

Bound variables. Consider a for-loop in its directly
enclosing scope sx:

sx























...
for $vx·y in ex·y return

sx·y

{

e′x·y
...

According to the XQuery semantics, ex·y is evaluated
in scope sx. Variable $vx·y is then successively bound
to each single item in the resulting sequence; these
bindings are used in the evaluation of e′x·y in scope
sx·y. A suitable representation for $vx·y in scope sx·y

is thus given by2

qx·y($vx·y) = SELECT row() AS iter , 1 AS pos, pre, val
FROM qx(ex·y)

ORDER BY iter , pos .

This is exactly how we obtained the representation of
variable $v0 in query Q1 (see Figure 3(c)):

q0($v0) = SELECT row() AS iter , 1 AS pos, pre, val
FROM q((1,2,3))

ORDER BY iter , pos

2We assume the presence of a builtin function row() which
densely numbers the tuples of an ordered table starting from 0.
Section 4 discusses two possible implementations of row().

where q((1,2,3)) simply is the relational encoding of
the sequence (1,2,3) as introduced in Section 2.2.

Constants. The compilation of an atomic constant c
requires loop lifting (Section 3.1). If c occurs in scope
sx:

for $vx in ex return
sx { · · · c · · ·

we compile c into

SELECT iter , 1 AS pos, NULL AS pre, c AS val

FROM loopx

in which

loopx = SELECT iter

FROM qx($vx) .

represents the iterations of the surrounding for-loop.
The loop relation associated with the top-level scope s
is loop = iter

0
.

Free variables. In XQuery, an expression e may refer
to variables which have been bound in an enclosing
scope: a variable bound in scope sx is also visible in
any scope sx·x′ , x′ ∈ {0, 1, . . . }+. If scope sx·x′ is
viewed in isolation, such variables appear to be free.

We will derive the compiled representation of a free
variable in scope sx·y from its representation in the di-
rectly enclosing scope sx (if the variable is also free in
sx, we repeat the process). To understand the deriva-
tion, consider the evaluation of two nested for-loops
(note the reference to $v0 in the inner scope s0·0):

s



















for $v0 in (1,2) return

s0











( $v0,
for $v0·0 in (10,20) return

s0·0 { ($v0,$v0·0)
)

(Q2)

In the zeroth outer iteration, $v0 is bound to 1. With
this binding, two evaluations of the innermost loop
body occur, each with a new binding for $v0·0. Then,
during the next outer iteration, two further evaluations
of the innermost loop body occur with $v0 bound to
2.
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iter pos · val
0 1 · "1"
1 1 · "2"

(a) q0($v0)

iter pos · val
0 1 · "1"
1 1 · "1"
2 1 · "2"
3 1 · "2"

(b) q0·0($v0)

iter pos · val
0 1 · "10"
1 1 · "20"
2 1 · "10"
3 1 · "20"

(c) q0·0($v0·0)

Figure 5: Q2: Scope-dependent representation of vari-
ables (entries in the omitted pre column are all NULL).

outer inner
0 0
0 1
1 2
1 3

Figure 4:
map(0,0·0).

The semantics of this nested iteration
may be captured by a relation map(0,0·0)

shown in Figure 4 (map(x,x·y) will be used
to map representations between scopes
sx and sx·y). A tuple (o, i) in this re-
lation indicates that, during the ith iter-
ation of the inner loop body in scope s0·0,
the outer loop body in scope s0 is in its

oth iteration. This is the connection we need to derive
the representation of a free variable $vx in scope sx·y

via the following equi-join:

qx·y($vx) = SELECT inner AS iter , pos , pre, val
FROM map(x,x·y) , qx($vx)
WHERE outer = iter .

Note that relation map(x,x·y) is easily derived from
the representation of the domain ex·y of variable $vx·y

(much like the representation of $vx·y itself):

map(x,x·y) = SELECT iter AS outer , row() AS inner

FROM qx(ex·y)
ORDER BY iter , pos .

Figure 5 contains a line-up of the relational variable
representations involved in evaluating query Q2. Note
how the relations in Figures 5(b) and 5(c) represent
the fact that, for example, in iteration 2 of the inner
loop body variable $v0 is bound to 2 while $v0·0 is
bound to 10, as desired.

The intermediate result computed by the inner loop
is shown in Figure 6(a). To use this result in scope
s0 (as is required due to the sequence construction
in line 2 of Q2), we need to map its representation
back into s0. This back-mapping from scope sx·y into
the parent scope sx may, again, be achieved via an
equi-join with map(x,x·y). The For compilation rule
in Section 4 emits the required SQL code to achieve
this back-mapping. Figure 6(b) depicts the inner loop
body result after it has been mapped back into scope
s0. Sequence construction (Rule Seq, Section 4) and
a second back-mapping step (from scope s0 into the
top-level scope s via map( ,0)) produces the final result

of Q2 (Figure 6(c)).

Other expression types. The compilation proce-
dure ensures that the correct loop relation and vari-
able representations are available when an expression
is compiled. Section 4 describes in which way (if any)

iter pos · val
0 1 · "1"
0 2 · "10"
1 1 · "1"
1 2 · "20"
2 1 · "2"
2 2 · "10"
3 1 · "2"
3 2 · "20"

(a) Intermediate
result in s0·0.

iter pos · val
0 1 · "1"
0 2 · "10"
0 3 · "1"
0 4 · "20"
1 1 · "2"
1 2 · "10"
1 3 · "2"
1 4 · "20"

(b) Intermediate
result in s0.

iter pos · val
0 1 · "1"
0 2 · "1"
0 3 · "10"
0 4 · "1"
0 5 · "20"
0 6 · "2"
0 7 · "2"
0 8 · "10"
0 9 · "2"
0 10 · "20"

(c) Final result in
top-level scope.

Figure 6: Q2: Intermediate and final results.

e ::= c atomic constants
| $v variables
| (e,e) sequence construction
| e/α::n loc. step (axis α, node test n)
| element t { e } element constructor (tag t)
| for $v in e return e iteration
| let $v := e return e let binding

Figure 7: Syntax of XQuery Core subset.

other expression types, e.g., sequence construction, el-
ement constructors, or path expressions, are affected
by variable scoping and iteration.

4 XQuery on SQL Hosts

The core of the XQuery to SQL compiler is defined in
terms of a set of inference rules (Figure 8). In these
rules, a judgment of the form

Γ; loop; doc ` e Z⇒ (q, doc
′)

indicates that, given
(1) Γ (an environment mapping XQuery variables to

their relational representation, i.e., an SQL query),
(2) the current loop relation, and
(3) doc (the table of currently live nodes),
the XQuery expression e compiles into the SQL query q
with a new table of live nodes doc

′. New live nodes are
created by XQuery’s element constructors only, other-
wise we have doc = doc

′.
Compilation starts with the top-level expression, an

empty environment Γ = ∅, the singleton loop relation
associated with the top-level scope (Section 3.2), and
a table doc populated with all persistent XML doc-
ument instances maintained by the RDBMS; in par-
ticular, doc may be empty. All inference rules pass Γ,
loop, and doc top-down, while the emitted SQL code is
synthesized bottom-up. The compiler produces a sin-
gle SQL query that operates on the tree and sequence
encodings of Section 2.

This paper contains inference rules to compile a sub-
set of XQuery Core defined by the grammar in Fig-
ure 7. This subset, plus a few extensions, suffices to
express the XMark benchmark query set [17], for ex-
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Γ; loop; doc ` c Z⇒

0

@

SELECT l.iter , 1 AS pos,
NULL AS pre, c AS val

FROM loop AS l

, doc

1

A

(Const)
{. . . , $v 7→ qv, . . . } ; loop; doc ` $v Z⇒ (qv, doc)

(Var)

Γ; loop; doc ` e1 Z⇒
`
q1, doc

′
´

Γ + {$v 7→ q1} ; loop; doc
′ ` e2 Z⇒

`
q2, doc

′′
´

Γ; loop; doc ` let $v := e1 return e2 Z⇒
`
q2, doc

′′
´ (Let)

Γ; loop; doc ` e1 Z⇒
`
q1, doc

′
´

Γ; loop; doc
′ ` e2 Z⇒

`
q2, doc

′′
´

Γ; loop; doc ` (e1,e2) Z⇒

0

@q1 UNION

SELECT iter , e2.pos + m.pos AS pos, pre, val
FROM q2 AS e2,

(SELECT MAX(pos) AS pos FROM q1) AS m

, doc
′′

1

A

(Seq)

Γ; loop; doc ` e Z⇒
`
qe, doc

′
´

Γ; loop; doc ` e/α::n Z⇒

0

B
B
B
B
@

SELECT DISTINCT e.iter , d.pre AS pos, d.pre, NULL AS val
FROM qe AS e, doc

′

AS e
′

, doc
′

AS d

WHERE e
′

.pre = e.pre
AND e

′

.frag = d.frag
AND axis(e′, d, α) AND test(d, n)

, doc
′

1

C
C
C
C
A

(Step)

{. . . , $vi 7→ qvi
, . . . }; loop; doc ` e1 Z⇒ (q1, doc

′) loop
′ ≡ (SELECT iter FROM qv)

qv ≡

0

@

SELECT row() AS iter , 1 AS pos, pre, val
FROM q1

ORDER BY iter , pos

1

A map ≡

0

@

SELECT iter AS outer , row() AS inner
FROM q1

ORDER BY iter , pos

1

A

8

<

:
. . . , $vi 7→

SELECT inner AS iter , pos, pre, val
FROM map, qvi

WHERE outer = iter
, . . .

9

=

;
+ {$v 7→ qv} ; loop

′; doc
′ ` e2 Z⇒ (q2, doc

′′)

{. . . , $vi 7→ qvi
, . . . }; loop; doc ` for $v in e1 return e2 Z⇒

0

B
B
B
B
B
B
B
@

SELECT outer AS iter ,

e2.iter ∗ m.pos + e2.pos AS pos,
e2.pre, e2.val

FROM map, q2 AS e2,

(SELECT MAX(pos) AS pos
FROM q2) AS m

WHERE inner = e2.iter

, doc
′′

1

C
C
C
C
C
C
C
A

(For)

Γ; loop; doc ` e Z⇒
`
qe, doc

′
´

subtree-copies ≡

0

B
B
B
B
B
B
B
@

SELECT d.pre + md.pre + 2 + (e.iter ∗ me.pos + e.pos) ∗ md.size AS pre, d.size,

d.level − e
′

.level + 1 AS level , d.kind , d.prop, md.frag + 1 + e.iter AS frag
FROM qe AS e, doc

′

AS e
′

, doc
′

AS d,

(SELECT MAX(pos) AS pos FROM qe) AS me,

(SELECT MAX(pre + size) AS pre, MAX(size) + 1 AS size, MAX(frag) AS frag
FROM doc

′) AS md

WHERE e
′

.pre = e.pre AND e
′

.frag = d.frag AND axis(e′, d, descendant-or-self)

1

C
C
C
C
C
C
C
A

new-roots ≡

0

B
B
B
B
B
@

SELECT l.iter , l.iter ∗ me.pos ∗ md.size + md.pre + 1 AS pre,

me.pos ∗ md.size AS size, 0 AS level , "elem" AS kind ,

t AS prop, md.frag + 1 + l.iter AS frag
FROM loop AS l, (SELECT MAX(pos) AS pos FROM qe) AS me,

(SELECT MAX(pre + size) AS pre, MAX(size) + 1 AS size, MAX(frag) AS frag
FROM doc

′) AS md

1

C
C
C
C
C
A

Γ; loop; doc ` element t {e} Z⇒

0

B
B
B
B
B
@

SELECT iter , 1 AS pos,
pre, NULL AS val

FROM new-roots
,

doc
′

UNION

subtree-copies
UNION

SELECT pre, size, level , kind , prop, frag
FROM new-roots

1

C
C
C
C
C
A

(Elem)

Figure 8: XQuery to SQL compilation procedure.
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iter pos · val
0 1 · "1"

1 1 · "10"
1 2 · "20"

(a) Encoding q1

of e1.

iter pos · val
0 1 · "2"

1 1 · "30"

(b) Encoding q2

of e2.

iter pos · val
0 1 · "1"
0 3 · "2"

1 1 · "10"
1 2 · "20"
1 5 · "30"

(c) Encoded result
of (e1,e2).

Figure 9: Sequence construction. The dashed lines
separate the represented iterations (iter partitions).

ample. We will sketch a few extensions in the sequel.3

Rule Const implements loop lifting for constant
atomic values as introduced in Section 3.1. The vari-
able environment Γ is updated and accessed in Rules
Let and Var in a standard fashion: to compile
let $v := e1 return e2, translate e1 in environment
Γ to yield the SQL query q1, then compile e2 in the
enriched environment Γ + {$v 7→ q1}. A reference to
$v in e2 then yields q1 via Rule Var.

Essentially, Rule Seq compiles the sequence construc-
tion (e1,e2) into an SQL UNION of the relational en-
codings q1 and q2 of e1 and e2. Note that this evaluates
the sequence construction for all iterations encoded in
q1, q2 at once. Figure 9 exemplifies the operation of
the compiled code. Relation q1 encodes two sequences:
(1) in iteration 0 and (10,20) in iteration 1, while q2

encodes (2) in iteration 0 and (30) in iteration 1. The
SQL code generated by Rule Seq computes the result
in Figure 9(c): the sequence construction evaluates to
(1,2) in iteration 0 and (10,20,30) in iteration 1, as
expected.

Exploiting OLAP functionality. In Figure 9(c),
note that the resulting pos column, in general, is not
densely populated for each iteration (i.e., in each iter

partition). While this is neither a problem for the se-
quence encoding nor for the compilation process per se,
we can use an alternative SQL implementation—based
on the SQL/OLAP amendment defined for SQL:1999
[16]—which will generate a dense pos column in each
iter partition (ordering by columns ord ,pos ensures
that sequence order is respected: items encoded in q1

will appear before items encoded in q2):

SELECT iter ,
DENSE_RANK() OVER
(PARTITON BY iter ORDER BY ord , pos) AS pos,
pre, val

FROM (SELECT *, 0 AS ord FROM q1

UNION
SELECT *, 1 AS ord FROM q2) .

3In fact, the subset may be extended to embrace the com-
plete XQuery Core language. Support for dynamic typing and
validation, however, requires extensions to the minimalistic tree
and sequence encoding discussed here.

Node test n Predicate test(v, n)

* v.kind = "elem"

t (tag name) v.kind = "elem" AND v.prop = "t"

text() v.kind = "text"

node() TRUE

Table 2: Predicate test() represents XPath node tests.

This variant (1) executes substantially faster in our ex-
perimental setup (Section 6), (2) avoids early INTEGER
overflow in the pos column, and (3) works correctly in
case relation q1 is empty (the original SQL code in
Rule Seq requires a slight adaption to ensure this).

Rule Step compiles an XPath location step α::n. The
SQL code yields a node sequence that respects the
XPath semantics: while the DISTINCT clause removes
duplicate nodes, we use the nodes’ preorder rank—
which reflects document order—to order the sequence
(d.pre AS pos). Property frag is tested to avoid that
step evaluation escapes the document fragment of the
current context node e′.

Rule Step uses the auxiliary predicate axis() to
generate code that evaluates the axis α of the location
step (Table 1). Predicate test() of Table 2 encodes the
associated node (name or kind) test n.

Rule For essentially implements the compilation pro-
cedure for for-loops as introduced in Section 3.2. Note
how the rule makes use of the map relation to map
all variables $vi in the environment into the scope
opened by the for expression. The SQL code emit-
ted by Rule For implements the back-mapping step
explained in Section 3.2.

In this context, the OLAP function DENSE_RANK()
may serve as an efficient implementation of the hy-
pothetical row() function introduced in Section 3.2.
If DENSE_RANK() (or equivalent functionality, e.g.,
ROW_NUMBER) is not provided by the SQL dialect of the
target RDBMS, we can rephrase the definition of map

as follows:

SELECT iter AS outer ,
iter ∗ m.pos + e1.pos AS inner

FROM q1 AS e1, (SELECT MAX(pos) AS pos FROM q1) AS m

(qv may be rewritten accordingly). To illustrate, given
the iter and pos columns of relation q1 as shown in
Figure 10(a), this SQL query computes the map rela-
tion of Figure 10(b)—which performs inferior to the
OLAP variant but is good enough to ensure correct
compilation.

Rule Elem emits SQL code for the evaluation of an
XQuery element constructor element t { e } in which
subexpression e is required to evaluate to a sequence
of nodes (v1,v2,. . . ,vn): (1) a new element node
r with tag name t is appended to the table doc of

7



iter pos · ·
0 1 · ·
0 2 · ·
1 1 · ·
1 2 · ·
1 3 · ·

(a) Encoding q1.

outer inner
0 1
0 2
1 4
1 5
1 6

(b) Resulting map.

Figure 10: Computing map without OLAP extensions.

live nodes, (2) the n subtrees rooted at the nodes vi

are extracted (the code effectively evaluates the lo-
cation step $vi/descendant-or-self::node()) and
then appended to doc, and (3) r is made the common
new root of the subtree copies.

Consider the query

let $v := e//b return element r { $v }

in which we assume that e evaluates to the singleton se-
quence containing the root element node a of the tree
depicted in Figure 11(a).4 After XPath step evalua-
tion, $v will be bound to the sequence containing the
two element nodes with tag b (preorder ranks 1, 4).
Figure 11(b) shows the newly constructed tree frag-
ment: the copies of the subtrees rooted at the two b
nodes now share the newly constructed root node r.
The latter also constitutes the result of the overall ex-
pression.

Figure 11(c) illustrates how the new fragment is ap-
pended to the doc table:
(1) the new root node r is appended and assigned the

next available preorder rank MAX(pre + size) + 1,
(2) the nodes in the affected subtrees are appended to

doc (with pre > MAX(pre + size) + 2) with their
size, kind , and prop properties unchanged, and
their level property updated.

To simplify the generated SQL code, we overesti-
mate the size of the copied subtrees to be the size of
the largest subtree. In general, this leads to gaps in
the pre column and an overestimation of the size prop-
erty of the new root node: in Figure 11(c), root r is
recorded with size 4 while the actual number of nodes
below r is 3. Again, this does not affect correctness
(see Section 2.1) and can be fully remedied if OLAP
functionality is available.

5 Extensions and Optimizations

The compilation procedure could be extended to em-
brace a significantly larger subset of XQuery Core than
presented here.

Consistent with our sequence encoding and with
the XQuery semantics we can, for example, define the
effective boolean value [2] of a sequence in different
iterations via the absence or presence of iter values

4Here, for ease of presentation, we assume that e encodes a
node sequence in a single iteration. The SQL code in Rule Elem

handles the general case.

in its encoding (Figures 12(a) and 12(b)). This en-
ables the compilation of XQuery’s conditional expres-

sion if e1 then e2 else e3 as shown in Figure 12(c).
With the conditional available, the language sub-

set may be further extended by (1) predicates e[e],
(2) the existential and universal quantifiers (some,
every), (3) the general comparison operators for se-
quences, and (4) the XQuery where e clause which is
an optional part of the syntactical FLWOR construct.

5.1 Exploiting the Disjointness of Fragments

During Element Construction

Recall that the evaluation of an element constructor
places both, the newly created element node and the
subtree copies in a new separate fragment in table
doc. The new current table of live nodes, computed
in Rule Elem via SQL’s UNION operator, may thus be
written as the disjoint union

doc
.
∪ ∆

where doc is the table of persistent XML nodes and ∆
denotes the transient nodes in the new fragment.

Now consider the evaluation of a second element
constructor element t { e } with e ⊆ doc

.
∪ ∆.

Rule Elem performs the XPath location step

e/descendant-or-self::node()

to extract the subtrees which need to be copied into
the new fragment. Since the evaluation of an XPath
location step never escapes the fragment of its con-
text node, the following would be an equivalent way
to compute the nodes in the subtrees:

(e ∩ doc)/descendant-or-self::node()
.
∪

(e ∩ ∆)/descendant-or-self::node()

Although more complex at first sight, this variant per-
forms the bulk of the work5 on the persistent doc table
and thus can fully benefit from the presence of indexes
(Section 6). The former variant, on the other hand,
has to evaluate the descendant-or-self axis step on
the derived table doc UNION ∆ which lacks index sup-
port.

After evaluation of the second element constructor,
the new table of live nodes is

(doc
.
∪ ∆)

.
∪ ∆′ = doc

.
∪ (∆

.
∪ ∆′)

such that this optimization remains applicable after an
arbitrary number of element constructor evaluations.
More importantly, note that XPath step evaluation in
general can benefit from this disjointness of fragments.

5Typically, |∆| ¿ |doc|.
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0a5

1b1

2c0

3d1

4b0

5e0

(a) Original tree.

6r4

7b1

8c0

9b0

(b) New tree
fragment.

pre size level kind prop frag
0 5 0 "elem" "a" 0
1 1 1 "elem" "b" 0
2 0 2 "elem" "c" 0
3 1 1 "elem" "d" 0
4 0 2 "elem" "b" 0
5 0 1 "elem" "e" 0

pre size level kind prop frag
0 5 0 "elem" "a" 0
1 1 1 "elem" "b" 0
2 0 2 "elem" "c" 0
3 1 1 "elem" "d" 0
4 0 2 "elem" "b" 0
5 0 1 "elem" "e" 0
6 4 0 "elem" "r" 1
7 1 1 "elem" "b" 1
8 0 2 "elem" "c" 1
9 0 1 "elem" "b" 1
10

9
>>>>>>>>>>>;

(c) Table doc before (left) and after element construction. The size of node r

has been overestimated.

Figure 11: Element construction and the resulting extension of table doc.

iter
0
1
2

(a) Current
loop.

iter pos · ·
0 1 · ·
0 2 · ·
2 1 · ·

(b) Encoded
sequence.

SELECT *

FROM q2 AS e

WHERE EXISTS (SELECT e.iter FROM q1 AS c WHERE c.iter = e.iter)
UNION

SELECT *

FROM q3 AS e

WHERE NOT EXISTS (SELECT e.iter FROM q1 AS c WHERE c.iter = e.iter)

(c) Evaluation of a conditional expression (qi encodes expression ei).

Figure 12: The effective boolean value of the encoded sequence (b) in the current loop is true in iterations 0 and
2, and false (i.e., the empty sequence) in iteration 1. SQL code generated for if e1 then e2 else e3 in (c).

5.2 Bundling XPath Steps

Even if a query addresses nodes in only moderately
complex XML documents, XPath path expressions are
usually comprised of multiple, say k > 1, location steps
(let e denote a sequence of context nodes):

e/α1::n1/α2::n2/ · · · /αk::nk . (Q3)

Operator / associates to the left such that the above
is seen by the compiler as

(

· · · ((e/α1::n1)/α2::n2)/ · · ·
)

/αk::nk

which also suggests the evaluation mode of such a
multi-step path. Proceeding from left to right, the
ith location step computes the context node sequence
(in document order and with duplicates removed) for
step i + 1. For k = 2, the normalized XQuery Core [5]
equivalent reads (slightly simplified):

distinct-doc-order(
for $v1 in e return
distinct-doc-order(
for $v2 in $v1/α1::n1 return
$v2/α2::n2))

Note that Rule Step already improves on this naive
evaluation scheme: while the above iterates the step
evaluation for each context node, the compiler emits
SQL code that applies a location step to a whole con-

text node sequence. In a sense, Rule Step implements

the above iteration implicitly via the self-join of table
doc.

Nevertheless, the compilation of a k-step path, and
thus the k-fold application of Rule Step, leads to an
SQL query that is nested to depth k. The nesting is not
a problem per se for the RDBMS—in the terminology
of Kim [12], Rule Step generates uncorrelated type N

nested queries. However, at each nesting level, i.e., k
times, the system

(1) joins the current context node sequence with doc

to retrieve the necessary context node properties
(only the preorder rank property pre is available
in the sequence encoding),

(2) performs the doc self-join to evaluate the XPath
axis and node test, and finally

(3) removes duplicate nodes generated in step (2).

Especially the latter proves to be quite expensive [11].

Since we target a relational database backend, we
can do better: the tree encoding of Section 2.1 allows
us to evaluate a multi-step path as a whole [9, 10]. In
a modified compiler, Rule Step is replaced by a new
Rule Steps which is applicable to queries of the gen-
eral form Q3. For a k-step path, the new rule emits a
flat k-way self-join of table doc (plus a single join with
the initial context node sequence e). This, in turn, en-
ables the RDBMS to choose and optimize join order.
In our experiments (Section 6) we observed that the
system decided to evaluate certain paths in a “back-
ward” fashion. Furthermore, duplicate removal is now
required only once. If the RDBMS kernel includes a
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tree-aware join operator, e.g., staircase join [10], du-
plicate removal may even become obsolete.

6 Experiments: DB2 Runs XQuery

An RDBMS can be an efficient host to XQuery. To
support this claim and in order to assess the viability
and performance of our approach, we ran a number of
queries from the XMark benchmark series [17] on the
IBM DB2 UDB V8.1 database system. The database
was hosted on a dual 2.2 GHz Pentium 4 Xeon system
with 2 GB RAM, running a version 2.4 Linux kernel.
The experiment was the only client connected to the
database. No other processes were active besides a
small number of system daemons.

We used the XML generator XMLgen from the
XMark project to create XML document instances
with sizes ranging from 110 KB to 1.1 GB (5,000 to
50 million nodes). An instance of the doc table was
created for each document size and then populated
with the encoded XMark XML documents as described
in Section 2. The database resided on a single SCSI
disk, with the buffer pool size set to 200,000 pages.

To make the point that an RDBMS can indeed be
an efficient host to XQuery, we presented the result of
the compilation process to the system’s workload anal-
ysis tools. The DB2 index advisor db2advis was used
to recommend a set of indexes to optimally support
our workload. The recommendations included indexes
on the pre column of the doc table to support queries
on the XML tree structure, and indexes on the prop

column to support node tests.
We created the recommended indexes and issued

DB2’s reorg command to optimize the physical data
placement on secondary storage. No other “wizardry”
was applied. Experiments were run with a “warm”
database buffer cache: each query was run five times,
only the latter four timings were recorded and aver-
aged.

6.1 Impact of OLAP Availability and

XPath Step Bundling

Sections 4 and 5 described the use of SQL OLAP func-
tions as well as the bundling of successive XPath steps
as two promising optimization hooks. To verify the ef-
fectiveness of these techniques, we repeatedly executed
query XMark 1 on a 110 KB XML document with and
without these optimizations applied. The effects are
substantial: execution times are reduced by orders of
magnitude (Table 3).

It turns out, that our choice of sequence encoding
and representation of iteration, i.e., a single relation
encodes the sequence value for all iterations of a for-
loop, is a perfect match for the SQL/OLAP ranking
and partitioning functionality. The compiler can re-
peatedly make use of the idiom

DENSE_RANK() (PARTITION BY iter ORDER BY iter , pos)

Optimization exec. time [s] # tbl. acc.

no optimization 5995 196
use of OLAP functions 0.14 43
bundled XPath steps 0.02 24
OLAP and bundled XPath 0.002 13

Table 3: Effectiveness of optimizations. Execution
times and number of accesses to the doc relation for
XMark 1 run on a 110 KB document with different
optimizations applied.

to compute dense sequence positions (property pos)
inside an iteration, i.e., inside an iter partition. Like-
wise, the compiler may emit

DENSE_RANK() (ORDER BY iter , pos)

to densely populate iter columns, e.g., during the com-
putation of map (Section 3.2).

Furthermore, most XMark queries feature multi-
step path expressions—typical path lengths are 3 or
4 steps—such that these queries are also subject to
the XPath step bundling optimization (Section 5.2).
Taken together, both optimizations reduced the num-
ber of accesses to the persistent doc relation by a factor
of 15.

6.2 Disjointness of Fragments

Remember that the construction of new element nodes
essentially leads to a UNION operation that extends the
persistent doc relation by a disjoint transient set of
nodes.

XMark 13 features two successive element construc-
tors6 and thus is a typical candidate for the disjoint
fragments optimization of Section 5.1:

for $i in fn:doc("auction.xml")/site
/regions/australia/item

return
element item { (element name { $i/name/text() },

$i/description) }

Document "auction.xml" resided in the persistent
doc table and thus received full index support.

To evaluate the query, the system eventually cre-
ated the name element nodes and subtree copies and
extended the doc table accordingly. Note that the sit-
uation in XMark 13 perfectly matches the scenario of
Section 5.1: when the item element nodes are cre-
ated, their child nodes are taken from both, the per-
sistent document ($i/description) and the transient
live nodes (the name element nodes).

With the optimization applied, access without in-
dex support was only required for the relatively few
transient name nodes. Without this optimization, all

6In the original XMark 13 query, the inner constructor cre-
ates an attribute node. Our discussion is not affected by this
adaptation.
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execution time [s]
Optimization 1.1 MB 11MB 55 MB

no optimization 1.1 48.7 1088
fragment disjointness 0.31 2.9 14.7

Table 4: XMark 13 on various XML document sizes
with and without exploitation of fragment disjointness.
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Figure 13: XMark queries run on documents of various
sizes.

child nodes of the newly created item elements resided
in a derived table with no persistent index support at
all. We ran both variants on our test database and
observed the execution times documented in Table 4.
The experiment clearly indicates the potential of this
optimization technique.

6.3 XMark on DB2

Finally, to evaluate our compilation procedure on a
range of document sizes, we chose a set of queries from
the XMark benchmark. The set comprises the XQuery
constructs which have been discussed in the foregoing,
namely FLWOR and XPath expressions (all queries), and
element construction (XMark 2). XMark 6 and 7 fur-
ther contain XQuery aggregate functions (fn:count)
and can benefit from the efficient implementation of
their SQL counterparts in the relational system.

All queries were compiled with optimizations ap-
plied. The results are depicted in Figure 13 and con-
firm the scalability of our approach with respect to
the document size. Execution times are reasonable
even for the 1 GB XMark document instance. The
milli-second range timings for XMark 1 stem from the
fact that this query essentially measures XPath per-
formance. We have observed similar figures in earlier
work [9, 10].

7 Related Research and Systems

As of today, we are not aware of any other published
work which succeeded in hosting XQuery efficiently on
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Figure 14: XMark 13: DB2 and Galax 0.3.5 compared.

an SQL-based RDBMS. A recent survey paper sug-
gests the same [13]. The compilation procedure de-
scribed here (1) is compositional, (2) does not depend
on the presence of XML Schema or DTD knowledge
(the compiler is schema-oblivious unlike [15,18]), and,
(3) is purely relational in the sense that the compiler
translates XQuery into standard SQL:1999 plus OLAP
extensions: there is no need to invade or extend the
database kernel to make the approach perform well
(although we may benefit from such extensions [10]).

Evidence for the latter is also provided by exper-
iments in which we compared the relational XQuery
host and the XQuery processor Galax [6]. Galax op-
erates on an in-memory representation of XML docu-
ments and implements the XQuery Formal Semantics
specification quite literally, i.e., nested for-loops are
evaluated in a nested-loops fashion, XPath path ex-
pressions are evaluated step-by-step, etc. We thus ex-
pected the strengths of relational technology to come
in useful especially with increasing document sizes—
this is exactly what the measured execution times for
XMark 13 indicate (Figure 14).

The work described in [4] comes closest to what we
have developed here. Based on a dynamic interval en-
coding for XML instances, the paper presents a compo-
sitional translation from a subset of XQuery Core into
a set of SQL view definitions. The translation scheme
falls short, however, of preserving fundamental seman-
tic properties of XQuery (sequence order) and exhibits
shortcomings in the encoding in general (e.g., the ap-
proach is unable to correctly represent a sequence con-
taining both, a node v and any descendant(s) of v).

We feel that the most important drawback, how-
ever, is the complexity and execution cost of the SQL
view definitions generated in [4]. The compilation of
path expressions, for example, leads to nested corre-

lated queries—the RDBMS falls back to nested-loops
plans, which renders the relational backend a poor
XQuery runtime environment. To achieve acceptable
performance, the authors indeed proposed modifica-
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tions to the relational engine specifically geared to sup-
port the dynamic interval encoding (SQL-based tim-
ings were never published).

8 Conclusions and Work in Flux

The XQuery compiler described in this paper targets
SQL-based relational database backends and thus ex-
tends the relational XML processing stack, which was
already known to be capable of providing XML mass
storage as well as efficient XPath support. The com-
pilation procedure is largely based on a specific en-
coding of sequences (the principal data structure in
the XQuery data model apart from trees) which allows
for the set-oriented evaluation of nested for-loops (the
principal query building block in XQuery). Operations
on this encoding receive excellent support from widely
available OLAP extensions to the SQL:1999 standard.

Our XQuery to SQL compiler offers a variety of inter-
esting hooks for extension and optimization, many of
which we were not able to present here. Current work
in flux is related to a considerable generalization of the
disjoint fragments observation of Section 5.1. Since
the early days of the development of XQuery Core,
it has been observed that certain language constructs,
in particular FLWOR expressions, enjoy homomorphic
properties—in [7] this was shown by reducing FLWOR
expressions to list (or sequence) comprehensions. This
may open the door for compiler optimizations [8] that
minimize those parts of a query which need to operate
on transient live nodes.
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