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This article is a proposal for a database index structure, the XPath accelerator, that has been specif-
ically designed to support the evaluation of XPath path expressions. As such, the index is capable to
support all XPath axes (including ancestor, following, preceding-sibling, descendant-or-self,
etc.). This feature lets the index stand out among related work on XML indexing structures which
had a focus on the child and descendant axes only. The index has been designed with a close eye
on the XPath semantics as well as the desire to engineer its internals so that it can be supported
well by existing relational database query processing technology: the index (a) permits set-oriented
(or, rather, sequence-oriented) path evaluation, and (b) can be implemented and queried using
well-established relational index structures, notably B-trees and R-trees.

We discuss the implementation of the XPath accelerator on top of different database backends
and show that the index performs well on all levels of the memory hierarchy, including disk-based
and main-memory based database systems.

Categories and Subject Descriptors: E.1.0 [Data Structures]: Trees; H.2.4 [Database Manage-
ment]: Systems—relational databases; query processing

General Terms: Performance, Theory
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1. INTRODUCTION

It is hard to find an answer to the question of why XML has been so successful
in being adopted as a universal data exchange format. One possible answer
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might be that the data type underlying the XML, the tree, is expressive enough
to capture the structure of diverse data sources, yet simple enough to permit
efficient as well as elegant (especially recursive) algorithms to process such
data.

Essentially, XML provides an unlimited number of tree dialects, some of
which have been formally described by DTDs or XML Schema types, some
of which are used in a one-time or ad hoc schema-less manner. The simplic-
ity of the XML approach made hundreds of dialects emerge, among these the
most widely used dialect HTML (or XHTML, to be precise). Other dialects in-
clude the NITF standard (data exchange in the news industry), the weather
mark-up language WeatherML, CellML (computer-based biological models), or
XMLPay, whose instances describe Internet-based payments.

As more sources switch over and express their contents using XML dialects,
the sheer volume of data calls for XML-aware data management solutions built
on database technology.

The database community is well underway to adapt its technology to host
large XML stores and to query these stores efficiently, preferably using query
languages developed in the XML domain: XPath [Berglund et al. 2002] and
XQuery [Boag et al. 2002; Fernandez et al. 2002].

In line with the tree-centric nature of XML, XPath provides operators to
describe path traversals in tree-shaped documents. Starting from a context
node, an XPath query traverses its input document using a number of steps.
A step’s axis indicates which tree nodes are reachable from the context node,
the step’s node test then filters the reachable nodes by tag name or node kind.
These intermediary nodes are then, recursively, interpreted as context nodes
for subsequent steps, and so forth. The XPath specification [Berglund et al.
2002] lists a family of 13 axes, among these the child and descendant-or-self
axes, probably more widely known by their mnemonic abbreviations / and //,
respectively.

The recursion inherent in tree-shaped data types as well as in operations over
these types turns out to be a challenge for database-based approaches to XML
storage and querying. This is especially true for relational database technology
whose native data model (tables of tuples) and native query language SQL have
originally not been designed to deal with recursion.

Recently, a whole host of efficient storage structures and indexing schemes
have been developed that summarize an XML document so that these prob-
lems can be dealt with Cooper et al. [2001], Li and Moon [2001], Suciu and
Milo [1999], and Goldman and Widom [1997]. Almost exclusively, however,
these techniques put their focus on support for step evaluation along the
child and descendant-or-self axes. This is hardly adequate support for the
XPath language. Additionally, these proposals quite often rely on query pro-
cessing algorithms which call for implementation techniques that lie outside
the relational domain, with all the related drawbacks: Software layers in ad-
dition to the database host, transactional issues, performance implications,
etc.

This work proposes an index structure, the XPath accelerator, that can com-
pletely live inside a relational database system, that is, it is a relational index

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



Accelerating XPath Evaluation in Any RDBMS • 93

structure in the sense of Kriegel et al. [2000]. Its implementation can bene-
fit from well-established indexing technology, notably the B-tree but also the
R-tree, which has by now found its way into mainstream relational database
systems. The index has been developed with a close eye on the XPath semantics
and is thus able to support all XPath axes. The XPath accelerator maintains
the document order among nodes and supports XPath path traversals which
resume from arbitrary context nodes (i.e., the document root node is not spe-
cial). Loading as well as querying the index is simple, yet its performance beats
measurements published in recent related work.

It is possible to squeeze even more out of the XPath accelerator idea, if it
is carefully implemented and tuned for a specific database back-end. We de-
scribe such refinements tailored for the relational disk-based database system
IBM DB2 as well as the main-memory database system Monet [Boncz 2002].
In the case of IBM DB2, we pursue a purely relational implementation us-
ing SQL as the implementation language. In the case of Monet, with its open
and extensible database kernel, we take advantage of properties of XPath ac-
celerator internals, for example, the exploitation of document order, which a
traditional RDBMS cannot. Instead, we use Monet’s versatile programmable
algebraic kernel interface that enables a number of most useful optimizations.
We additionally describe logical, that is, back-end independent optimization
hooks, which we believe to be relevant in other implementation scenarios as
well.

The article proceeds as follows: The next section provides a closer look at
the XPath axes and their semantics. This will yield the notion of document re-
gions. An efficient encoding for these is then described in Section 3. Section 4
exploits the fact that we are operating with tree-shaped data and derives a
series of improvements to the original XPath accelerator idea. We then ex-
plore three possible XPath accelerator back-ends—IBM DB2, Monet, and an
R-tree based file interface—and discuss a number of implementation details
as well as back-end specific issues in Section 5. Section 6 assesses and com-
pares the performance of the resulting XPath engines. Section 7 reviews related
work before we conclude in Section 8. Two electronic appendices additionally
shed light on how the XPath accelerator supports XML document loading and
serialization.

We assume that the reader is familiar with the XPath 2.0 specification
[Berglund et al. 2002]. In particular, we assume that an XPath location step
yields a node sequence (in document order) rather than a nodeset.

2. XPATH AXES AND XML DOCUMENT REGIONS

XML documents represent tree-shaped data, and the XPath language is built
around a core feature, the path expression, that has been designed to traverse
such trees. Each XML tree node assumes one of several node kinds (e.g., element,
attribute, text, comment, processing instruction). Leaving these node kinds aside
for a minute, the gist of a well-formed XML document always describes a tree
whose shape is encoded via the proper nesting of start and end tags (details of
the XPath data model can be found in Berglund et al. [2002]).
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Fig. 1. Two XML fragments and their common tree shape.

Fig. 2. XPath semantics: Shaded nodes are reachable from context node f via a step along the (a)
ancestor, (b) preceding, and (c) descendant axes.

Figure 1 depicts two XML fragments and the tree shape shared by both.
In this tree, the inner nodes a, b, c, f , g , h represent XML element nodes, the
leaf nodes d , e, g , i, and j represent either (empty) elements, attributes, text,
comments, or processing instructions.

To synchronize some terminology: Node a is the root of the tree; height(v) is
the length of the longest path from v to a leaf in the subtree rooted at v, for
example, height(a) = 3; level(v) = n if the path from the root to v has length n,
for example, level(a) = 0 and level(e) = 3.

XPath path expressions specify a tree traversal via two parameters:

(1) a sequence of context nodes which provides the starting point of the traver-
sal,

(2) a list of steps, syntactically separated by /, evaluated from left to right.
For each context node in turn, a step’s axis establishes a subset of doc-
ument nodes (a document region). The subsets are unioned together and
then sorted in document order to form the sequence of context nodes for the
subsequent step, if any.

Note that these sequence-oriented semantics bear some resemblance with
the relational algebra in which operators consume and produce sets of tuples
rather than single tuples. Section 4.4 discusses optimizations we can derive
from sequence-orientation.

To illustrate the XPath axes and the document regions they establish,
Figure 2 depicts the resulting nodes for three steps along different axes taken
from context node f (observe that the preceding axis does not include the
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Table I. Semantics of Axes α Supported by XPath (Step v/α::node())

Axis α Result Nodes
child child nodes of v
descendant closure of child
descendant-or-self like descendant, plus v
parent parent node of v
ancestor closure of parent
ancestor-or-self like ancestor, plus v
following nodes following v in the tree (excluding descendants)
preceding nodes preceding v in the tree (excluding ancestors)
following-sibling like following, same parent as v
preceding-sibling like preceding, same parent as v
attribute attribute nodes owned by v
self v
namespace namespace nodes owned by v

ancestors of the context node). Table I lists all XPath axes and verbally sketches
their semantics. We will provide a precise specification in Section 3.1.

2.1 XML Document Partitions

There are four axes which are of primary interest to us, namely: descendant,
ancestor, following, and preceding. For the sole purpose of easy identification,
we will call these major axes from now on.

For any given context node v, the four major axes specify a partitioning of the
document containing v (this is our main motivation for calling the respective
node sets document regions). Regardless of choice of v, the node set1

v/descendant ∪ v/ancestor ∪
v/following ∪ v/preceding ∪ {v}

contains each document node exactly once. Figure 2 illustrates this property
for context node f (note that f /following yields the empty node set for this
document instance). We have(

f /descendant ∪ f /ancestor ∪
f /following ∪ f /preceding ∪ { f }

)
= {a, . . . , j }.

The key idea of this work is to find an index structure such that, for any
given context node, we can efficiently determine the set of nodes in the four
document partitions specified by the major axes. The further XPath axes
(parent, child, descendant-or-self, ancestor-or-self, following-sibling,
and preceding-sibling) determine specific supersets or subsets of these node
sets which are easy to characterize.

Note that an index designed along these lines will contain each document
node exactly once, due to the partitioning property of the four major axes. We
may thus use such an index as the only representation of the XML document
inside the database.

1In line with the XPath specification, we identify a node v and the singleton node sequence (v). In
the XPath expression v/α = (v)/α, a step along axis α is taken from the single context node v.
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To complete our review of the XPath core, let us note that a step along axis
α is accompanied by a node test τ (the syntactic form is α::τ ), which restricts
the selected node set to either

(1) those element or attributes nodes having name τ (name test), or
(2) those nodes having kind τ (kind test, with τ ∈ {node(), text(), comment(),

processing-instruction()}).
Without an explicit kind test, an axis exclusively delivers nodes of its prin-

cipal node kind which is element for all but the attribute axis which yields
attribute nodes only. A node() kind test accepts nodes of arbitrary kind, a *
name test accepts nodes with arbitrary name.

In the following, we primarily focus on this XPath core, that is, on axis steps
and accompanying node tests as these are what the XPath accelerator is de-
signed to accelerate. In appropriate places, however, we will make short re-
marks on other features of XPath and how their evaluation can be combined
with axis step acceleration.

3. ENCODING XML DOCUMENT REGIONS

We are now left with the challenge to find an encoding of the tree-shaped node
hierarchy in an XML document that

(1) retains the region notion induced by the four major XPath axes, and
(2) can be efficiently supported by existing relational database technology.

Here, efficiency means that the encoding has to map the input tree-shape into
a domain in which a node’s region membership may be tested by a simple
relational query.

The problem is that the XPath semantics are far from simple. To quote the
XPath 2.0 specification, “. . . the preceding axis contains all nodes, in the same
document or document fragment as the context node, that are before the context
node in document order, excluding any ancestors and excluding attributes nodes
and namespace nodes.” [Berglund et al. 2002]

Informally, the document order of the nodes of an XML instance corresponds
to the order in which a sequential read of the XML (textual) representation of
the instance would encounter the nodes. A much more useful characterization
of document order in our context is that this order is determined by a preorder
traversal of the document tree. In a preorder traversal, a tree node v is vis-
ited and assigned its preorder rank pre(v) before its children are recursively
traversed from left to right.

For the example instances shown in Figure 1, the document order is a < b <
c < d < e < f < g < h < i < j , and thus pre(a) = 0, pre(b) = 1, . . . , pre( j ) = 9.

A postorder traversal is the dual of preorder traversal: A node v is assigned
its postorder rank post(v) after all its children have been traversed from left to
right. Again, for the example we get post(d ) = 0, post(e) = 1, . . . , post(a) = 9
(see Figure 3 for the complete pre- and postorder rank assignment).

As others have noted [Dietz and Sleator 1987; Li and Moon 2001; Zhang et al.
2001], one can use pre(v) and post(v) to efficiently characterize the descendants
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Fig. 3. Preorder/postorder rank assignment and node distribution in the resulting pre/post plane.
Also indicated are the XML document regions as seen from context nodes f (−−) and i (· · · · · ·).

v′ of node v. We have that

v′ is a descendant of v
⇔

pre(v) < pre(v′) ∧ post(v′) < post(v).

Intuitively, this may be read as: During a sequential read of the XML docu-
ment, we have seen the start tag <v> before <v′> and the end tag </v> after
</v′>. In other words, the element corresponding to v′ is part of the contents
of the element corresponding to v.

This characterizes the descendant axis of context node v, but we can use
pre(v) and post(v) to characterize all four major axes in an equally simple
manner.

Figure 3 illustrates the node distribution of the example document after its
nodes have been mapped into a pre/post plane. For example, document root
element a is located at coordinates 〈pre(a) = 0, post(a) = 9〉 like its preorder
and postorder ranks determine.

As indicated before, node f induces a partition of the plane into four disjoint
regions (cf. Figure 2):

(1) the lower-right partition U contains all descendants of f ,
(2) in the upper-left partition R, we find the ancestors of f , i.e., node a only,
(3) the lower-left partition T hosts the nodes preceding f , and finally
(4) the upper-right partition S represents the nodes following f (as we have

noted earlier, this region is empty for this example instance).

This characterization of document regions applies to all nodes in the plane
(note that the descendant axis of node i is empty, since i is a leaf node). This
means that we may pick any node v and use its location in the plane to start an
XPath traversal, that is, make v the context node. The index has no bias towards
a specific context node set, for example, the document root element, or a specific
set of queries. This turns out to be an important feature when it comes to the
implementation of XQuery. XQuery is a fully compositional query language:
Arbitrary expressions (e.g., variables bound in iteration constructs like for and
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every, calls to user-defined functions, element nodes constructed at runtime)
yield arbitrary context node sequences from which an XPath path traversal
may resume. This is different from the evaluation of ad hoc XPath queries, say,
where the context node for the first axis step preferably is the document root.

3.1 Axes and Query Windows

Evaluating a step along a major axis amounts to responding to a rectangular
region query in the pre/post plane. Database indexes, especially R-trees but
also B-trees, are highly optimized to support this kind of query.

To support the remaining XPath axes and node tests, we need only little
extra bookkeeping for each node. For context node v, axes ancestor-or-self
and descendant-or-self simply add v to the ancestor or descendant regions,
respectively. Node v is easily identified in the plane since its preorder rank pre(v)
is unique. For axes following-sibling and preceding-sibling, it is sufficient
to keep track of the parent’s preorder rank pre(v) for each node v, because
siblings share the same parent. pre(v) readily characterizes axes child and
parent, too.

To support node tests, that is, name tests as well as kind tests, we additionally
maintain

—name(v), storing the element tag name or attribute name of node v if v is of
the respective kind, otherwise name(v) = (undefined), and

—kind(v) ∈ {node, elem, attr, text, comment, processing-instruction}.
This completes the encoding. Each node v is represented by its 5-dimensional

descriptor

desc(v) = 〈 pre(v), post(v), pre(v), kind(v), name(v)〉.
An XPath axis corresponds to a specific query window in the space of node
descriptors. Table II summarizes the windows together with the corresponding
axes they implement. A node v′ is inside the query window, if its descriptor
desc(v′) matches the query window component by component. For the first two
components, pre and post, pre(v′) and post(v′) have to lie inside the respective
ranges. A ∗ entry indicates a don’t care match which always succeeds.

The elem and attr entries under kind in Table II reflect the principal node
kinds [Berglund et al. 2002] of the respective axes. If a name or kind test τ is ap-
plied to the step, the name or kind entry in window(α, v) is set to τ , respectively.
We thus have, for example,

window(preceding::text(), v) = 〈[0, pre(v)), [0, post(v)), ∗, text, ∗〉.
Note that we try to be specific in the definition of the query windows. For a
node v′, to be a child of context node v it is sufficient to test the condition
pre(v′) = pre(v), thus we could have defined

window(child, v) = 〈∗, ∗, pre(v), elem, ∗〉.
However, a child v′ of v is clearly contained in the descendant region of v, so
we additionally know that pre(v) < pre(v′)∧post(v′) < post(v). Similar remarks
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Table II. XPath Axes α and their Corresponding Query Windows
window(α, v) (context node v)

Query window window(α, v)

Axis α pre post par kind name

child 〈 (pre(v),∞) , [0, post(v)) , pre(v) , elem , ∗ 〉
descendant 〈 (pre(v),∞) , [0, post(v)) , ∗ , elem , ∗ 〉
descendant-or-self 〈 [pre(v),∞) , [0, post(v)] , ∗ , elem , ∗ 〉
parent 〈 [pre(v), pre(v)] , (post(v),∞) , ∗ , elem , ∗ 〉
ancestor 〈 [0, pre(v)) , (post(v),∞) , ∗ , elem , ∗ 〉
ancestor-or-self 〈 [0, pre(v)] , [post(v),∞) , ∗ , elem , ∗ 〉
following 〈 (pre(v),∞) , (post(v),∞) , ∗ , elem , ∗ 〉
preceding 〈 [0, pre(v)) , [0, post(v)) , ∗ , elem , ∗ 〉
following-sibling 〈 (pre(v),∞) , (post(v),∞) , pre(v) , elem , ∗ 〉
preceding-sibling 〈 [0, pre(v)) , [0, post(v)) , pre(v) , elem , ∗ 〉
attribute 〈 (pre(v),∞) , [0, post(v)) , pre(v) , attr , ∗ 〉

apply to the windows assigned to the parent and attribute axes. We say more
about essential opportunities to shrink window sizes in Section 4.1.

The above encoding is presented as if there were only one document, whereas
in general a system may store many. Observe, however, that multiple docu-
ments can be gathered into one global document by introducing a global root
node that has the root nodes of the various documents as its children. By en-
coding the global document in the aforementioned way, all one-document mech-
anisms readily carry over to a multidocument setting. Query windows should
stay within document boundaries, which can easily be achieved by respecting
separately stored minimum and maximum preorder rank values.

4. ENHANCING TREE AND XPATH AWARENESS

In what follows, we will explore four refinements of the original XPath accel-
erator idea. These optimizations aim to make better use of the fact that the
pre/post plane encodes tree-shaped data rather than an arbitrary point set. In
a sense, the optimizations enhance the tree awareness of the index:

(1) The first exploits a dependency between the pre(v) and post(v) ranks for any
node v in the document tree to substantially shrink the size of the query
windows we need to consider.

(2) We may also choose to “stretch” the pre/post plane such that the node subset
associated with the descendant axis is characterized by a single pre or post
range (i.e., not both). This especially boosts B-tree based XPath accelerators.

(3) The XPath language specification exhibits symmetries between axes. We
can exploit these to reorder XPath expressions such that the portion of the
pre/post plane we need to consider is reduced for the reordered expression.

(4) Finally, remember that an XPath axis step is computed for a sequence of
context nodes. An analysis of the context nodes and their placement in the
pre/post plane can be used to avoid pointless and duplicate query window
evaluation beforehand.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



100 • T. Grust et al.

Fig. 4. Identifying the nodes with minimum post (v′′) and maximum pre (v′) ranks if a descendant

step is taken from v.

4.1 Staking Out Subtrees

It should be obvious that the area covered by the query window corresponding
to an XPath axis has an impact on the performance of step evaluation along this
axis. There are additional dependencies between pre(v), post(v), as well as the
tree height height(t), which we can use to efficiently characterize the subtree
below node v and thus the nodes returned by v/descendant::τ .

The following observation justifies the optimization: for any node v in a tree
t, we have that

pre(v)− post(v)+ size(v) = level(v) (1)

where size(v) denotes the number of nodes in the subtree below v. In Figure 1,
for example, we know that pre(b) = 1, post(b) = 3, and size(b) = 3, so that
1− 3+ 3 = 1, which equals level(b).

Consequently, for a leaf v′ of the tree, we have size(v′) = 0 by definition, so
that the above becomes

pre(v′)− post(v′) = level(v′) 6 height(t). (2)

For a specific leaf below v, namely the rightmost leaf v′ (Figure 4), we addi-
tionally know that

post(v) = post(v′)+ (level(v′)− level(v))︸ ︷︷ ︸
6height(t)

(3)

since a postorder traversal of t consecutively ranks the level(v′) − level(v) an-
cestors of v′ until it finally visits node v (cf. the traversal steps in Figure 4).

Now suppose that we are about to take a step along the descendant axis from
context node v. In the subtree below v, the rightmost leaf node v′ clearly is the
node with the maximum preorder rank: Any other node in the subtree has been
visited prior to v′ and thus has a preorder rank less than pre(v′).

Equations (2) and (3) provide us with an upper bound for pre(v′) and thus for
all nodes in the subtree, namely

pre(v′) 6 post(v)+ height(t).

A dual argument applies to the leftmost leaf node v′′ below v. Its postorder
rank post(v′′) is minimal in the subtree. Again, (2) and (3) characterize a lower
bound for post(v′′) and therefore for all other nodes in subtree:

post(v′′) > pre(v)− height(t).
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Fig. 5. Original (dark) and shrunk (light) pre and post scan ranges for a descendant step to be
taken from v.

Note that both bounds are exclusively expressed in terms of the descriptor
of the context node v and the overall height of the XML document. Given only
the context node v, this enables us to shrink the associated descendant window
as shown below:

window (descendant, v) =
〈(pre(v), post(v)+ height(t)],
[pre(v)− height(t), post(v)),
∗, elem, ∗〉.

(4)

As a result, the size of the descendant window of v is now solely dependent
on the size of the actual subtree below v, regardless of the size of the overall
document. Due to the approximation of level in Eq. (3), this estimation of size(v)
may be off by maximally height(t). This is insignificantly small, however, since
in practice, XML document trees t are often rather shallow; a typical height(t)
is below one hundred, even for multi-million node documents.

While this optimization is tailored to improve steps along the descen-
dant axis, the original definitions for window(descendant-or-self, v), win−
dow(child, v), and window(attribute, v) can be altered in the same manner
and will benefit as well. Figure 5 illustrates the original as well as the im-
proved query window and scan ranges for a descendant step.

4.2 A Stretched Pre/Post Plane

All axis query windows in the two-dimensional pre/post plane depend on a range
selection in the pre as well as the post dimension. If the nodes in the window
are determined via two independent range queries in both the pre and post
dimensions, large query windows generally lead to numerous false hits during
either scan: In Figure 5, the two dotted regions enclose the false hit nodes
encountered during the scans along the pre and post dimensions. These nodes
have to be filtered out during a subsequent intersection.

A simple modification to the construction of the pre/post plane allows us to
take a step along the pervasive descendant axis with a single range scan over
the pre or the post dimension.
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Fig. 6. Stretched preorder/postorder rank assignment and node distribution in the resulting
pre/post plane. The dashed lines (−−) mark a pre and a post range, any of which characterizes
the descendants d , e of context node c.

Note that the document regions with respect to a context node v, as displayed
in Table II, are defined relative to pre(v) and post(v). The absolute pre and post
values, however, are insignificant. We can exploit this observation and modify
the computation of pre(v) and post(v): Couple the preorder and postorder ranks
such that whenever pre is incremented, post is as well and vice versa.

In the resulting preorder and postorder rank assignment (depicted in
Figure 6) for all descendants v of node c, say, we thus have

pre(c) < pre(v) < post(c) as well as pre(c) < post(v) < post(c). (5)

No other nodes v fulfill the inequalities in (5) since we continue to monotonically
increment pre and post once we are done traversing the subtree below c (see
the empty pre/post plane regions marked ∅ in Figure 6). The evaluation of a
descendant window query in the stretched pre/post plane consequently never
encounters any false hits.

Additionally, we lose no other valuable properties of the pre/post plane:

(1) all axis query windows continue to work as before,
(2) the < order on pre still reflects document order,
(3) both pre(v) and post(v) still uniquely identify document node v, and
(4) the estimation of the subtree size below node v is now completely accurate:

size(v) = 1
2

(post(v)− pre(v)− 1), (6)

that is, the maximal error of height(t) is gone.

From the query evaluation perspective, Eq. (5) gives us the freedom to choose
one of the following query windows to evaluate a descendant step from v (note
the ∗ entries in the pre and post positions, respectively):

window(descendant, v) = 〈(pre(v), post(v)), ∗, ∗, elem, ∗〉
or

window(descendant, v) = 〈∗, (pre(v), post(v)), ∗, elem, ∗〉
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As already mentioned, this simplification applies to the descendant-or-self,
child, and attribute windows, too.

Note that, for any implementation using a fixed bit width representation for
the coupled pre(v), post(v) ranks, stretching the pre/post plane implies that the
number of representable nodes is effectively divided by two if compared with
the non-stretched case (for example, if pre(v) and post(v) are mapped into a
32 bits wide integer domain, the resulting stretched pre/post plane can host a
maximum of 231 nodes). Section 5.2.4 discusses further implications for imple-
mentations that operate with a stretched pre/post plane.

4.2.1 Leaf Node Access. For a certain class of XPath steps, we can tell
at query compile time that all nodes in the result set will be leaves. This is
specifically so for steps along the attribute axis, any step with a kind test
text(), comment(), or processing-instruction(), as well as XPath predicate
queries of the general form e[not(child::node())].

Due to the coupling of the preorder and postorder rank assignments in the
stretched pre/post plane, for any leaf node l we know that

post(l ) = pre(l )+ 1.

Cast into terms of the pre/post plane, document leaf nodes are to be found on
the dotted diagonal (· · · · · ·) in Figure 6. This knowledge is easily incorporated
into query evaluation schemes (see Section 5.1.2).

It is interesting to note that the presence of this “leaves diagonal” enables the
XPath accelerator to process certain types of path expressions in a backwards
fashion. This blends elegantly with symmetry properties of XPath which have
been extensively explored in Olteanu et al. [2001]. Suppose we are to process
the XPath query

/descendant::n/child::text().

We could trade the original query for the symmetric equivalent

/descendant::text()︸ ︷︷ ︸ [parent::n]

in which the braced subquery selects a subset of nodes on the leaves diag-
onal. The remaining predicate then simply calls for a window(parent::n, l )
evaluation for all matching nodes l found on the diagonal. We will use similar
symmetry arguments in Section 4.3.

4.2.2 Exploiting Schema Information. The presence of a DTD (or XML
Schema information) for a pre-/postorder ranked document tree may be used
to generalize the last observation about the leaves diagonal. From a DTD, we
can derive minimum and maximum subtree sizes for any element with tag t,
for example, by counting path lengths in its corresponding DTD/element graph
[Shanmugasundaram et al. 1999]. Together with Eq. (6), this is sufficient to
establish a diagonal stripe in the pre/post plane which is guaranteed to contain
all elements with tag t.

For tag b in the DTD of Figure 7, for example, we can statically derive 1 6
size(v) 6 2 for any node v with tag b in any valid instance. With Eq. (6), we thus
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Fig. 7. A DTD and a valid pre-/postorder ranked XML document tree.

Fig. 8. A comparison of window areas in the stretched pre/post plane: Taking an ancestor step
from v′ (dark) vs. taking a descendant step from v (light).

can identify the stripe defined by 3 6 post(v) − pre(v) 6 5 as the region of the
pre/post plane that holds elements with tag b.

Note, however, that for tags t whose content models contain the regular ex-
pression constructors + and *, useful subtree size bounds cannot be established.
For XML instances that have been validated against a given XML Schema, on
the other hand, subtree size bounds might even be explicitly given by the oc-
currence attributes minOccurs and maxOccurs.

4.3 XPath Symmetries

Axis window size indeed is the dominating performance factor for the XPath
accelerator. The correlation of window size and query response time is so evident
that the simple window size notion could form the basis of a cost model for
accelerated XPath evaluation.

Suppose that we are processing the XPath expression below to retrieve all
elements with tag name m containing at least one element named n:

/descendant::n/ancestor::m.

With the XPath accelerator we may, literally, follow two different paths to re-
spond to the query (Figure 8 depicts the scenario in the pre/post plane):

(1) Establish the intermediary context node sequence containing element
nodes with tag n, then, for each node v′ in this sequence, evaluate the axis
step window(ancestor::m, v′) to find the result element nodes v.

(2) Establish the result context node sequence containing all elements
with tag m, then, for each node v in this sequence, evaluate window
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Fig. 9. Overlapping query windows (context nodes ci).

(descendant::n, v) to check if v has an n element descendant v′; if no such
v′ is found, reject v.

Observe that the second alternative corresponds to the XPath expression

/descendant-or-self::m[descendant::n],

the symmetric equivalent of the original query.
With the optimizations of Sections 4.1 or 4.2 applied, we know that we can

reduce the area covered by window(descendant, v). For the 100-nodes docu-
ment depicted in Figure 8 the benefit is clearly recognizable, but for real-world
XML instances the reduced index scan effort of alternative (2) is substantial.
This is even more so since window(ancestor, v′) contains few document nodes
only but the pre and post index range scans cover large portions of the doc-
ument. They thus yield numerous false hits before index intersection deter-
mines the actual ancestors of v′. With alternative (2), if the system employs a
stretched pre/post plane, the number of false hits can be reduced to zero: The
two necessary descendant-or-self and descendantwindow queries to evaluate
the symmetric equivalent never generate any false hits.

4.4 Context Node Sequences and Empty Pre/Post Plane Regions

Relational database engines derive much of their efficiency from a set-oriented
mode of operation: Rather than operating on a tuple-by-tuple basis, query oper-
ators are applied to sets of tuples, generating set-valued results in general. We
would give up a lot of this efficiency, if we did not adopt this execution model for
database-supported XPath evaluation. Actually, set-orientation fits well with
the sequence-oriented semantics of XPath (see Section 2): Axis steps are always
evaluated for a sequence of context nodes.

In general, evaluating an axis step for a sequence of context nodes ci leads to
pre/post plane query regions that either include each other or partially overlap
(dark areas in Figure 9). Nodes in these areas generate duplicate nodes in the
final query result. To comply with the XPath semantics, a subsequent dupli-
cate elimination phase is required if we evaluate the step for the context node
sequence as is.
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Fig. 10. Identifying empty regions in the pre/post plane.

The pre/post encoding provides a simple means to avoid the generation of
duplicate nodes altogether, however.

Recall that in the pre/post plane the four partitions contain the nodes of the
four major axes. When determining the combined descendants of two distinct
context nodes v and v′ (v and v′ in document order), there are two possible cases:

(1) v′ is a descendant of v, or
(2) v′ follows v.

The two nodes partition the pre/post plane into nine regions as shown in
Figure 10. Each region determines nodes which are in relationship with both
context nodes, for example, in case (1), region V contains those nodes that are
descendants of v and ancestors of v′.

Since we are working with tree data, certain regions are guaranteed to con-
tain no nodes at all. In case (1), regions U and S are empty, because an ancestor
of v′ cannot precede or follow v if v′ is a descendant of v. In case (2), region Z is
empty, because v and v′ cannot have a common descendant if v′ follows v.

Consequently, in case (1) the combined descendants of v and v′ are equal
to the regions V , W , Y , and Z , that is, equal to the descendants of v alone.
In case (2), it is equal to the regions Y and W . Because Z is empty, we can
combine the descendants of both nodes without generating duplicates. These
observations readily carry over to context node sequences of more than two
nodes.

Now, if the database engine asserts to process the context node sequence in
document order, we can optimize query window evaluation for all four major
axes.

First, during descendant axis evaluation we can avoid unnecessary process-
ing as follows:

—If the context node v′ is a descendant of the previous one, we can skip v′

resulting in less query windows actually being evaluated (case (1)).
—If the context node follows the previous one in document order, the descen-

dants of both can be combined without generating duplicates (case (2)).
—Both observations together guarantee that no duplicates are generated at

all, so duplicate removal is unnecessary.
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Fig. 11. Redundant work saved during optimized set-oriented ancestor evaluation: in either case,
region R is scanned once only (context node set {v, v′} processed in document order). The arrows
(→) indicate the direction in which the dashed lines “sweep” the plane while the context node set
is being processed.

The test whether or not a context node v′ is a descendant of the previous con-
text node v is simple: Evaluate post(v′) < post(v). Iteration in document order
already ensures that pre(v′) > pre(v).

Second, for the ancestor axis, we can derive an incremental evaluation strat-
egy: The lower pre limit for the ancestor window of context node v′ may be
determined by pre(v), with v being the context node processed just prior to v′,
that is:

window(ancestor, v′) = 〈(pre(v), pre(v′)), (post(v′),∞), ∗, elem, ∗〉.
Figure 11 illustrates the resulting incremental ancestor window evaluation:
The ancestorwindow for v′ does not extend to the left of the dashed line marking
the pre rank of the prior context node v. As we process the context node sequence
in document order, the dashed line “sweeps” the pre/post plane from left to right.
In case (1), this avoids the duplication of nodes in region R, in case (2), this only
produces nodes in region S, again avoiding duplication of the nodes in regions R.

Finally, the nine-fold partitioning in Figure 10 also reveals optimization
opportunities for the preceding and following axis. The combined preceding
nodes of v and v′ are regions X and Y in case (1), that is, the preceding nodes
of v′, because region U is empty. In case (2), it is equal to regions U , V , X , and
Y , that is, again the preceding nodes of v′. Consequently, the combined pre-
ceding nodes of a sequence of context nodes is equal to the preceding nodes of
the context node with maximum preorder rank. Analogously, the nodes in the
following axis of a sequence of context nodes is equal to the following nodes
of the context node with minimum preorder rank: for both the preceding and
following axes, the system can always reduce the context node sequence to a
singleton.

5. BACK-ENDS FOR THE XPATH ACCELERATOR

The implementation prerequisites for the XPath accelerator are rather light.
We implemented a SAX-based document loader (see the electronic appendix)
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and fed its output into implementations on top of two different back-ends:

(1) a purely relational implementation on top of IBM DB2 V7.1, and
(2) a main-memory DBMS implementation on top of Monet [Boncz 2002].

In Sections 5.1 and 5.2, we describe both in more detail. We explain the
storage structure, the XPath evaluation scheme used, how to apply the tree
and XPath specific optimizations of Section 4, and back-end specific issues.
Additionally, we describe in Section 5.3 some specifics of indexing the node
descriptor space with R-trees.

5.1 A Purely Relational Implementation

5.1.1 Storage Structure. The XPath accelerator has been designed to en-
able efficient relational XPath support: XML documents are represented via
relational data structures (i.e., tables), and XPath queries are evaluated by
mapping such queries to relational equivalents (i.e., SQL). Such an implemen-
tation is purely relational in the sense that we do not require to invade the
relational database kernel to implement XPath support.

The most straightforward way to represent a node v’s 5-dimensional descrip-
tor desc(v) (see Section 3.1) inside the RDBMS is to load it into a 5-column table
accel with schema pre post par kind name .

Nonelement content, for example, the actual characters associated with a
text node, attribute values, comment content, or the target and instruction of
an XML processing instruction, is held outside the main table accel. With each
document node v being uniquely identified by its preorder rank pre(v), we main-
tain separate content relations pre text , pre attr , pre comment , pre p-i in-
stead, save the document content into the appropriate relation and establish
the pre columns as foreign keys referencing the accel table.

We have found this table layout to come with advantages: the evaluation of
the actual XPath axes and node tests exclusively touches the accel table with the
content relations only accessed when absolutely necessary, for example, during
value atomization [Berglund et al. 2002, Sect. 2.4.3.1] or result serialization
after query processing has finished.

The electronic appendices contain details about the XML loading process
to populate these tables and how to reconstruct the original XML document,
respectively.

5.1.2 XPath Evaluation Scheme. The evaluation of an XPath path expres-
sion p = s1/s2/ · · · /sn leads to a series of n region queries where the node se-
quence output by step si is the context sequence for the subsequent step si+1.
The context node sequence for step s1 is held in table context. If p is an absolute
path, that is, p = /s1/ · · ·, context holds a single tuple, namely the encoding of
the document root. For the XML fragments of Figure 1, we would thus have

context = pre post par kind name
0 9 elem a

.

We arrive at the plain SQL implementation shown in Figure 12. XPath re-
quires the resulting node sequence to be duplicate free as well as being sorted
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1 SELECT DISTINCT vn.∗
2 FROM context c, accel v1, . . . , accel vn

3 WHERE INSIDE(window(s1, c), v1) AND · · · AND INSIDE(window(sn, vn−1), vn)
4 ORDER BY vn.pre ASC

Fig. 12. XPath to SQL translation scheme for the XPath expression p = [/]s1/s2/ · · · /sn.

in document order [Berglund et al. 2002] which explains the presence of the
DISTINCT and ORDER BY clauses in lines 1 and 4, respectively. Function INSIDE(·)
implements the actual query window test, for example:

INSIDE(〈[prel , preh], [postl , posth], p, k, n〉, v) ≡
prel < v.pre AND preh > v.pre AND postl < v.post AND posth > v.post AND
v.par = p AND v.kind = k AND v.name = n.

The existential semantics of XPath predicates are naturally expressed by a
simple exchange of correlation variables in the translation scheme of Figure 12.
The XPath expression s1[s2]/s3

2 is evaluated by the RDBMS via the SQL query
(note the exchange of v1 for v2 in INSIDE(window(s3, v1), v3), line 4):

1 SELECT DISTINCT v3.∗
2 FROM context c, accel v1, accel v2, accel v3
3 WHERE INSIDE(window(s1, c), v1) AND INSIDE(window(s2, v1), v2) AND
4 INSIDE(window(s3, v1), v3)
5 ORDER BY v3.pre ASC

For query p = descendant-or-self::n/preceding-sibling::text(), we ob-
tain the SQL query below in which simplifications like the removal of compar-
isons with∞ or ∗ have already been made:

SELECT DISTINCT v2.∗
FROM context c, accel v1, accel v2
WHERE c.pre 6 v1.pre AND v1.post 6 c.post

AND v1.name = n
AND v2.pre < v1.pre AND v2.post < v1.post
AND v2.par = v1.par
AND v2.kind = text

ORDER BY v2.pre ASC.

5.1.3 Index Selection. Each INSIDE(·) query window test generates a con-
junction of two range predicates plus up to three equality comparisons. The
range predicates are efficiently supported by regular B-trees.

With two separate B-trees on the pre and post columns, the system needs
two separate B-tree range scans whose results are then intersected. In case
of IBM DB2, however, the RDBMS’s optimizer detected the opportunity to use
the IDXAND index intersection operator to efficiently compute window contents.
Alternatively, concatenated pre-post B-trees can be used to support the XPath
accelerator.

2Here, s2 is assumed to be a path expression again—a treatment of the translation of the general
XPath predicate syntax is beyond the scope of this text.
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For the experiments of Section 6, we created two ascending B-tree indexes
on the pre and post columns of the accel table, respectively (note that both pre
and post are unique). Additionally, we requested to cluster the accel table with
respect to the pre index. This enabled IBM DB2 to generate query plans which
avoided the extra sort for document order.

All other node descriptor components (par, kind, name) simply require equal-
ity comparisons which we accelerated via hash indexes.

5.1.4 Enhancing Tree and XPath Awareness. To conclude our discussion of
the purely relational back-end, let us briefly review to which extent an RDBMS
can actually benefit from the XPath accelerator optimizations developed in
Section 4.

5.1.4.1 Staking Out Subtrees. This optimization makes the descendant
query window size a function of the actual subtree size (or the tree height,
respectively, see Equation 4). In Section 4.1, we modified the window definition
window(descendant, v) such that the XPath evaluation scheme of Figure 12
need not be changed to benefit: The INSIDE(·) query window test will generate
significantly tighter range query bounds in both the pre and post dimensions.

5.1.4.2 A Stretched Pre/Post Plane. We may, again, stick to the evaluation
scheme of Figure 12. For a descendant axis step, however, the INSIDE(·) window
test will generate a single range predicate on either the pre or post dimension. A
single B-tree range scan suffices to evaluate such a step, and index intersection
becomes superfluous.

5.1.4.3 XPath Symmetries. Transforming an XPath expression into its
symmetric equivalent is perfectly applicable to the relational implementation.
Transformations should try to trade an ancestor for a descendant step, for
example, apply rewrite rules like (taken from Olteanu et al. [2001])

/descendant::n/ancestor::m → /descendant-or-self::m[descendant::n]
/descendant::n[ancestor::m] → /descendant-or-self::m/descendant::n,

since the descendant steps on the right-hand sides benefit from query window
reduction and pre/post plane stretching.

5.1.4.4 Context Node Sequences and Empty Pre/Post Plane Regions. The
empty region analysis of Section 4.4 introduces dependencies between the nodes
in context. To preprocess and reduce the context sequence for the descendant
and ancestor axes we thus require a rather expensive self-join of context with
itself, the cost of which is generally not paid back by making the duplicate elim-
ination in the original evaluation scheme unnecessary. Context node skipping
“on the fly”, that is, during processing of the context node sequence, would re-
quire the RDBMS to remember already seen context nodes to compare postorder
ranks. Such memory can be added to the implementation of the RDBMS’s join
operators [Grust and van Keulen 2003]. This would, however, violate our goal
of developing a purely relational implementation for the XPath accelerator.
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5.2 Monet: A Main-Memory DBMS Implementation

Monet is a DBMS specifically targeted at query-intensive applications such as
OLAP. It uses a fully fragmented data model that consists of tables with only
two columns, called BATs (Binary Association Table). Monet’s query process-
ing infrastructure is optimized towards main-memory execution. Monet was
designed to work in a front-end/back-end system architecture where the back-
end provides a kernel of DBMS facilities, and several co-existing front-ends
provide SQL, ODMG, and application-specific support. These front-ends com-
municate with the back-end using the Monet Interpreter Language (MIL). The
core of MIL is a query algebra on its single bulk data type BAT supplemented
with control structures, aggregators, iterators, and accelerators. Other features
are ADT-based extensibility, module-support, and much more. For details, we
refer to Boncz and Kersten [1999]. Within this architecture, our implementation
amounts to an XPath front-end that maps axis operations onto MIL procedures.

Some of the observations that motivated the choice for Monet are:

—The pre/post plane is an encoding of the XML document tree based on a binary
relationship. This fits well with the binary relational data model of Monet,
where all tables have exactly two columns.

—Monet, being a main-memory DBMS, can benefit from certain properties of
the node ranking schemes which a traditional RDBMS cannot. Its program-
ming language-like query interface, called MIL, additionally enables tuning
techniques that are not available in an SQL interface (or an R-tree API for
that matter).

—The full vertical fragmentation induced by the binary relational approach in
a natural way avoids loading of data that is not needed to answer a query
(e.g., text content or tags).

—And finally, Monet, being a full-fledged DBMS, offers readily available func-
tionality that facilitates experimentation and tuning, such as native support
for enumerated types.

5.2.1 Storage Structure. The two columns of a BAT are called head and
tail, respectively. Any (multicolumn) table structure can be represented with
BATs. The commonly used technique is to introduce a separate BAT for each
column in the original table, put the values of the columns in the tail of each
BAT, and use an identifier in the head to relate them. For the table accel of
Section 5.1.1, the preorder rank is used as identifier. We systematically name
BATs as tablename columnname, such as accel name for the BAT containing
all element and attribute names. Furthermore, non-element content can simply
be stored in separate BATs, such as text content of text nodes in accel text. The
presence of the unique preorder rank pre(v) in BATs such as accel text implies
that node v actually is a node of that kind (i.e., of kind text). Therefore, we
have refrained from using a accel kind BAT. Table III gives an overview of the
storage structure in Monet.

There are two major advantages to keep these BATs sorted on preorder rank,
that is, store the nodes in document order. First, Monet may exploit this prop-
erty to select more efficient algorithms for operations on such BATs. Secondly,
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Table III. Representation of the (Multi-Column) Table accel with BATs

accel prepost pre post Preorder and postorder ranks of all nodes.

accel par pre par Preorder rank of parents of all nodes except root.

accel attr pre attr Attribute values of all attribute nodes.

accel name pre name Names of element tags and attributes.

accel text pre text Text content of text nodes.

a feature that plays a prominent role is Monet’s support for void columns (void
stands for virtual oid). If a column contains a range of consecutive numbers,
then there is no need to store these numbers individually. It suffices to store
the offset. Such a column is called dense. As accel prepost and accel par contain
all nodes of a document, their heads contain a consecutive sequence of num-
bers, and, thus, can be stored as void columns. This reduces the storage re-
quirements of these BATs by 50% and may result in selection of even more
efficient algorithms like selections by offset. Realize that this means that
the XML document tree structure has simply been encoded by an ordered se-
quence of postorder rank values.

It is likely that the number of different element tags and attribute names in a
given document is rather small. Therefore, it is beneficial to set up a translation
table to map these to numerical values. Monet provides support for enumerated
types that does exactly this in a transparent way. As a consequence, almost all
our BATs are numerical in both head and tail.

5.2.2 The MIL Algebra. A typical example of a BAT algebra operator is
select. The MIL-expression accel prepost ·select(n1, n2) selects all rows of the
BAT accel prepost with a tail-value (i.e., a postorder rank) between n1 and n2.3

There is no distinct operator for selection on the head, because instead, there is
an operator reverse which swaps the head and tail columns. The BAT internal
data structure consists of a few descriptor records containing pointers into a
heap that contains the actual data. Because of this implementation, reverse is
an operation on the descriptors only, which does not touch the data inside the
BAT. Hence, this operator executes in a negligible and data volume indepen-
dent amount of time. The BAT data structure supports more such “tricks.” The
operator slice, for example, selects rows positionally (e.g., the first one hun-
dred rows). This operator is also executed without the need to copy the selected
rows into a new BAT. The MIL operators that are used in this article are listed
in Table IV.

MIL operators are defined in an algebraic way, independent of the algorithms
implementing them. Query-optimizing front-ends produce MIL programs de-
ciding the execution order (strategic optimization), and the MIL operator imple-
mentation chooses at run-time the appropriate algorithm based on properties

3The dot-notation is interpreted as a function application where the operand on the left is the
first parameter, that is, accel prepost · select(n1, n2) ≡ select(accel prepost, n1, n2). Operator · is
left-associative.
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Table IV. Some MIL Operators and Their Semantics

Operator Semantics Comment
reverse(A) {(b, a) | (a, b) ∈ A} zero cost
mirror(A) {(a, a) | (a, b) ∈ A} zero cost
select(A, n) {(a, b) | (a, b) ∈ A∧ b = n}
select(A, n1, n2) {(a, b) | (a, b) ∈ A∧ n1 6 b 6 n2} zero cost if tail dense,

n1 = nil and n2 = nil

represent −∞ and∞,
respectively

project(A, n) {(a, n) | (a, b) ∈ A} n = nil effectively projects
out tail values

join(A, B) {(a, d ) | (a, b) ∈ A∧ (c, d ) ∈ B ∧ b = c}
semijoin(A, B) {(a, b) | (a, b) ∈ A∧ (c, d ) ∈ B ∧ a = c}
kdiff(A, B) {(a, b) | (a, b) ∈ A ∧ @(c, d ) ∈ B . a = c}
find(A, n) b such that ∃(a, b) ∈ A . a = n zero cost if head dense
kunique(A) B ⊆ A such that ∀(a, b) ∈ A∃!(c, b) ∈ B . c = a
count(A) |A| number of rows in A
insert(A, B) A← A · append(B) destructive update

Although the set notation below suggests otherwise, BATs are actually sequences, that is, they may contain
duplicates and order matters. This also makes find and kunique deterministic as they will choose the first row
encountered if there are multiple choices. find may fail, though, if no such (a, b) exists.

and statistics of the operands involved (tactical optimization). For the one op-
erator select, there are 10 algorithms implemented, which are expanded to
55 type-optimized routines.4 One of the algorithms is obviously a sequential
scan over the entire BAT. If, however, the tail column is sorted (one of the many
properties a BAT can have), an algorithm is chosen that does a binary search-
based lookup to locate the first and last positions and then produces a slice. The
latter is evidently much more efficient. A selection on a dense column need not
even do a lookup, but can calculate the first and last positions directly using
the offset. Execution of a select on such a BAT, hence, only evaluates a slice,
which takes only a negligible amount of time.

The algorithms and data structures in Monet are optimized for main-memory
access. With vertical fragmentation successfully avoiding unnecessary I/O, the
balance of query processing cost shifts from I/O to CPU cycles and memory
access time. This calls for different optimization criteria. As advances in CPU
speed far outpace advances in DRAM latency, the effect of optimal use of mem-
ory caches becomes ever more important. Pipelined memory transfer capabili-
ties of modern CPUs make sequential access significantly faster than random
access. As a result, many elaborate index structures as well as search and join
algorithms in traditional RDBMSs, are defeated by simple (sequential scan)
algorithms. The XPath accelerator indeed uses sequential index scans over
preorder and postorder ranges to evaluate a window query.

Note, however, that Monet is not an all-or-nothing main-memory system.
If the database hot set exceeds main memory, the system relies on operating

4These numbers are taken from Boncz and Kersten [1999] and, hence, valid for the then used
version of Monet. Other (newer) versions may, obviously, have a different number of algorithms
and routines.
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Fig. 13. MIL execution and resulting XML fragment for c/descendant-or-self::node() (with
pre(c) = 2 and post(c) = 2).

system support for managing virtual memory. Modern operating systems in-
creasingly respond well to memory access advice, which has made the main-
memory approach indeed feasible.

5.2.3 XPath Evaluation Scheme. Evaluating an axis step in the XPath ac-
celerator amounts to evaluating simple range predicates on the preorder and
postorder ranks. For example, the query v/descendant-or-self::node() re-
sults in all nodes in the pre/post plane window 〈[pre(v),∞), [0, post(v)]〉. In MIL:

v/descendant-or-self::node() ≡ accel prepost
· reverse
· select(pre(v), nil) (7)
· reverse
· select(0, post(v))

Figure 13 illustrates how Monet executes this MIL-program step-by-step for
context node c in the example document of Figure 3. The other axis steps can
be implemented analogously.

Before we proceed, a small intermezzo on the performance of these MIL
expressions. Recall that ‘accel prepost · reverse’ is dense in its tail and that
a select on such a BAT amounts to executing a positional slice. Hence, the
first three operators are executed in a negligible amount of time. The clock
starts ticking at the second select which operates on the unsorted column
with postorder ranks.

Moreover, Monet chooses an algorithm for select that produces a sorted
BAT, such that subsequent operators benefit from our decision to store the
original BATs in document order as well. In conclusion, even without other
optimizations that can be applied as we will see later on, this is already a
rather efficient algorithm.

An axis step results in a set of nodes. When there are subsequent axis
steps in the query, these intermediary nodes are recursively interpreted as
context nodes for the subsequent axis steps according to the XPath specifica-
tion [Berglund et al. 2002]. In the database field, we have learned that it is
fruitful to think in a set-oriented way. Analogously, it is fruitful to regard an
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Fig. 14. Set-oriented algorithm for descendant-or-self.

axis step as determining in one go the resulting nodes for an entire sequence
of context nodes instead of for a single context node.

Therefore, we developed, for each axis step and node test, MIL procedures
that have an input BAT parameter context representing the context node se-
quence. An example of such a procedure is given for descendant-or-self in
Figure 14. The algorithm simply iterates over the sequence of context nodes,
determines for each the descendants, and gathers them in result. As men-
tioned earlier, the XPath semantics requires results to be duplicate free and
in document order. In MIL, this is implemented as a post-processing step
result · kunique · sort.

The evaluation of an XPath path expression p = α1::τ1/α2::τ2/ · · · /αn::τn
leads to a series of MIL procedure calls where the node sequence output of the
one is the context sequence for the next MIL procedure:

context · procα1
· procτ1

· procα2
· procτ2

· · · procαn
· procτn

,

where procα and procτ stand for the MIL procedure corresponding with axis
step α and node test τ , respectively. If p is an absolute path, context is the MIL
procedure root(doc) which returns a context node sequence containing the root
node of (current) document doc.

For query /descendant-or-self::n/preceding-sibling::text(), we obtain
the MIL expression

root(doc)
· descendant or self · nametest(n)
· preceding sibling · nodetest(text).

In MIL, XPath predicate evaluation requires more than in the pure relational
case, where a simple exchange of correlation variables was sufficient. Apart
from an iterative approach which evaluates the predicate on a per context node
basis, XPath symmetries can be used to remove predicates containing path
expressions. In general, an expression s1[s2]—with s2 being a path expression
again—can be rewritten into the symmetrical equivalent

s1 intersect s1/s2/ancestor-or-self::node().

XPath’s intersect can simply be evaluated by MIL’s semijoin.
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5.2.4 Enhancing Tree and XPath Awareness

5.2.4.1 Staking Out Subtrees. The technique of Section 4.1 shrinks the
query window of an axis step. Incorporating this in the XPath evaluation scheme
for Monet requires only an adaptation of the window boundaries. MIL expres-
sion (8) becomes

v/descendant-or-self::node() ≡
accel prepost
· reverse
· select(pre(v), post(v)+ height(t))
· reverse
· select(pre(v)− height(t), post(v)).

The Monet implementation benefits primarily from the reduced window on the
preorder rank, because it results in a small intermediary result. Therefore, a
smaller BAT needs to be scanned by the second select.

5.2.4.2 A Stretched Pre/Post Plane. Stretching the pre/post plane has the
benefit of evaluating an axis step using a single select on either preorder or
postorder rank. Because Monet can exploit more efficient implementations for
select if the corresponding column is sorted, the best choice is to evaluate the
window on the pre-column, which is sorted to reflect document order.

Unfortunately, a stretched pre/post plane results in preorder ranks that are
not consecutive anymore. Therefore, the pre-column is no longer dense. Con-
sequently, preorder ranks need to be stored as well requiring more bytes per
node. This has an immediate effect on query performance as well, because the
volume of data to be accessed in main-memory doubles. Furthermore, several
efficient MIL operator implementations exploiting the dense property become
unavailable.

Therefore, a trade-off occurs between the advantage of being able to evaluate
an axis step using a single select and the disadvantage of losing the dense
property. Experiments have shown that, in general, the disadvantage is more
severe than the advantage. We therefore propose the original nonstretched
ranking scheme for the Monet back-end.

5.2.4.3 XPath Symmetries. Rewriting an XPath expression into an equiva-
lent results in a different order of execution using the XPath evaluation scheme
for Monet. Since each XPath axis step is evaluated using a number of algebraic
operations in MIL, optimization by reordering operations is also possible on
MIL-level. Here, it may be beneficial to exchange MIL-operations within one
axis step or exchange an operation from one axis step with operations from
another. The “Node Test Push Down” technique below is an example of such an
optimization.

5.2.4.4 Empty Pre/Post Plane Regions. Using the iterative capabilities of
Monet, optimizations related to empty pre/post plane regions can be fully ex-
ploited. One of the most prominent examples of such an optimization, is being
able to reduce the context node sequence to one single node in case of evaluating
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Fig. 15. The combined preceding nodes of a sequence of context nodes are the preceding nodes of
the context node with maximum preorder rank.

Fig. 16. Algorithm for a combined descendant-or-self and name test showing staking out sub-
trees, node test push down, and the ability to skip over context node which either produce empty
or duplicate results.

preceding or following axis steps. Figure 15 shows how this is done in MIL for
preceding.

Besides the benefit of reducing the number of query window evaluations, the
post-processing phases of duplicate removal and sorting in document order can
also be avoided. This holds for the MIL procedures for all axis steps. Another
example can be found in Figure 16, which incorporates some other optimiza-
tions as well. For descendant-or-self, some context nodes can be skipped. The
necessary memory of the postorder ranks of previously encountered context
nodes is implemented by means of the MIL variable max.

5.2.4.5 Node Test Push Down. An axis step c/α::τ results in all nodes that
are in the pre/post-plane region corresponding with α and qualify for node test
τ . It does not matter if one

(1) first determines all nodes in the appropriate pre/post-plane region and then
selects among those the ones qualifying for the node test, or

(2) first determines all nodes that qualify for the node test and then selects
among those the ones in the appropriate pre/post-plane region.
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In a pure relational implementation using SQL, the query optimizer of the
RDBMS will make such decisions, that is, pushing highly selective selections
down in the query plan. In the query optimization approach of Monet, which
distinguishes strategic and tactical optimization, this kind of optimization is
strategic, because it concerns the order of execution. Hence, it is the respon-
sibility of the XPath front-end to explicitly choose the most efficient execution
order in MIL.

We will illustrate node test push down by means of the example path expres-
sion v/descendant-or-self::n. Combining the axis step and the subsequent
name test results in the following MIL expression:

v/descendant-or-self::n ≡ accel prepost
· reverse
· select(pre(v), post(v)+ height(t))
· reverse
· select(pre(v)− height(t), post(v))
· mirror
· join(accel tag)
· select(n)

The alternative of doing the name test first can be expressed in MIL as follows:

v/descendant-or-self::n ≡ accel prepost
· semijoin(accel tag · select(n))
· reverse
· select(pre(v), post(v)+ height(t))
· reverse
· select(pre(v)− height(t), post(v))

The general point here is that the properties of the pre/post plane and axis
windows remain valid if one “deletes” some nodes in the plane (e.g., via an
early node test). For a set-oriented algorithm, this even means that we can
do a node test as early as even outside the loop that iterates over the context
node sequence. In situations where the intermediary results between axis steps
are large, this is a considerable performance gain. Furthermore, since a node
test may be quite selective, the operations inside the loop are performed on
considerably smaller BATs.

Figure 16 shows an example of an optimized MIL procedure, namely one
for a combined descendant-or-self and name test. It incorporates the shrunk
query windows of staking out subtrees, node test push down, and skipping
context nodes based on empty pre/post plane regions.

5.3 Indexing the XML Node Descriptor Space with R-Trees

Although the hierarchical structure of XML document trees is already fully cap-
tured by the two-dimensional pre/post plane, the evaluation of an XPath step
with an associated kind or name test needs to inspect all five dimensions of the
node descriptor space in general (Section 3.1). Domains of such dimensionality
have been found to be efficiently supported by R-trees [Guttman 1984; Böhm
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Fig. 17. Leaf level of a preorder packed R-tree after loading an XML instance of 100 nodes (R-tree
leaf page capacity 6 nodes).

et al. 2000]. A 5-dimensional point R-tree is able to evaluate all dimensions
of an axis window “in parallel”. This saves the database host from the other-
wise necessary post-processing to remove those nodes found in a pre/post plane
region that fail to satisfy a given node test.

The data organization may be further improved by R-tree packing techniques
[Roussopoulos and Leifker 1985; Kamel and Faloutsos 1993]: At the cost of using
temporary storage for sorting, insert node descriptors in increasing order of pre
values. This insertion order leads to a 100% storage utilization in the R-tree
leaves and additionally improves query performance considerably as coverage
and overlapping of the leaves are minimized.

For the particular R-tree implementation we used for the experiments in
Section 6, the GiST library providing a family of generalized search tree vari-
ants [Hellerstein et al. 1995], leaf packing had the additional beneficial effect of
R-tree window queries returning result nodes in increasing order of pre values,
that is, in document order.

5.3.1 Enhancing Tree and XPath Awareness. While, besides preorder pack-
ing, there remain only few handles to make an R-tree based implementation
more tree and XPath aware, it is interesting to see how the R-tree data structure
implicitly realizes improvements which we have discussed for the XPath accel-
erator. This is primarily due to the R-tree’s incomplete partitioning of the space
(as opposed to space partitioning trees like the quad tree). Note how the R-tree
leaf level reflects the typical shape of an XML document tree in the pre/post
plane (Figure 17):

(1) The lower-right half below the diagonal is empty; no R-tree page has its
center beyond the diagonal which corresponds to the descendant window
optimization of Section 4.1.

(2) The sparsely populated upper-left half above the diagonal is covered by few
R-tree leaves, such that the evaluation of ancestor steps touches few leaf
pages.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



120 • T. Grust et al.

Fig. 18. Element hierarchy (top-level) of XMark XML benchmark document instances.

The data-driven R-tree adapts well to the irregularly populated pre/post
plane. It remains balanced even in the presence of XPath accelerator’s skewed
node distribution, and thus implements a notion of empty region analysis al-
though by different means than those discussed in Section 4.4.

6. PERFORMANCE CHARACTERISTICS

This section intends to illustrate that the XPath accelerator can turn RDBMSs
into efficient XPath processors. In Section 6.1, in particular, we will assess the
effects of an enhanced tree and XPath awareness for IBM DB2 and Monet.
Section 6.2 concludes with a performance comparison of the three XPath accel-
erator back-ends—IBM DB2, Monet, R-tree (GiST)—as well as two additional
alternative database-supported XPath processors.

To ensure the test runs to be reproducible, we used an easily accessible source
of XML documents, namely the XML generator XMLgen, developed for the
XMark benchmark project [Schmidt et al. 2002]. For a fixed DTD modeling an
Internet auction site (see the element hierarchy depicted in Figure 18), this
generator produces instances of controllable size. Table V lists the document
sizes we were using for our experiments. All documents were of height 11.

Against these instances, we ran a selection of three queries:

Q1 /descendant::open auction/descendant::description

Q2 /descendant::age/ancestor::person

Q3 /descendant::open auction/child::privacy/preceding-sibling::bidder

Note that these queries stress the navigational (or structural) aspects of XPath
queries, that is, we mainly measured the performance of raw path navigation,
because this is what the XPath accelerator has been designed for.

The experimental setup was hosted on an Intel Pentium III PC, clocked at
≈1.2 GHz, using a version 2.4 Linux kernel, and running off a standard ext2
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Table V. XML Document Sizes and Number of
Nodes in Document Trees

Document size [MB] # Nodes XMLgen factor
0.11 5 257 0.001
0.55 25 951 0.005
1.1 52 180 0.01

11.0 511 474 0.1
55.0 2 538 027 0.5

111.0 5 077 531 1.0

Entries in the last column were given as a size factor to
XMLgen (Option Switch -f) to control document sizes.

Table VI. XPath Traversals with and Without Staked Out
Query Window Sizes (Platform IBM DB2, Query Q1)

Document size [MB] # Result nodes t [ms] tstake [ms]
11.0 1 200 855 70
55.0 6 000 27 860 246

111.0 12 000 291 731 470

file system on a SCSI hard disk. The host was equipped with 2 GB of RAM
(no swapping occurred), and the system load average was near zero (no other
processes were present besides a small number of sleeping system daemons).

6.1 Effects of Enhanced Tree and XPath Awareness

6.1.1 IBM DB2 and Staking Out Subtrees. Query Q1 stresses the
descendant axis and thus should benefit significantly from a reduction of axis
window size as discussed in Section 4.1. We ran query Q1 against a B-tree based
XPath accelerator on top of IBM DB2 (Section 5.1). Table VI shows the timing
results as well as the size of the result node sets. The shrunk pre and post
B-tree scan ranges for the staked out descendant window result in a speed-up
of up to three orders of magnitude. Note how the processing time in the un-
optimized case grows proportionally with the squared document size because
the translation scheme of Figure 12 yields a join of table accel with itself for
the two-step query Q1. Actually, processing time increases even slightly worse
than quadratic: The wide B-tree scans generate a significant number of false
hits (Figure 5). With the staked out descendant window, however, we achieve a
linear dependency on subtree size.

6.1.2 IBM DB2 and a Stretched pre/post Plane. The presence of a stretched
pre/post plane removes two range predicates, on either the pre or post dimen-
sions, from the SQL query generated for XPath query Q1. To evaluate the two
descendant steps in query Q1, IBM DB2 now generates two B-tree index scans
only. The otherwise necessary index intersection to evaluate the original two-
dimensional descendant window is removed by IBM DB2’s query optimizer. As
expected, processing times go down again (Table VII). Note how column tstretch

in Table VII reflects the fact that we can compute subtree sizes without error
in the stretched pre/post plane: The processing time grows perfectly linear with
the XML instance size.
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Table VII. XPath Traversals with and Without Stretched Pre/Post
Plane (Platform IBM DB2, Query Q1)

Document size [MB] # Result nodes tstake [ms] tstretch [ms]
11.0 1 200 70 45
55.0 6 000 246 222

111.0 12 000 470 444

Table VIII. XPath Traversals Before and After Application of
XPath Symmetry Rewrites (Platform IBM DB2, Query Q2)

Document size [MB] # Result nodes t [ms] tsymm [ms]
11.0 631 4 430 202
55.0 3 163 85 183 875

111.0 6 409 340 759 1 876

6.1.3 IBM DB2 and XPath Symmetries. Trading ancestor for descendant
steps by means of XPath symmetries makes queries like Q2 amenable to the
optimizations we have just discussed. In the pre/post plane, the small number
of nodes in a context node’s ancestor axis—equal or less to the document tree’s
height—are scattered all over the upper left of the plane. The resulting wide
index scans and large number of false hits significantly affect performance.
Table VIII indeed shows the expected performance gain of up to three orders of
magnitude for the larger XML instances: tsymm reports on the processing time
for the symmetric equivalent

Qsymm
2 = /descendant-or-self::person[descendant::age]

of Q2. Note that a cost model based on axis window areas would clearly identify
Qsymm

2 as superior to Q2 (cf. Section 4.3).

6.1.4 Monet and Empty Pre/Post Plane Regions. Remember how Sec-
tion 4.4 used ordered processing of the context node sequence plus an analysis
of empty regions in the pre/post plane to avoid the generation of duplicate re-
sult nodes. For reasons explained in Section 5.1.4, these optimizations are not
immediately expressible in plain SQL.

For Monet, however, the performance gain can be substantial. For example,
the root node of a document lies in the ancestor axis of any node in that doc-
ument except itself. In query Q2, the initial step descendant::age produces a
node sequence of 6 409 nodes for the 111 MB XML document. This means that
for the subsequent ancestor::person step, a naive algorithm produces the root
node 6 409 times leaving it up to duplicate removal to remove 6 408 copies of
the root node. Similar remarks apply to all nodes in the upper tree levels.

Table IX illustrates the contribution of avoiding duplicates for query Q2.
The incremental ancestor evaluation strategy discussed in Section 4.4, which
immediately yields a duplicate free node set in document order, significantly
reduces Monet’s processing time.
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Table IX. XPath Traversals with and Without Empty Region
Analysis (Platform Monet, Query Q2)

Document size [MB] # Result nodes t [ms] tempty [ms]
11.0 631 3 300 69
55.0 3 163 74 671 336

111.0 6 409 296 913 680

6.2 Comparison of Back-Ends

Despite their conceptual simplicity and light implementation requirements,
the techniques discussed in this article lead to performance figures which beat
current implementation strategies for database-supported XPath engines. To
provide points of reference we compared the XPath accelerator back-ends with
two further XPath processors:

(1) We loaded the XML instances into a commercial native XML database
system.5 Prior to document loading, we provided the system with a DTD to
enable the system to index its native XML storage.

(2) We also implemented an alternative relational encoding of XML documents,
the edge mapping. We picked the edge mapping because
(a) it is, just like the XPath accelerator, a purely relational storage struc-

ture,
(b) the mapping has been shown to efficiently support the evaluation of

XPath path expressions, and
(c) its internals have been described in sufficient detail in the publicly

available literature, for example, by Florescu and Kossmann [1999].

In a nutshell, the edge mapping encodes XML document structure in a table
node par ord kind name in which for each node (id) its parent par is listed.
Hence, similar to the XPath accelerator, each edge in the document tree is
represented by one tuple. The ord attribute keeps track of a node’s sibling
order among the nodes below a common parent. This is sufficient to restore the
global document order although this is an expensive operation. Attributes kind
and name indicate a node’s kind and its tag (or attribute) name, respectively.
Document content is maintained in separate content relations. The overall table
layout thus resembles the XPath accelerator. Specifically, both schemes avoid
to flood the database with table definitions, unlike mappings that introduce a
separate table for each distinct element tag name encountered in an instance.

As recommended in the literature, we created indexes on the node and par
attributes to speed up closure computation as well as an index on name to
support name tests.

Figures 19, 20, and 21 report on the overall timing results for all XPath
implementations against XMark instances of increasing size. All queries were
run multiple times. The average timings reported here were measured when the

5The system’s XML batch load client failed to process the two larger document instances of 55 MB
and 111 MB so that we had to skip those in the subsequent measurements. Note that, in general, this
specific XML DBMS has been engineered to efficiently process collections of small XML instances
rather than large monolithic documents.
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Fig. 19. XPath evaluation performance (Query Q1, result size grows linearly from 12 to ≈12 000).

Fig. 20. XPath evaluation performance (Query Q2, result size grows linearly from 8 to ≈6 400).

database buffers (or, in the case of GiST, the file system cache) were hot. Note
that elapsed times in all charts are given in milliseconds (ms) on logarithmically
scaled y-axes.

On the relational database host (IBM DB2), the XPath accelerator turned out
to be at least 20 times faster than the edge mapping, with a tendency in favour
of the XPath accelerator with growing document sizes. The query evaluator
based on the edge mapping clearly spends its time while stepping along the
descendant axis which inherently calls for a computation of the par closure
rooted in the current context node. We applied name tests as early as possible
to reduce closure size. For Q1 (Figure 19, featuring two consecutive descendant
steps) the XPath accelerator can gain a speedup of more than 40 for large XML
instances. Recall that the XPath accelerator evaluates a step via two index
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Fig. 21. XPath evaluation performance (Query Q3, result size grows linearly from 31 to ≈31 000).

range scans while the edge mapping needs multiple individual index lookups
to perform the necessary node–par joins.

The evaluation of the child and preceding-sibling steps occurring in query
Q3 (Figure 21), however, is reasonably well supported by the edge mapping’s
par and ord attributes.

Since the computation of pre/post plane window contents lies at the very
heart of the XPath accelerator, we expected the R-tree based variant to perform
well. Although the implementation on top of GiST ran off a standard file system
without any further buffering support, we indeed found it to clearly outperform
the native XML DBMS as well as the relational edge mapping.

Finally, although the native XML DBMS was directed to index all document
tree nodes including inner nodes, the disappointing performance figures we
obtained for this system might stem from the fact that the indexes of this system
have been tailored to efficiently access leaf node contents. The XPath accelerator,
with its tree aware enhancements, can turn general purpose RDBMSs into
XPath processors that perform up to two orders of magnitude faster than the
native XML DBMS.

7. MORE RELATED WORK

This field of research is dominated by work that aims to support the XPath axes
child and descendant [Cooper et al. 2001; Li and Moon 2001; Suciu and Milo
1999; Goldman and Widom 1997]. In some sense this comes as a surprise since
the XPath 1.0 specification has been around since Winter 1999 and a number of
other XML-related languages (e.g., XSLT, XPointer) embed XPath expressions
in their syntax. Efficient XPath support will continue to be an important core
building block in XML query processors.

Cooper et al. [2001] presented an index over the prefix-encoding of the paths
in an XML document tree. In a prefix-encoding, each leaf l of the document
tree is prefixed by the sequence of element tags that one encounters during
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a path traversal from the document root to l . Since tag sequences obviously
share common prefixes in such a scheme, a variant of the Patricia-tree is used
to support lookups. Clearly, the index structure is tailored to respond to path
queries that originate in the document root. Paths that do not have the root as
the context node need multiple index lookups or require a post-processing phase
(as does a restore of document order among a query’s result nodes). In Cooper
et al. [2001], so-called refined paths are proposed to remedy this drawback.
Refined paths, however, have to be preselected before index loading time. Note
that the prefix-encoding exclusively represents the child and descendant axes
in a document—it remains unclear to us if support for other XPath axes blends
well with this scheme.

The T-index structure, proposed by Suciu and Milo [1999], maintains (ap-
proximate) equivalence classes of document nodes which are indistinguishable
with respect to a given path template. In general, a T-index does not represent
the whole document tree but only those document parts relevant to a specific
path template. The more permissive and the larger the path template, the
larger the resulting index size. This allows to trade space for generality, how-
ever, a specific T-index supports only those path traversals matching its path
template (as reported in Suciu and Milo [1999], an effective applicability test
for a T-index is known for a restricted class of queries only).

A similar idea underlies the covering indexes of Kaushik et al. [2002]. Like
the T-index, covering indexes reduce the overall index size by collapsing nodes
that are indistinguishable by a given set of path expressions. This is an ap-
proach that nicely complements the XPath accelerator idea: The XPath acceler-
ator may be used to index the reduced instead of the original document tree. A
point in the pre/post plane then represents a representative for a whole equiva-
lence class of nodes. It is, however, sufficient to operate with the representatives
of these classes until the result node sequence is output.

In an earlier report on our work [Grust 2002], we compared the R-tree
based XPath accelerator to the EE /EA (element-element/element-attribute) join
indexes of Li and Moon [2001]. Interestingly, this work (1) used a variant of
the preorder/postorder ranking to represent document structure, and (2) was
also implemented on top of GiST via B-trees. Li and Moon [2001], however,
used the traversal ranks to capture XML element containment (and attribute
ownership) only. As a consequence, this work was restricted to provide sup-
port for the child and descendant axes. We have found the more generic
XPath accelerator to be at least as fast as the EE /EA based join algorithms,
nevertheless.

There is further related work that is not directly targeted at the construction
of index structures for XML. In Zhang et al. [2001], the authors discuss rela-
tional support for containment queries of which our XPath axes window queries
are instances. Especially the multi-predicate merge join (MPMG join) presented
in Zhang et al. [2001] would provide an almost perfect infrastructure for the
XPath accelerator. MPMG join supports multiple equality and inequality tests
(cf. the window(α, v) query windows). The staircase join [Grust and van Keulen
2003] applies a variant of the MPMG join idea to the XPath accelerator. The
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observed speed-up is about an order of magnitude with respect to standard join
algorithms.

Another relational storage structure that seems to be well suited to support
the XPath accelerator is the relational interval tree (RI-tree) [Kriegel et al.
2000]. Tailored to efficiently respond to interval queries of the form [a, b], the
RI-tree could be a promising candidate to index the pre/post plane. This option
seems to be interesting especially if the database host lacks R-tree support:
B-trees suffice to query the RI-tree efficiently.

The SQL-based XPath evaluation (Section 5.1.2) bears some interesting
resemblance with the treatment of the linear XPath fragment discussed by
Gottlob et al. [2002]. The XPath accelerator provides an efficient database-
supported implementation of the XPath axes, that is, function χ in Gottlob
et al. [2002]. Furthermore, the translation function S→ of Gottlob et al. and
the evaluation scheme of Figure 12 coincide: Both schemes proceed top-down,
with node tests transformed into separate intersections (cf., INSIDE(·)). The SQL
correlation variable exchange effectively translates the existential semantics
of XPath predicates into left self semijoins over table accel while Gottlob et al.
equivalently use intersection. Additionally, as in S→, we could extend the XPath
to SQL mapping to translate XPath’s and, or, and not Boolean operators into
UNION, INTERSECT, and EXCEPT, respectively.

The XPath accelerator is undemanding in the sense that schema-less XML
data, that is, document instances without associated DTD or XML Schema
types, may be processed. The internal representation, table accel, is com-
pletely uniform, regardless of the actual shape of the document tree. This
uniformity

(1) overcomes the conflict between the relational two-level table–attribute view
of data and XML’s capability of arbitrary element nesting [Shanmugasun-
daram et al. 1999], and

(2) leads to query plans whose complexity is perfectly predictable: an XPath
path expression of n steps leads to a n-fold self join regardless of the axes
traversed.

While this predictability is obviously desirable, lack of schema awareness
may also give away possible performance improvements. Condensed and pre-
processed schema information, for example, in the form of DTD graphs as pro-
posed by Shanmugasundaram et al. [1999] may be useful to further shrink
query window sizes (Section 4.2.2) or discover empty pre/post plane regions at
query compile time.

Others have, interestingly, closely investigated the symmetry properties of
XPath [Olteanu et al. 2001] but with a completely different motivation than
we had in Section 4.3: The XPath reverse axes, like ancestor, pose a problem
for so-called streaming XPath processors [Altinel and Franklin 2000]. XPath
engines of this type try to perform a single preorder traversal over the input
document to evaluate a given path expression (e.g., by receiving the events of a
SAX parser). The big win is that only very limited memory space is necessary to
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perform the evaluation: Streaming XPath processors can, in principle, operate
on XML documents of arbitrary size.

The evaluation of a reverse axis step in such a setup is problematic, because
the XPath processor would need temporary space to remember past SAX events:
A reverse axis selects documents nodes that are before the context node with
respect to document order. The symmetry properties of XPath offer the possi-
bility to get rid of reverse axes altogether and to restore the modest memory
requirements.

Finally, let us briefly turn to updates for the XPath accelerator. After a new
node v has been inserted, it is necessary—due to the order in which the preorder
and postorder traversals visit document tree nodes—to renumber all nodes cov-
ered by window(following, v) and window(ancestor, v). Li and Moon [2001]
suggest to assign nonconsecutive node ranks, sufficiently spread out to accom-
modate for future insertions (recall that the absolute rank values are immate-
rial, cf. Section 4.2). Only recently, Cohen et al. [2002] studied dynamic node
label assignments which could be suitable for preorder/postorder ranking. The
resulting labeling scheme can systematically account for ordered insertion of
new labels (whose length, nevertheless, may exceed those of already assigned
labels) and is tunable if the system can anticipate insertions in specific subtrees.

Note that to delete a node, however, it is sufficient to remove its descrip-
tor entry, because the properties of the pre/post plane are indifferent to node
removal.

8. CONCLUSION AND OUTLOOK

This work has been primarily motivated by the need for an XPath index struc-
ture that would be capable of

(1) running on top of a relational back-end to leverage its stability, scalability,
and performance,

(2) providing coverage for all nodes of an XML document tree (such that the
index itself can serve as the only representation of the document inside the
database),

(3) closely tracking the XPath semantics (especially with respect to adequate
support for all XPath axes and document order), as well as

(4) rooting XPath traversals in arbitrary context nodes.

The latter requirement, specifically, did arise in the context of an ongoing
project to construct an XQuery compiler: An XQuery expression like

for $v in e
return $v/p

sequentially binds variable $v to the arbitrarily computed nodes of sequence
e. The index thus needs to evaluate path p rooted in context nodes scattered
over the whole document tree. For the XPath accelerator, any context node is
as good as any other, in particular, the index has no bias towards the document
root element like many related proposals.
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While the above makes the XPath accelerator a promising target for XQuery
compilation, another core feature of XQuery, element construction, needs to be
addressed with care. An XQuery element constructor

element n {e1, e2}

constructs a new node (with tag n) with left and right subtrees e1 and e2, respec-
tively. To generate a valid pre/post encoding for the constructed tree means to
renumber all nodes in the encoding of e2. This is similar to the node insertion
problem we have briefly discussed in Section 7, since the nodes of e2 are in
the following axis of the nodes in e1. The compiler, however, has control about
the order in which e1 and e2 are evaluated: since XQuery is a functional lan-
guage without side effects, evaluation order of subexpressions does not matter
semantically. Now, if e1 is evaluated prior to e2, the compiler can—in antici-
pation of the ‘,’ sequence construction operator—encode the XML fragment e2
with pre/post ranks that are immediately following those used for e1. The en-
coding for e2 will be consistent in itself (remember that the absolute pre and
post values are insignificant), and the element construction above is merely a
matter of concatenating the pre/post encodings for e1 and e2. This threading of
pre/post ranks through the evaluation of an XQuery program is a technique
currently under investigation by the authors.

More on the theoretical side—geared towards the development of an opti-
mizing XPath or XQuery compiler—we believe that the XPath accelerator pro-
vides the necessary hooks to incorporate an effective cost estimation for XPath
queries.

As discussed in Section 4, it is the axis window area which dominantly in-
fluences the step evaluation cost. Since the pre/post plane allows us to very
accurately estimate window sizes given only a context node’s descriptor, this
could yield a cost model that is sensitive to the actual location of the context
nodes and not only to the query itself.

The XPath symmetry rewrites explored in Olteanu et al. [2001] could then
be used to establish the space of equivalent XPath queries out of which a cost-
based optimizer would pick candidates based on (a function of) pre/post plane
window areas providing the cost measure.

It will be interesting to compare this approach to more intricate cost models
for XML queries as presented in Chen et al. [2001] and Wu et al. [2002].

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library. The appendix contains details about the XML loading process that,
given an XML input document, populates the pre/post plane, as well as the
inverse procedure that serializes an XML document given its pre/post plane
encoding.
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