
Bridging the Gap Between Relational and Native XML Storage

with Staircase Join

Jens Teubner◦ Maurice van Keulen• Torsten Grust◦

◦University of Konstanz
Dept. of Computer & Information Science
Box D188, 78467 Konstanz, Germany
{grust,teubner}@inf.uni-konstanz.de

•University of Twente
Faculty of EEMCS

Box 217, 7500AEEnschede, The Netherlands
m.vankeulen@utwente.nl

Abstract

Several mapping schemes have recently been proposed to store XML data in relational
tables. Relational database systems are readily available and can handle vast amounts of
data very efficiently, taking advantage of physical properties that are specific to the relational
model, like sortedness or uniqueness. Tables that originate from XML documents, however,
carry some further properties that cannot be exploited by current relational query processors.
We propose a new join algorithm that is specifically designed to operate on XML data mapped
to relational tables. The staircase join is fully aware of the underlying tree properties and
allows for I/O and cache optimal query execution. As a local change to the database kernel,
it can easily be plugged into any relational database and allows for various optimization
strategies, e. g. selection pushdown. Experiments with our prototype, based on the Monet
database kernel, have confirmed these statements.

1 Introduction

There’s no doubt about the important role XML will play in tomorrow’s database systems. The
key issue from a database point of view is XML’s data model, namely the tree. Current database
technology can handle various kinds of relational data very well. For efficient XML processing,
however, they still lack an awareness of the tree structure.
Several proposals try to bridge this gap by mapping the XML tree structure into relational

tables [3] and use existing relational databases to store them. Although these approaches can
benefit from the advanced indexing techniques of the RDBMS, the database kernel does not
know the actual (tree) origin of the data and hence cannot profit from this information. It can
only rely on its own statistics in the search for efficient query plans.
The staircase join operator is a new join algorithm that can easily extend existing relational

databases. It is tailor-made for our XPath accelerator mapping scheme presented in [4] and
makes the database kernel fully aware of the underlying tree structure.
The Staircase join supports the most performance-critical XPath axes descendant, ancestor,

following, and preceding. For arbitrary context sets, our algorithm returns a duplicate-free,
sorted sequence of result nodes, as required by the XPath specification [1].
This paper will first give a brief overview of the XPath accelerator mapping scheme in Section

2 and point out its relevant properties. These properties will lead to the customized staircase
join algorithm that will be described and refined in Section 3. The experimental results in
Section 4 will prove the efficiency of our algorithm before Section 5 gives a short summary.

0 a 9

1 b 3

2 c 2

3 d 0 4 e 1

5 f 8

6 g 4 7 h 7

8 i 5 9 j 6

•
a

•b

•
c

•d
•
e

•
f

•
g

•h

•i
•
j

post

pre

ancestor

preceding

following

descendant

post

pre

Figure 1: Tree walk to determine the values pre(v) (left-hand numbers) and post(v) (right-hand numbers),
and node distribution in the pre/post plane. For each node, the four major XPath axes partition the whole
document into four regions, depicted for the nodes c and h with dashed and dotted lines, respectively.

2 The XPath Accelerator Mapping Scheme

Throughout this paper we will treat an XML document as a tree solely consisting of element
nodes.1 The XPath Accelerator mapping scheme assigns to each node in the XML tree a pair
of integer values that fully describe the structure of the document:

(a) The preorder rank pre(v) is the node order for a preorder traversal of the whole tree, i. e. a
tree node v is visited before its children are recursively traversed from left to right.

(b) The postorder rank post(v) is the node order for a postorder traversal, i. e. a node v is visited
after all its children have been traversed from left to right.

An example document tree and its pre and post values are given in Figure 1. Observe that the
pre-order corresponds exactly the document order defined by the XML specification.
With this numbering scheme, the result set of the four XPath axes descendant, ancestor,

following, and preceding can be described with simple range conditions on the pre/post
values. Due to their recursive definition, these axes are usually hardest to implement efficiently.

v′ is a descendant of v ⇔ pre(v′) > pre(v) ∧ post(v′) < post(v) (1)

v′ is an ancestor of v ⇔ pre(v′) < pre(v) ∧ post(v′) > post(v) (2)

v′ is a following node of v ⇔ pre(v′) > pre(v) ∧ post(v′) > post(v) (3)

v′ is a preceding node of v ⇔ pre(v′) < pre(v) ∧ post(v′) < post(v) (4)

In a pre/post plane (Figure 1), these conditions are represented in an illustrative way. Each
node induces a partitioning of the whole document into four regions that correspond to the result
sets of the above axes. We will therefore call these axes major axes. The result sets are the
nodes in the lower-right, upper-left, upper-right, and lower-left partition of node v, respectively.
Figure 1 depicts this partitioning for an example tree.
With conditions (1–4) it is straightforward to map XPath queries to SQL. In [4] we described

how any XPath query can be mapped to a single SQL query, e. g.:

e/descendant::node() =

SELECT DISTINCT p.*

FROM e c, doc n

WHERE n.pre > c.pre AND n.post < c.post

ORDER BY n.pre

(5)

3 Efficient Implementation: The Staircase Join

Off-the-shelf RDBMSs will use an R-tree index (if available) or a combination of two B+-tree
indices to support these region queries. In our experiments described in [5], IBM’s DB2 V7.1 used

1The extension to attributes, text nodes, processing instructions, etc. is straightforward.

• document node
◦ context node•

•

•

◦c1

•

◦c2 •
•
•
•

•
◦c3 •

•

•

◦c4

•
•

◦c5 •
•

•

post

pre

Figure 2: Overlapping regions in the
pre/post plane (context nodes ci).

R S

•

T

b
U

•

V

a

W

X Y Z

post

pre

• document node
◦ context node•

•

•

◦c1

•

•
••
•
•

•v •
••
•

◦c2

••
•
••
•

∅

post

prescan
skip

scan

Figure 3: Empty region in the pre/post plane. Knowledge
about empty regions makes it possible to skip parts of the
document.

two B+ indices and an index intersection to answer queries as in example (5). Note, however,
that we need the expensive DISTINCT and ORDER BY operators to ensure XPath semantics.
Both indices assume a random node distribution in the pre/post plane. Although we actually

know much more about the node distribution from its tree origin, the database cannot profit
from this knowledge for query execution.
With a closer look at our mapping scheme, we can derive a number of important implications

that will help the staircase join to avoid unnecessary work and optimize its processing. For the
sake of brevity, we will focus on the descendant axis for the remainder of this paper; the other
major axes can be optimized similarly.

3.1 Redundant Context Nodes

Following XPath semantics, the result of any location step is a duplicate-free ordered sequence.
Context nodes that lie within the result region of any other context node will therefore not
contribute new nodes to the result sequence and can just be removed from the context set. A
pruning phase removes these redundant nodes and reduces work for the actual staircase join.2

Figure 2 depicts the effectiveness of pruning. The darkly shaded regions are in the result set
of a descendant step for more than one context node. Pruning the redundant context nodes c2

and c5 reduces the overlap.

3.2 Empty Regions in the pre/post Plane

The example in Figure 2 shows that context pruning does not completely eliminate the region
overlap. But taking into account the tree origin of the node distribution in the pre/post plane,
it is easy to see that the remaining overlap regions are actually all empty.
This becomes obvious in Figure 3 (left) that schematically illustrates the situation for two

context nodes a and b. Two context nodes that are in a preceding/following relationship can
never have common descendants, and so the shaded region must be empty. This is an immediate
result from the fact that the stored data actually is a tree.
An important implication is that we won’t encounter duplicate result nodes after context

set pruning. But the knowledge about empty regions also helps the staircase join to avoid
unnecessary work. Each point in the remaining scan area can be reduced to exactly one context
node and even for large context sets, we need to compare each point in the pre/post plane with
exactly one node in the context set.

2Pruning is described as a separate execution phase here. In our actual staircase join implementation, however,
we merged pruning and execution into a single phase, avoiding overhead from pruning.

3.3 The Staircase Join Algorithm

Algorithm 1: Basic staircase join algorithm

1 staircasejoin desc (doc : table (pre,post),
context : table (pre,post)) ≡

2 begin

3 result← newtable (pre, post);
4 foreach successive pair (c1, c2) in context do

5 foreach node n in doc

6 from n.pre > c1.pre to n.pre < c2.pre do

7 if n.post < c1.post then
8 append n to result;

9 c1 ← last context node in context;
10 foreach node n in doc with n.pre > c1.pre do

11 if n.post < c1.post then
12 append n to result;

13 return result;
end

In particular that last implication is
reflected in the basic staircase join al-
gorithm, shown as Algorithm 1. For
each node in the context set, the stair-
case join scans the corresponding inter-
val in the pre/post plane along the pre
axis and collects its result nodes. (Note
that we assume the context set and the
doc table be sorted in pre-order. The
context set needs to be pruned.)
The algorithm might be described

best as a merge join with a dynamic
range predicate. Document table and
context set are both scanned sequen-
tially and only once. Despite being
very cache-friendly, this has an impor-
tant impact on the result set for XPath
step evaluation. The staircase join will never deliver duplicates and the result will always be
sorted in document order.

3.4 More Tree-Aware Optimizations

So far we have not fully exploited the empty regions observation from Section 3.2. This tree-
specific property can be used to skip parts of the document table and avoid unnecessary scans.
Each time the condition in lines 7 and 11 fails, we have a situation as depicted in Figure 3

with context node c1 as a and document node n as b. So the remainder of the currently scanned
interval must be a region like region Z in Figure 3 and therefore be empty. We can safely jump
to the next scanning interval and modify the if clauses in Algorithm 1 to

if n.post < c1.post then

append n to result;
else

break; /* skip */

The effectiveness of this skipping is high. Each node visited either contributes to the result
or leads to a skip. We will therefore never touch more than |context| + |result| nodes in the
pre/post plane, while the basic Algorithm 1 would scan along the entire plane, starting from the
context node with minimum preorder rank. Figure 3 (right) illustrates skipping.

4 Experimental Results

To validate the above ideas we implemented a staircase join operator for the Monet database
kernel [2]. The results in Figure 4 have been established on a 2.2GHz Pentium 4 machine,
equipped with 2GB RAM and running Linux kernel 2.4. We used XML documents generated
by the XML generator XMLgen from the XMark benchmark project [6] and executed the XPath
query /descendant::profile/descendant::education3.
Figures 4(a) and 4(b) demonstrate the effectiveness of the skipping optimization. The num-

ber of nodes processed in the second step of our query is reduced significantly. About 90% of the
irrelevant nodes have been skipped. Figure 4(b) shows that execution time for the second step
is roughly cut by half. The third algorithm depicted uses a slight modification of the skipping

3The first provides the context set for staircase join, while the second step is the actually “hard” step.

PSfrag replacements

Number of Nodes

Document Size [MB]

N
u
m
b
er

o
f
N
o
d
es

S
ca
n
n
ed

Execution Time [ms]

1

10

102

103

104

105

106

107

108

1.1 11.0 111.0 1111.0

3540

30910

297430

2988885

816

7264

70318

706193

3
4
7
4
9

3
3
3
8
3
5

3
3
1
9
3
6
1 3
3
2
8
8
6
7
3

2
8
3
2

2
6
0
1
9

2
6
0
9
2
9

2
6
1
3
7
1
5

2
0
2
1

1
8
3
8
7

1
8
4
7
7
1

1
8
4
9
3
6
0

0

1

11

108

6

54

4

44

3

21

224

2230

2

12

109

1108

35

345

duplicates avoided

staircase join

no skipping
skipping
result size

skipping (estimated)

IBM DB2 SQL

scj (early nametest)

(a) Effectiveness of skipping

PSfrag replacements

Number of Nodes

Document Size [MB]

Number of Nodes Scanned

E
x
ec
u
ti
o
n
T
im
e
[m
s]

1

10

102

103

104

105

106

107

108

1.1 11.0 111.0 1111.0

3540

30910

297430

2988885

816

7264

70318

706193

34749

333835

3319361

33288673

2832

26019

260929

2613715

2021

18387

184771

1849360

000

111

1
1

1
0
8

6

5
4

4

4
4

3

21

224

2230

2

12

109

1108

35

345

duplicates avoided

staircase join

no skipping
skipping

result size

skipping (estimated)

IBM DB2 SQL

scj (early nametest)

(b) Effectiveness of skipping

PSfrag replacements

Number of Nodes

Document Size [MB]

Number of Nodes Scanned

E
x
ec
u
ti
o
n
T
im
e
[m
s]

1

10

102

103

104

105

106

107

108

1.1 11.0 111.0 1111.0

3540

30910

297430

2988885

816

7264

70318

706193

34749

333835

3319361

33288673

2832

26019

260929

2613715

2021

18387

184771

1849360

0

1

11

108

6

54

4

44

3

2
1

2
2
4

2
2
3
0

2

1
2

1
0
9

1
1
0
8

3
5

3
4
5

duplicates avoided

staircase join

no skipping

skipping

result size

skipping (estimated)

IBM DB2 SQL

scj (early nametest)

(c) Performance comparison

Figure 4: Experimental results (All diagrams use a logarithmic scale.)

technique that is optimized for main-memory processing (“skipping (estimated)”).
In Figure 4(c) we compare the total query execution times to the commercial database

system IBM DB2 UDB 7.1. The middle set of bars shows the results for the staircase join with
a subsequent name test. In our introduction, we already proposed that known query rewriting
techniques can be applied to the staircase join as well. The third set of bars shows how execution
time can be reduced by a factor of about 3 when the name test is done before the evaluation
of the staircase join. We believe that this flexibility makes the staircase join a very promising
approach to use relational database technology for highly efficient XML query processing.

5 Summary

The staircase join operator incorporates detailed knowledge about the properties of the pre/post
plane. It uses tree-specific properties like ancestor-descendant relationships for efficient XPath
processing. We propose that the staircase join can be added to existing relational database
systems. Known optimization and query rewriting techniques like selection pushdown can be
applied to the staircase join, which makes staircase join-extended databases a very promising
platform for XML storage and query processing.

References

[1] Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie, J., and

Siméon, J. XML Path Language (XPath) 2.0. Tech. Rep. W3C Working Draft, Version 2.0, World
Wide Web Consortium, November 2002.

[2] Boncz, P. A. Monet — A Next-Generation DBMS Kernel For Query-Intensive Applications. PhD
thesis, University of Amsterdam, The Netherlands, May 2002.

[3] Florescu, D., and Kossmann, D. A Performance Evaluation of Alternative Mapping Schemes for
Storing XML Data in a Relational Database. Tech. rep., INRIA, Rocquencourt, France, 1999.

[4] Grust, T. Accelerating XPath Location Steps. In Proc. of the 21st Int’l ACM SIGMOD Conference
on Management of Data (Madison, Wisconsin, USA, June 2002), ACM Press, pp. 109–120.

[5] Grust, T., van Keulen, M., and Teubner, J. On Accelerating XPath Evaluation in Any
RDBMS. ACM Transactions on Database Systems (2003 (under revision)).

[6] Schmidt, A. R., Waas, F., Kersten, M. L., Carey, M. J., Manolescu, I., and Busse, R.

XMark: A Benchmark for XML Data Management. In Proc. of the International Conference on Very
Large Data Bases (VLDB) (Hong Kong, China, August 2002), pp. 974–985.

