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and M. Tamer Özsu, Fellow, IEEE

Abstract—Existing main-memory hash join algorithms for multi-core can be classified into two camps. Hardware-oblivious hash
join variants do not depend on hardware-specific parameters. Rather, they consider qualitative characteristics of modern hardware
and are expected to achieve good performance on any technologically similar platform. The assumption behind these algorithms is
that hardware is now good enough at hiding its own limitations—through automatic hardware prefetching, out-of-order execution, or
simultaneous multi-threading (SMT)—to make hardware-oblivious algorithms competitive without the overhead of carefully tuning to the
underlying hardware. Hardware-conscious implementations, such as (parallel) radix join, aim to maximally exploit a given architecture
by tuning the algorithm parameters (e.g., hash table sizes) to the particular features of the architecture. The assumption here is that
explicit parameter tuning yields enough performance advantages to warrant the effort required.
This paper compares the two approaches under a wide range of workloads (relative table sizes, tuple sizes, effects of sorted data,
etc.) and configuration parameters (VM page sizes, number of threads, number of cores, SMT, SIMD, prefetching, etc.). The results
show that hardware-conscious algorithms generally outperform hardware-oblivious ones. However, on specific workloads and special
architectures with aggressive simultaneous multi-threading, hardware-oblivious algorithms are competitive. The main conclusion of the
paper is that, in existing multi-core architectures, it is still important to carefully tailor algorithms to the underlying hardware to get the
necessary performance. But processor developments may require to revisit this conclusion in the future.
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1 INTRODUCTION

The radical changes and advances in processor architec-
ture caused by multi-core have triggered a revision of the
algorithms used to implement main-memory hash joins.
The results available so far present a very confusing and
contradictory landscape.

On the one hand, some authors claim that the best
performance is to be achieved by fine tuning to the
underlying architecture. For instance, Kim et al. [1] look
at the effects of caches and TLBs (translation lookaside
buffers) on main-memory parallel hash joins and show
how careful partitioning according to the cache and
TLB sizes leads to improved performance. Along the
same lines, Lang et al. [2] have shown how tuning to
the non-uniform memory access (NUMA) characteristics
also leads to improved performance of parallel hash
joins. We will refer to the algorithms that take hardware
characteristics into consideration as hardware-conscious.
Some of this work further emphasizes the impact of
hardware by suggesting that, in the future, as SIMD
becomes wider, sort-merge join is likely to perform better
than hash joins [1].
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On the other hand, other authors argue that paral-
lel hash join algorithms can be made efficient while
remaining hardware-oblivious [3]. That is, there is no
need for tuning—particularly of the partition phase of
a join where data is carefully arranged to fit into the
corresponding caches—because modern hardware hides
the performance loss inherent in the multi-layer memory
hierarchy. In addition, so the argument goes, the fine
tuning of the algorithms to specific hardware makes
them less portable and less robust to, e.g., data skew.

Further contradictory results exist around the perfor-
mance of sort-merge joins. For instance, Albutiu et al.
[4] claim that sort-merge join is already better than hash
join and can be efficiently implemented without using
SIMD [4]. These results contradict the claims of both
Blanas et al. [3] and Kim et al. [1] (the former argues
that hardware consciousness is not necessary to achieve
high performance; the latter concludes that sort-merge
will only be competitive on wide SIMD architectures).
We recently looked into this question in more detail,
too [5] and found that hardware-conscious (radix-)hash
join algorithms still maintain an edge over sort-merge
joins despite the advances on SIMD.

In this paper we focus on main-memory, parallel hash
join algorithms and address the question of whether it
is important to tune the algorithms to the underlying
hardware as claimed by Kim et al. [1] and by Albutiu et
al. [4] or whether hardware-oblivious approaches provide
sufficient performance to make the overhead of being
hardware-conscious unnecessary.

Answering this question is a non-trivial task because
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of the intricacies of modern hardware and the many
possibilities available for tuning. To make matters worse,
many parameters affect the behavior of join operators:
relative table sizes, use of SIMD, page sizes, TLB sizes,
structure of the tables and organization, hardware ar-
chitecture, tuning of the implementation, etc. Existing
studies share very few common points in terms of the
space explored, making it difficult to compare their
results.

The first contribution of the paper is algorithmic.
We analyze the algorithms proposed in the literature
and introduce several important optimizations, which
leads to algorithms that are more efficient and robust
to parameter changes. In doing so, we provide impor-
tant insights on the effects of multi-core hardware on
algorithm design.

The second contribution is to put existing claims
into perspective, showing what choice of parameters or
hardware features cause the observed behaviors. These
results shed light on what parameters play a role in
multi-core systems, thereby establishing the basis for the
choices a query optimizer for multi-core will need to
make.

The third and final contribution is to settle the issue
of whether tuning to the underlying hardware plays
a role. The answer is affirmative in most situations.
However, for certain combinations of parameters and
architectures, hardware-oblivious approaches have an
advantage. As our results show, architectural features
such as effective and aggressive on-chip multi-threading
on Sparc RISC architecture CPUs favor the hardware-
oblivious no partitioning idea. Therefore, heavy SMT
might change the picture in the future.

In this paper we extend and expand on the results by
Balkesen et al. [6]. Through additional experiments on
more recent Sparc RISC processors, we have determined
that machines with aggressive SMT benefit hardware-
oblivious algorithms. This advantage does not happen
in all architectures but it is the result of a combination
of features (low synchronization cost, fully associative
TLBs, aggressive on-chip multi-threading, etc.). These
results open up an interesting research direction for
future processor architectures that could be tailored to
more efficient data processing operators. All previous
work, including [6], explored only deployments on sin-
gle sockets. In this paper, we look into deployments on
multi-sockets using the latest x86 multi-core processors
(Intel Sandy Bridge). Multi-socket deployment turns out
to be a key factor in boosting the performance of join
algorithms leading to results that are the fastests pub-
lished to date. The paper also contains a new analysis
of the impact of cache hierarchies and large SMT ar-
chitectures on the performance of hash joins and why
these hardware features do not benefit hardware-conscious
algorithms. In response to feedback since the publication
of [6], we include as well a discussion on how to turn
hardware-oblivious algorithms into hardware-conscious
ones by using software prefetching and cache alignment.
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Fig. 1. Canonical hash join.

R

h

...
h

b1

b2

...

bk

shared
hash table

S

h

...

h

1© build 2© probe

Fig. 2. No partitioning join.

Finally, the paper also explores new optimizations like
the use of software-managed buffers.

The code for all the algorithms discussed in this
paper plus the data generators used in the experiments
are available at http://www.systems.ethz.ch/projects/
paralleljoins.

2 BACKGROUND: IN-MEMORY HASH JOINS

2.1 Canonical Hash Join Algorithm
The basis behind any modern hash join implementation
is the canonical hash join algorithm [7], [8]. It operates
in two phases, as shown in Figure 1. In the build phase,
the smaller of the two input relations, R, is scanned to
populate a hash table with all R tuples. Then the probe
phase scans the second input relation, S, and probes the
hash table for each S tuple to find matching R tuples.

Both input relations are scanned once and, with an
assumed constant-time cost for hash table accesses, the
expected complexity is O(|R|+ |S|).

2.2 No Partitioning Join
To benefit from modern parallel hardware, Blanas et
al. [3] proposed a variant of the canonical algorithm,
no partitioning join, which is essentially a direct parallel
version of the canonical hash join. It does not depend on
any hardware-specific parameters and—unlike alterna-
tives that will be discussed shortly—does not physically
partition data. The argument is that the partitioning
phase requires multiple passes over the data and can be
omitted by relying on modern processor features such
as simultaneous multi-threading (SMT) to hide cache
latencies.

Both input relations are divided into equi-sized por-
tions that are assigned to a number of worker threads.
As shown in Figure 2, in the build phase, all worker
threads populate a shared hash table accessible to all
worker threads.

After synchronization via a barrier, all worker threads
enter the probe phase and concurrently find matching
join partners for their assigned S portions.

An important characteristic of no partitioning is that the
hash table is shared among all participating threads. This
means that concurrent insertions into the hash table must
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Fig. 3. Partitioned hash join (following Shatdal et al. [9]).

be synchronized. To this end, each bucket is protected via
a latch that a thread must obtain before it can insert a
tuple. The potential latch contention is expected to remain
low, because the number of hash buckets is typically
large (in the millions). The probe phase accesses the hash
table in read-only mode. Thus, no latches have to be
acquired in that second phase.

On a system with p cores, the expected complexity of
this parallel version of hash join is O (1/p(|R|+ |S|)).

2.3 Radix Join
Hardware-conscious, main-memory hash join imple-
mentations build upon the findings of Shatdal et al.
[9] and Manegold et al. [10], [11]. While the principle
of hashing—direct positional access based on a key’s
hash value—is appealing, the resulting random access
to memory can lead to cache misses. Thus, the main
focus is on tuning main-memory access by using caches
more efficiently, which has been shown to impact query
performance [12]. Shatdal et al. [9] identify that when
the hash table is larger than the cache size, almost every
access to the hash table results in a cache miss. Con-
sequently, partitioning the hash table into cache-sized
blocks reduces cache misses and improves performance.
Manegold et al. [10] refined this idea by considering
as well the effects of translation look-aside buffers (TLBs)
during the partitioning phase. This led to multi-pass
partitioning, now a standard component of the radix join
algorithm.

Partitioned Hash Join. The partitioning idea is illustrated
in Figure 3. In the first phase of the algorithm the two
input relations R and S are divided into partitions ri and
sj , respectively. During the build phase, a separate hash
table is created for each ri partition (assuming R is the
smaller input relation). Each of these hash tables now
fits into the CPU cache. During the final probe phase, sj
partitions are scanned and the respective hash table is
probed for matching tuples.

During the partitioning phase, input tuples are di-
vided up using hash partitioning (via hash function h1

in Figure 3) on their key values (thus, ri on sj = ∅ for
i 6= j) and another hash function h2 is used to populate
the hash tables.
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Fig. 4. Radix join (as proposed by Manegold et al. [10]).

While avoiding cache misses during the build and
probe phases, partitioning the input data may cause
a different type of cache problem. The partitions will
typically reside on different memory pages with a sep-
arate entry for virtual memory mapping required for each
partition. This mapping is cached by TLBs in modern
processors. As Manegold et al. [10] point out, the par-
titioning phase may cause TLB misses if the number of
created partitions is too large.

Essentially, the number of available TLB entries de-
fines an upper bound on the number of partitions that
can be efficiently created or accessed at the same time.

Radix Partitioning. Excessive TLB misses can be avoided
by partitioning the input data in multiple passes. In each
pass j, all partitions produced in the preceding pass
j−1 are refined, such that the partitioning fan-out never
exceeds the hardware limit given by the number of TLB
entries. In practice, each pass looks at a different set
of bits from the hash function h1, which is why this
is called radix partitioning. For typical in-memory data
sizes, two or three passes are sufficient to create cache-
sized partitions, without suffering from TLB capacity
limitations.

Radix Join. The complete radix join is illustrated in Fig-
ure 4. 1© Both inputs are partitioned using two-pass
radix partitioning (two TLB entries would be sufficient to
support this toy example). 2© Hash tables are then built
over each ri partition of input table R. 3© Finally, all si
partitions are scanned and the respective ri partitions
probed for join matches.

In radix join, multiple passes have to be done over
both input relations. Since the maximum “fanout” per
pass is fixed by hardware parameters, log |R| passes
are necessary, where R again is the smaller input
relation. Thus, we expect a runtime complexity of
O ((|R|+ |S|) log |R|) for radix join.

Hardware Parameters. Radix join needs to be tuned to
a particular architecture via two parameters: (i) the
maximum fanout per radix pass is primarily limited by the
number of TLB entries of the hardware; (ii) the resulting
partition size should roughly be the size of the system’s
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TABLE 1
Experimental setup

(a) Workload characteristics

A (from [3]) B (from [1])

size of key / payload 8 / 8 bytes 4 / 4 bytes
size of R 16 · 220 tuples 128 · 106 tuples
size of S 256 · 220 tuples 128 · 106 tuples
total size R 256 MiB 977 MiB
total size S 4096 MiB 977 MiB

(b) Hardware platforms used in our evaluation
Intel Intel AMD Sun Intel Oracle

Nehalem Sandy Bridge Bulldozer Niagara 2 Sandy Bridge Sparc T4

CPU
Xeon Xeon Opteron UltraSPARC Xeon SPARC
L5520 E5-2680 6276 T2 E5-4640 T4

2.26 GHz 2.7 GHz 2.3 GHz 1.2 GHz 2.4 GHz 3.0 GHz
Cores/Threads 4/8 8/16 16/16 8/64 32/64 32/256
Cache sizes 32 KiB 32 KiB 16 KiB 8 KiB 32 KiB 16 KiB

(L1/L2/L3) 256 KiB 256 KiB 2 MiB 4 MiB 256 KiB 128 KiB
8 MiB 20 MiB 16 MiB - 20 MiB 4 MiB

TLB (L1/L2) 64/512 64/512 32/1024 128/- 64/512 128/-

Memory 24 GiB DDR3 32 GiB DDR3 32 GiB DDR3 16 GiB 512 GiB DDR3 1 TiB
1066 MHz 1600 MHz 1333 MHz FBDIMM 1600 MHz -

VM Page size 4 KiB 4 KiB 4 KiB 8 KiB 2 MiB 4 MiB

CPU cache. Both parameters can be obtained in a rather
straightforward way, e.g., with help of benchmark tools
such as Calibrator [10]. As we shall see later, radix join is
not overly sensitive to minor mis-configurations of either
parameter.

2.4 Parallel Radix Join
Radix join can be parallelized by subdividing both input
relations into sub-relations that are assigned to indi-
vidual threads [1]. During the first pass, all threads
create a shared set of partitions. As before, the number
of partitions is limited by hardware parameters and
is typically small (a few tens of partitions). They are
accessed by potentially many execution threads, creating
a contention problem (the low-contention assumption of
Section 2.2 no longer applies).

To avoid this contention, for each thread a dedicated
range is reserved within each output partition. To this
end, both input relations are scanned twice. The first
scan computes a set of histograms over the input data,
so the exact output size is known for each thread and
each partition. Next, a contiguous memory space is
allocated for the output and, by computing a prefix-
sum over the histogram, each thread pre-computes the
exclusive location where it writes its output. Finally, all
threads perform their partitioning without any need to
synchronize.

After the first partitioning pass, there is typically
enough independent work in the system (cf. Figure 4)
that workers can perform work on their own. Load
distribution among worker threads is typically imple-
mented via task queueing (cf. [1]). Overall, we expect
a runtime of O(1/p(|R| + |S|) log |R|) for a parallel radix
join on p cores.

3 EXPERIMENTAL SETUP

3.1 Workload
For the comparison, we use machine and workload
configurations corresponding to modern database ar-
chitectures. Thus, we assume a column-oriented storage
model. We deliberately choose very narrow 〈key , payload〉
tuple configurations, where key and payload are four or
eight bytes wide. As a side effect, narrow tuples better

emphasize the effects that we are interested in since they
put more pressure on the caching system.1

We adopted the particular configuration of our work-
loads from existing work, which also eases the compar-
ison of our results with those published in the past.

As illustrated in Table 1(a), we adopted workloads
from Blanas et al. [3] and Kim et al. [1] and refer to them
as A and B, respectively. All attributes are integers, and
the keys of R and S follow a foreign key relationship.
That is, every tuple in S is guaranteed to find exactly
one join partner in R. Most of our experiments (unless
noted otherwise) assume a uniform distribution of key
values from R in S.

3.2 Hardware Platforms
We evaluated the algorithms on six different multi-core
machines shown in Table 1(b). The Sun UltraSPARC
T2 provides eight thread contexts per core where eight
threads share the L1 cache with a line size of 16 bytes.
All the Intel machines support SMT with two thread
contexts per core. The Sun UltraSPARC T2 comes with
two levels of cache, where cores share the L2 cache with
line size of 64 bytes. On the Intel machines, cores use a
shared L3 cache and a cache line size of 64 bytes. The
AMD machine has a different architecture than the oth-
ers: two cores are packaged as single module and share
some resources such as instruction fetch, decode, floating
point unit and L2 cache. Accordingly, the effective L2
cache available per core is reduced to half, i.e., 1 MiB.

Among those platforms, Oracle Sparc T4 [14] and Intel
E5-4640 are recent high-end multi-core servers in a four-
socket configuration. In the Oracle Sparc T4, each of
the sockets provides eight processor cores and each core
has hardware support for eight threads. Therefore the
machine provides a total of 256 hardware threads. The T4
has 16 KiB L1 and 128 KiB L2 per core with 32-byte cache
lines, and a shared 4 MiB L3 with 64-byte cache lines. The
memory management unit has a fully associative, 128-
entry DTLB and supports 8 KiB, 64 KiB, 4 MiB, 256 MiB
and 2 GiB page sizes with a hardware table-walk engine.
In comparison to the previous generations of Sparc

1. The effect of tuple widths was studied, e.g., by Manegold et al.
[13].
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Fig. 5. Original hash table implementation in [3].
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Fig. 6. Our hash table implementation.

(such as T2), T4 provides many improvements such
as an aggressive clock frequency of 3.0 GHz, advanced
branch prediction, out-of-order execution, and a shared
L3 cache. Our system runs Solaris 11.1 (SunOS 5.11). The
Intel E5-4640 has a total memory of 512 GiB and a clock
frequency of 2.4 GHz; it runs Debian Linux 7.0, kernel
version 3.4.4-U5 and uses 2 MiB VM pages for memory
allocations transparently.

The Intel L5520, E5-2680 and AMD systems run
Ubuntu Linux (kernel version 2.6.32); the Sun Ultra-
SPARC T2 runs Debian Linux (kernel version 3.2.0-3-
sparc64-smp). For the results we report here, we used
gcc 4.4.3 on Ubuntu and gcc 4.6.3 on Debian and
the -O3 and -mtune=niagara2 -mcpu=ultrasparc
command line options to compile our code. Additional
experiments using Intel’s icc compiler did not show
any notable differences, neither qualitatively nor quan-
titatively. For the performance counter profiles that we
report, we instrumented our code with the Intel Perfor-
mance Counter Monitor [15].

4 HARDWARE-OBLIVIOUS JOINS

In this section we first study and optimize the no par-
titioning strategy. To make our results comparable, we
use similar hardware to that employed in earlier work,
namely a Nehalem L5520 (cf. Table 1(b)).

4.1 Build Cost

Sorted input might have a positive impact on the build
cost. Using a hash function such as modulo together
with a sorted input, one can observe strictly sequential
memory accesses, in addition to the reduced contention
for the bucket latches. For the impact of using sorted
input on the build cost, we refer the reader to [6]. In
the rest of the paper, we assume a randomly permuted
input.

4.2 Cache Efficiency

When running the no partitioning code of [3], the cache
profile information indicates hash table build-up incurs
a very high number of cache and TLB misses. Processing
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Fig. 7. Cycles per output tuple for hardware-oblivious
no partitioning strategy (Workload A; Intel Xeon L5520,
2.26 GHz).

16 million tuples results in 45.3/52.7 million L3/TLB
misses, or about three misses per input tuple.

The reason for this inefficiency becomes clear as we
look at the code of Blanas et al. [3]. The hash table in this
code is implemented as illustrated in Figure 5. The hash
table is an array of head pointers, each of which points
to the head of a linked bucket chain. Each bucket is
implemented as a 48-byte record. A free pointer points to
the next available tuple space inside the current bucket.
A next pointer leads to the next overflow bucket, and
each bucket can hold two 16-byte input tuples.

Since the hash table is shared among worker threads,
latches are necessary for synchronization. As illustrated
above, they are implemented as a separate latch array
which is position-aligned with the head pointer array.

In this table, a new entry can be inserted in three steps
(ignoring overflow situations due to hash collisions):
(1) the latch must be obtained in the latch array; (2) the
head pointer must be read from the hash table; (3) the
head pointer must be dereferenced to find the hash
bucket where the tuple can be inserted. In practice, each
of these three steps is likely to result in a cache miss.

Optimized Hash Table Implementation. To improve the
cache efficiency of no partitioning, we directly combined
locks and hash buckets to neighboring memory loca-
tions. More specifically, in our code we implemented
the main hash table as a contiguous array of buckets, as
shown in Figure 6. The hash function directly indexes
into this array representation. For overflow buckets, we
allocate additional bucket space outside the main hash
table. Most importantly, the 1-byte synchronization latch
is part of the 8-byte header that also contains a counter
indicating the number of tuples currently in the bucket.
In line with the original study [3], for Workload A, we
configured our hash table to two 16-byte tuples per
bucket. An 8-byte next pointer is used to chain hash
buckets in case of overflows.

In terms of absolute join performance, our re-written
code is roughly three times faster than the code of Blanas
et al. [3], as shown in Figure 7. Yet, our code remains
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strictly hardware-oblivious: no hardware-specific param-
eters are needed to tune the code.

5 HARDWARE-CONSCIOUS JOINS

5.1 Configuration Parameters
The key configuration parameter of radix join is the
number of radix bits for the partitioning phase (2 # radix bits

partitions are created during that phase). Figure 8 illus-
trates the effect that this parameter has on the runtime
of radix join.

The figure confirms the expected behavior that parti-
tioning cost increases with the partition count, whereas
the join phase becomes faster as partitions become
smaller. Configurations with 14 and 11 radix bits are
the best trade-offs between these opposing effects for
the Nehalem and AMD architectures, respectively. But
even more interestingly, the figure shows that radix
join is fairly robust against parameter mis-configuration:
within a relatively broad range of configurations, the
performance of radix join degrades only marginally.

5.2 Hash Tables in Radix Join
Various hash table implementations have been proposed
for radix join. Manegold et al. [10] use a bucket chaining
mechanism where individual tuples are chained to form
a bucket. Following good design principles for efficient
in-memory algorithms, all pointers are implemented as
array position indexes (as opposed to actual memory
pointers). Based on our analysis, bucket chaining mecha-
nism turns out to be superior to other approaches, even
those utilizing SIMD [6]. Hence, we use it for all the
following experiments.

5.3 Overall Execution Time
The overall cost of join execution consists of the cost
for data partitioning and the cost of computing the
individual joins over partitions. To evaluate the overall
cost of join execution (and to prepare for a comparison
with the hardware-oblivious no partitioning algorithm),
we measured our own, carefully tuned implementation,
as well as those reported in earlier work.

TABLE 2
CPU performance counter profiles for different radix join

implementations (in millions); Workload A

code from [3] our code

Part. Build Probe Part. Build Probe

Cycles 9398 499 7204 5614 171 542
Instructions 33520 2000 30811 17506 249 5650
L2 misses 24 16 453 13 0.3 2
L3 misses 5 5 40 7 0.2 1
TLB load misses 9 0.3 2 13 0.1 1
TLB store misses 325 0 0 170 0 0
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Fig. 9. Overall join execution cost (cycles per output tuple)
for hardware-conscious radix join strategy (Workload A;
Intel Xeon L5520, 2.26 GHz).

We had two implementations of radix join available.
For the code of Blanas et al. [16], we found one pass
and 2,048 partitions to be the optimal parameter config-
uration (matching the configuration in their experiments
[3]). Partitioning in that code turns out to be rather
expensive. We attribute this to a coding style that leads to
many function calls and pointer dereferences in critical
code paths. Partitioning is much more efficient in our
own code. This leads to a situation where two-pass
partitioning with 16,384 partitions becomes the most
efficient configuration. Table 2 illustrates how the dif-
ferent implementations lead to significant differences in
the executed instruction count. Our code performs two
partitioning passes with 40 % fewer instructions than the
Blanas et al.’s code [3] needs to perform one pass.

The resulting overall execution times are reported
(as cycles per output tuples) in Figure 9. This chart
confirms that partitioning is rather expensive in the code
of Blanas et al. Ultimately, this results in a situation
where the resulting partition count is sub-optimal for
the subsequent join phase, causing their join code to
be also expensive. With the optimized code, partitioning
becomes the dominant cost, which is consistent with the
findings of Kim et al. [1], which showed comparable cost
at similar parameter settings. Overall, our code is about
three times faster than the code of Blanas et al. for all
tested configurations.
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Fig. 10. Cycles per output tuple for hardware-oblivious no partitioning and hardware-conscious radix join algorithm,
for different hardware architectures and workloads. Experiments based on our own, optimized code. Using 8 threads
on Nehalem, 16 threads on Sandy Bridge and AMD, and 64 threads on Niagara.

Performance Counters. We have also instrumented the
available radix join implementations to monitor CPU
performance counters. Table 2 lists cache and TLB miss
counts for the three tasks in radix join. The table shows
a significant difference in the number of cache and TLB
misses between the implementations. The idea behind
radix join is that all partitions should be sufficiently small
to fully fit into caches. One should expect a very low
number of misses. This is true for our implementation
but not for the one of Blanas et al.

The reason for the difference is the execution order
of hash building and probing in the latter code. Their
code performs radix join strictly in three phases. After
partitioning (first phase), hash tables are created for
all partitions (second phase). Only then, in the third
algorithm phase, are those hash tables probed to find
join partners. Effectively, the created hash tables will
long be evicted from CPU caches before their content
is actually needed for probing. Our code avoids these
memory round-trips by running the build and probe
phases for each partition together.

6 HARDWARE-CONSCIOUS OR NOT?
6.1 Effect of Workloads

Figure 10 summarizes the performance results we ob-
served for both workloads on our four single-socket
architectures.

Focusing first on Workload A, Figure 10(a) shows the
performance of our own implementation. For the same
workload, Blanas et al. [3] reported only a marginal
performance difference between no partitioning and radix
join on x86 architectures. In our results the hardware-
conscious radix join is appreciably faster when both
implementations are equally optimized. Only on the Sun
Niagara the situation looks different. We will look into
this architecture later in the paper.

The results in Figure 10(a) may still be seen as a
good argument for the hardware-oblivious approach. An
approximate 25 % performance advantage, e.g., on the

two Intel platforms, might not justify the effort needed
for parameter tuning in radix join.

However, running the same experiments with our
second workload, Workload B (Figure 10(b)), radically
changes the picture. Radix join is approximately 3.5 times
faster than no partitioning on Intel machines and 2.5 times
faster on AMD and Sun machines. That is, no partitioning
has comparable performance to radix join only when
the relative relation sizes are very different. This is
because in such a situation, the cost of the build phase
is minimized. As soon as table sizes grow and become
similar, the overhead of not being hardware-conscious
becomes visible (see the differences in the build phases
for no partitioning).

6.2 Scalability

To study the scalability of the two join variants, we re-ran
the experiments with a varying number of threads, up to
the maximum number of hardware contexts available on
each of the architectures. Figure 11 illustrates the results.

All platforms and both join implementations show
good scalability. Thanks to this scalability, the opti-
mized radix join implementation reaches a throughput of
196 million tuples per second. As far as we are aware,
this is the highest throughput for in-memory hash joins
on a single CPU socket so far.

On the AMD machine, no partitioning shows a clear
bump around 8–10 threads. This is an artifact of the
particular AMD architecture. Though the Opteron is
marketed as a 16-core processor, the chip internally
consists of two interconnected CPU dies [17]. It is likely
that such an architecture requires a tailored design for
the algorithms to perform well, removing an argument
in favor of hardware-conscious algorithms as, even if
it is parameter-free, some multi-core architectures may
require specialized designs anyway. Note that NUMA
would create significant problems for the shared hash
table used in no partitioning (let alone in future designs
where memory may not be coherent across the machine).
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(a) Intel Nehalem Xeon L5520
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(b) Intel Sandy Bridge E5-2680
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(c) AMD Bulldozer Opteron
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(d) Sun UltraSPARC T2

Fig. 11. Throughput comparison of algorithms on different machines using Workload B. Computed as
input-size/execution-time where input-size = |R| = |S|.

TABLE 3
Latch cost per build tuple in different machines

Nehalem Sandy Bridge Bulldozer Niagara 2

Used instruction xchgb xchgb xchgb ldstub

Reported instruction
latency in [18], [19] ∼20 cycles ∼25 cycles ∼50 cycles 3 cycles
Measured impact
per build tuple 7-9 cycles 6-9 cycles 30-34 cycles 1-1.5 cycles

A similar bump also exists in the Intel machines which is
mainly due to the SMT effects on the Intel architectures.
We will discuss that later in the paper

6.3 Sun UltraSPARC T2 “Niagara”
On the Sun UltraSPARC T2, a totally different archi-
tecture than the x86 platforms, we see a result similar
to the other architectures with Workload B. Hardware-
conscious radix join achieves a throughput of 50 million
tuples per second (cf. Figure 11(d)), whereas no partition-
ing achieves only 22 million tuples per second.

When looking to Workload A, no partitioning becomes
faster than radix join on the Niagara 2 (shown in Fig-
ure 10(a)). One could attribute this effect to the highly
effective on-chip multi-threading functionality of the
Niagara 2. However, there is more than that. First, the
virtual memory page size on UltraSPARC T2 is 8 KiB
and the TLB is fully associative, which are significant
differences to other architectures.

Second, the Niagara 2 architecture turns out to have
extremely efficient thread synchronization mechanisms.
To illustrate that, we deliberately disabled the latch code
in the no partitioning join. We found that the ldstub
instruction which is used to implement the latch on
UltraSPARC T2 is very efficient compared to other ar-
chitectures as shown in Table 3. These special character-
istics also show the importance of architecture-sensitive
decisions in algorithm implementations.

6.4 TLB, VM Page Size and Load Balancing Effects
The virtual memory setup of modern systems is, to
a small extent, configurable. By using a larger system
page size, fewer TLB entries might be needed for the

operations on a given memory region. In general both
join strategies can equally benefit from large pages, leav-
ing the “hardware-conscious or not?” question unchanged.
Large pages may have a more significant effect on the
performance of no partitioning–but only if their use is
combined with hardware-conscious optimizations such
as explicit data prefetching (cf. Section 6.8). For reasons
of space, we omit the detailed experiments and analysis
here and refer the reader to a technical report with more
experiments [20].

In contrast to no partitioning join, radix join is vulnera-
ble to load-imbalance if tasks are not properly scheduled
over worker threads. However, radix join can be made
robust to load-imbalance of the barrier synchronization
by using the fine-granular task decomposition strategy that
we described earlier [6].

Additionally, higher skew on the foreign key relation
might improve the performance of the no partitioning
join significantly due to increasing cache hits. However,
this makes no partitioning faster than radix only under
special cases. The details and the experiments covering
load balance issues and data skew are included in [6].

6.5 Effect of Relation Size Ratio

The above experiments show that the relative sizes of
the joined tables play a big role in the behavior of
the algorithms. In the following set of experiments, we
explore the effect of varying relation cardinalities on join
performance. For these experiments, we use the Intel
Xeon L5520 and fix the number of threads at 8. We vary
the size of the primary key build relation R in the non-
equal data set from 1 · 220 to 256 · 220 tuples. The size of
the foreign key relation S is fixed at 256·220. However, as
we change the size of R, we also adjust the distribution
of values in S accordingly.

Figure 12 shows the cycles per output tuple for each
phase as well as the entire run for different sizes of R in
a log-log plot.

The results confirm the observations made so far and
provide a clearer answer to the controversy between
hardware-conscious and hardware-oblivious algorithms.
No partitioning does well when the build relation is
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Fig. 12. Cycles per output tuple with varying build relation cardinalities in Workload A (Intel Xeon L5520, 2.26 GHz,
Radix join was run with the best configuration in each experiment where radix bits varied from 13 to 15).
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Fig. 13. Performance on recent multi-core servers, Sparc
T4 and Sandy Bridge (SB) using Workload B. Throughput
is in output tuples per second, i.e. |S|/execution time.

very small compared to the large relation. Performance
deteriorates as the size of R increases because of the
cost of the build phase (Figure 12(a)). Radix join is more
robust to different table sizes and offers almost constant
performance across all sizes of R. More importantly, the
contribution of the partitioning phase is the same across
the entire range, indicating that the partitioning phase
does its job regardless of table sizes.

In other words, no partitioning join is slightly better
than radix join only under skew and when the sizes of
the tables being joined significantly differ. In all other
cases, radix join is better (and significantly better in fact)
in addition to also being more robust to parameters like
skew or relative table sizes.

6.6 Evaluation on Recent Multi-Core Servers
Figure 13 shows the performance of different algorithms
on Sparc T4 and Sandy Bridge. First, the no partitioning
algorithm draws its true benefit from effective on-chip

multi-threading on T4. When eight threads are executed
on a single physical core, the underlying system takes
care of problems such as cache and TLB misses. The
performance comparison of running a single thread per
core (cf. ) vs. eight threads per core (cf. ) clearly
demonstrates this phenomenon with a speedup factor of
more than four. On the other hand, radix join also scales
linearly while using all the physical cores. However,
it does not benefit from hardware multi-threading. We
will look into the issue of why hardware-conscious al-
gorithms are not well suited to this architecture in detail
in the next sub-section. Overall, no partitioning clearly
becomes a competitive approach to hardware-conscious
radix on this platform.

Is on-chip multi-threading or SMT always beneficial?

Simultaneous multi-threading (SMT) hardware pro-
vides the illusion of an extra CPU by running two
threads on the same CPU and cleverly switching be-
tween them at the hardware level. This gives the hard-
ware the flexibility to perform useful work even when
one of the threads is stalled, e.g., because of a cache miss.

The results on T4 in Figure 13 highly suggest that
hardware-oblivious algorithms benefit from SMT. How-
ever, the question is whether this is a particular feature
of T4 (such as aggressive SMT) or this can be generalized
to other hardware. In order to answer this question, we
conducted experiments on the Nehalem system which
contains four cores with two hardware contexts each
(experiments with other Intel SMT hardware produced
similar results). In the experiment, we start by assigning
threads to different physical cores. Once the physical
cores are exhausted, we assign threads to the available
hardware context in a round-robin fashion.

Figure 14 illustrates the performance of no partitioning
relative to the performance of a single-threaded execu-
tion of the same algorithm (“speedup”). Our experiment
indeed confirms the scalability with SMT threads on
the un-optimized code of [3]. However, once we run
the same experiment with our optimized code (with
significantly better absolute performance, cf. Figure 7),
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Fig. 14. Speedup of no partitioning algorithm on Intel
SMT hardware. First four threads are “native”; threads 5–
8 are “hyper” threads (Workload A; Xeon L5520).

SMT does not help the no partitioning strategy at all.
As the result shows, in this particular Intel hardware

SMT can only remedy cache miss latencies if the re-
spective code contains enough cache misses and enough
additional work for the second thread while the first one
is waiting. For code with less redundancy, SMT brings
only a negligible benefit.

Similarly, Figure 15 shows that neither of the two radix
join implementations can significantly benefit from SMT
threads. Up to the number of physical cores, both imple-
mentations scale linearly, and in the SMT threads region
both suffer from the sharing of hardware resources (i.e.,
caches, TLBs) between threads. These results are also in
line with the results of Blanas et al. [3]. Cache-efficient
algorithms cannot benefit from SMT threads to the same
extent since there are not many cache misses to be
hidden by the hardware.

Overall, results in Figure 13, 14 and 15 indicate
that aggressive SMT can make hardware-oblivious al-
gorithms competitive but this only occurs in particular
hardware and cannot be generalized.

Impact of architecture aware compilation
Another interesting fact on the T4 is the compiler

optimizations. Using Sun Studio compiler 12.3 with com-
pilation options “-xO4 -xipo -fast -xtarget=T4
-Bdynamic” resulted in ≈ 30% performance improve-
ment over gcc 4.7.1. with options “-mtune=niagara4
-mcpu=niagara4 -O3”. This fact highlights the benefit
of architecture aware compilation optimizations.

Multi-socket deployment and scalability
Looking at the performance of radix join on the Intel

Sandy Bridge machine in Figure 13 (cf. ), we observe
that x86 retains a significant performance advantage over
the Sparc architecture despite the radical architectural
changes and improved single thread performance on T4.
The performance gain of radix from two-way SMT on In-
tel remains limited (cf. ). Meanwhile, the performance
of radix is still superior to that of no partitioning on Intel
almost by a factor of five, showing the importance of
hardware-consciousness on this architecture (not shown
in the graph). Finally, this experiment also demonstrates
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Fig. 15. Speedup of radix algorithm on Intel SMT hard-
ware. First four threads are “native”; threads 5–8 are
“hyper” threads (Workload A; Xeon L5520).

the scalability of hash join algorithms beyond a single
CPU socket and exhibits the fastest performance of a
radix hash join implementation to date (≈ 400-650 M/s).

6.7 When Does Hardware-Conscious Not Work
Well?

Some of the architectural features have an important
impact on the performance of the algorithms. In this sec-
tion, we shed a light on such features and highlight what
makes a hardware-conscious algorithm to misbehave.

Less is more for hardware-conscious algorithms
In dynamically multi-threaded architectures, most of

the physical core resources are shared among all active
threads. The Sparc T4 architecture takes this to an ex-
treme where resources such as caches, load/store buffer
entries, DTLB, hardware table-walk engine, and branch
prediction structures are dynamically shared between
all the eight threads running on a core. This usually
works well for applications with a mix of high and
low IPC threads running concurrently and provides a
better utilization of system resources. However, in case
of hardware-conscious algorithms such as radix join, this
introduces detrimental effects to performance.

The performance of radix join with different number of
threads is shown on the left side of Figure 16. In the case
with 32 threads, each thread runs on an individual phys-
ical core and it does not contend with other threads for
resources. In case of 256 threads, each physical core runs
eight threads concurrently where all the core resources
are shared. Surprisingly, using more threads ruins the
hardware-consciousness of radix join making it slower
than the 32-thread case. The performance problem can
be clearly seen in the actual join phase of the algorithm,
which is the cache-sensitive, high IPC phase of the
algorithm. The eight threads contend for the same L1/L2
space and due to excessive cache misses this phase slows
down. Essentially, the cache-conscious nature of radix
join disappears.

Incongruent cache architecture
The cache architecture plays an important role for

hardware-conscious algorithms. In the Sparc T4, the
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Fig. 16. Impact of number of threads on Sparc T4 on
overall performance for different algorithms. Using Work-
load B (977 MiB on 977 MiB); Oracle Sparc T4.

16 KiB L1 cache is relatively small in comparison to
x86 architectures. First, the small cache size requires a
higher partitioning fan-out which makes the partition-
ing costlier in this architecture. Second, the maximum
partitioning fan-out is also limited by the L1 size. Due
to the use of a fully-associative 128-way DTLB and large
pages, TLB misses are no longer the main bottleneck
in partitioning. However, the L1 cache can hold 512
cache lines and puts a hard limit at around 512 for
efficient partitioning fan-out per pass. Moreover, the 4-
way associativity of the L1 cache does not match the
number of eight hardware threads. Therefore, accesses
from different threads can potentially cause unnecessary
conflict misses. In addition, the 32 bytes L1/L2 cache
line size reduces the potential benefit from sequential
writes during partitioning compared to a cache line size
of 64 bytes in x86 architecture. Last but not least, the
relatively small shared L3 brings almost no benefit to a
hardware-conscious algorithm such as radix join as the
effective L3 share per thread (≈ 64 KiB) is less than the
size of the L2 cache. Overall, all these characteristics of
the cache architecture in Sparc T4 makes the radix join
ill-behaved in this architecture.

6.8 Making No Partitioning Hardware-Conscious
In this section, we propose hardware-conscious opti-
mizations such as a combination of cache alignment,
software-prefetching, and use of large pages to improve
the performance of no partitioning join. These techniques
abandon the strictly hardware-oblivious nature of the orig-
inal algorithm but require little parameter tuning.

Cache Alignment
As discussed in Section 4.2, the no partitioning imple-

mentation of Blanas et al. [3] uses a hash table design
where up to three accesses to different memory locations
are needed to access a single hash bucket (latch array,
pointer array, and actual data buckets; cf. Figure 5).

TABLE 4
No partitioning join; cache misses per tuple (original
code of Blanas et al. [3] vs. our own implementation).

Code of [3] Our code Our code
(cache-aligned)

Build Probe Build Probe Build Probe

L2 misses 2.97 2.94 1.56 1.39 1.01 1.00
L3 misses 2.72 2.65 1.56 1.36 1.00 0.99

To avoid this potential memory access bottleneck, in
our own code we wrapped the necessary latches into
the bucket data structure and removed the indirection
caused by the pointer array of Blanas et al. In effect, only
a single record needs to be accessed per data tuple. Only
true hash collisions will require extra bucket fetches.

We measured the number of cache misses required per
build/probe tuple in both implementations (cf. Table 4).
Somewhat counter-intuitively, the number of misses per
tuple is considerably higher, however. This is most no-
ticeable during the build phase of our own implemen-
tation, where we see more than 1.5 misses/tuple even
though only a single hash bucket must be accessed per
tuple.

The reasons for this is the lack of cache alignment
of both hash table implementations. As illustrated in
Figures 5 and 6, both hash table implementations use
a bucket size of 48 bytes. If such buckets are packed
one after another, a single bucket access may span two
cache lines and thus cause more than a single cache miss
on access. Specifically, four 48-byte buckets will occupy
three successive cache lines. On average, each bucket
intersects with 1.5 cache lines, which coincides with the
cache miss numbers shown in Table 4.

Hash buckets can be forced to stay within a cache line
by aligning them to 64-byte boundaries. As the last two
columns in Table 4 show, changing no partitioning in this
way reduces the cache miss rate to the expected one miss
per tuple.

Software Prefetching
Another way to avoid cache misses is the use of

prefetching. Chen et al. [21], for instance, described how
hash table accesses can be accelerated by issuing soft-
ware prefetch instructions. If those instructions are issued
early enough, the CPU can overlap memory accesses
with instruction execution and thus hide memory access
latencies.

We applied the prefetching mechanisms of Chen et
al. to our no partitioning implementation. The proper
prefetch distance is a hardware-specific parameter, which
we manually tuned to the behavior of our machine. The
effect of this optimization is illustrated in Figure 17 for
Workloads A and B (bars labeled “w/ prefetch”).

Figure 17 also illustrates the effect of cache alignment
(bars labeled “aligned”). Interestingly, cache alignment
alone does not significantly improve the performance
of no partitioning. Both optimizations together, however,



12

0

10

20

30
cy

cl
es

pe
r

ou
tp

ut
tu

pl
e

4KiB 2MiB 4KiB 2MiB 4KiB 2MiB 4KiB 2MiB

n-part w/ prefetch aligned w/ all

build probe

Fig. 17. Impact of different optimizations on cycles per
output tuple for no partitioning using Workload A (256 MiB
on 4096 MiB); 8 threads, Intel Nehalem L5520.

can improve the throughput of no partitioning by more
than 40 %. To achieve this improvement, however, we
had to give up the strictly hardware-oblivious nature of
no partitioning and introduce tuning parameters such as
prefetch distance and cache line size.

Figure 18, in fact, illustrates how sensitive our code
changes are to the underlying hardware platform. When
running the same experiment on the AMD Opteron
machine, aligning hash buckets to the cache line size
has a significant impact on overall throughput. Software
prefetching can improve only little over that. Together,
both optimizations again yield a performance gain of
≈ 40 % over the baseline implementation.

6.9 Improving Radix with Software-Managed Buffers

Conceptually, each partitioning phase of radix join takes
all input tuples one-by-one and writes them to their
corresponding destination partition (pos[·] keeps track
of the current write location within each partition):

1 foreach input tuple t do
2 k←hash(t);
3 p[k][pos[k]] = t; // copy t to target partition k
4 pos[k]++;

Generally, partitions are far apart and on separate VM
pages. Thus, if the fanout of a partitioning stage is larger
than the number of TLB entries in the system, copying
each input tuple will cause another TLB miss. Typically,
the number of TLB entries is considered an upper bound
on the partitioning fanout that can be efficiently realized.

This TLB miss count can be reduced, however, when
writes are first buffered inside the cache. The idea is to
allocate a set of buffers, one for each output partition
and each with room for up to N input tuples. Buffers
are copied to their final destination only when they are
full:
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Fig. 18. Impact of different optimizations on cycles per
output tuple for no partitioning using Workload A (256 MiB
on 4096 MiB); 16 threads, AMD Bulldozer Opteron 6276.

1 foreach input tuple t do
2 k←hash(t);
3 buf[k][pos[k] mod N ] = t; // copy t to buffer
4 pos[k]++;
5 if pos[k] mod N = 0 then
6 copy buf[k] to p[k]; // copy buffer to partition k

Obviously, buffering leads to additional copy over-
head. However, for sufficiently small N , all buffers will
fit into a single memory page. Thus, a single TLB entry
will suffice unless a buffer becomes full and the code
enters the copying routine in line 6. Beyond the TLB
entry for the buffer page, an address translation is
required only for every N th input tuple, significantly
reducing the pressure on the TLB system. As soon as
TLB misses become infrequent, it is likely the CPU can
hide their latency with its usual out-of-order execution
mechanisms.

The buffering strategy mentioned above follows the
idea of Satish et al. [22], which employed the same
technique to reduce the TLB pressure of radix sort.

We added an implementation of such software-
managed buffers to our radix join code and configured
N such that one buffer will exactly fill one cache line
(64 bytes); i.e., N = 4 for Workload A and N = 8
for Workload B. Configuring the buffer size in this
manner allows for another low-level optimization. Since
we are now always writing a full cache line at once to
global memory, the CPU can take advantage of its write
combining facilities, thus avoiding to read the cache line
before writing it back.

Figure 19 illustrates the effect of software-managed
buffers on the performance of partitioning. In both
figures, we partition a 128 million-tuple data set with
8 bytes per tuple (Workload B) and measure the achiev-
able throughput for single-pass radix partitioning with
and without software-managed buffers.

As can be seen in the figure, software-managed buffers
indeed cause some copying overhead. But the invest-
ment clearly pays off once the available TLB entries
are exhausted. At about 8 radix bits (Figure 19(a)) the
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Fig. 19. Partitioning performance comparison when using 4 KiB and 2 MiB pages (Using a single core on Intel Xeon
L5520, 2.26 GHz).

performance of the naı̈ve strategy begins to suffer from
the growing TLB miss cost,2 whereas the implementa-
tion with software-managed buffers handles the grow-
ing fanout much more gracefully. Essentially, software-
managed buffers shift the TLB exhaustion problem to the
configurations beyond 14 radix bits, where TLB entries
are not even sufficient to hold the “cache-local” buffer.

The effect is even more pronounced when we config-
ure our system to use a 2 MiB page size (cf. Figure 19(b)).
With now only 32 TLB entries available, conventional
radix partitioning seriously suffers from TLB misses even
for five radix bits (e.g., 32 partitions), while software-
managed buffers can keep partitioning speed almost
constant even for very large fanouts.

In practice, the advantage of software-managed
buffers is two-fold: (i) for many situations, software-
managed buffers offer better absolute performance, since
fewer passes can usually achieve the same overall
fanout; (ii) the optimization is very robust toward the
configured number of radix bits, hence, it reduces the
potential damage of ill-chosen algorithm parameters.

7 RELATED WORK

Following the insights on the importance of memory
and caching effects on modern computing hardware by
Manegold et al. [11] and Ailamaki et al. [12], new algo-
rithm variants have emerged to run database operators
efficiently on modern hardware.

One of the design techniques to achieve this goal is the
use of partitioning, which we discuss extensively in this
paper. Besides its use for in-memory joins, partitioning is
also relevant for aggregation, as recently investigated by
Ye et al. [23]. While the aggregation problem differs from
a join in many ways, the observations made by Ye et
al. about different hardware architectures are consistent
with ours.

While we mainly looked at local caching and mem-
ory latency effects, we earlier demonstrated how the

2. Note that the 64-entry TLB1 is assisted by a 512-entry TLB2.

topology of modern NUMA systems may add additional
complexity to the join problem [24]. Handshake join is an
evaluation strategy on top of existing join algorithms to
make those algorithms topology-aware.

With a similar motivation, Albutiu et al. [4] proposed
to use sort-merge algorithms to compute joins, leading to
a hardware-friendly sequential memory access pattern.
It remains unclear, however, whether the switch to a
parallel merge-join is enough to adequately account for
the topology of modern NUMA systems.

Similar in spirit to the no partitioning join is the recent
GPU-based join implementation proposed by Kaldewey
et al. [25]. Like in no partitioning, the idea is to leverage
hardware SMT mechanisms to hide memory access la-
tencies. In GPUs, this idea is pushed to an extreme, with
many threads/warps sharing one physical GPU core.

He and Luo [26] addressed the “hardware-conscious
or not?” question on a slightly higher system level. They
evaluated a full query engine (EaseDB), which was built
on cache-oblivious design principles [27]. Their conclusion
was that cache-oblivious strategies can achieve compa-
rable performance, but only when those algorithms are
very carefully and sophisticatedly designed.

8 CONCLUSION
In this paper we revisit the existing results in the
literature regarding the design of main-memory, hash
join algorithms on multi-core architectures. Through an
extensive experimental evaluation, we trace back the ob-
served differences in performance of existing algorithms
to a wide range of causes: workload, caching effects, and
multi-threading. In doing so, we provide optimizations
to all existing algorithms that significantly increase their
performance. The results in the latest hardware available
to us indicate that hardware-conscious algorithms main-
tain an edge over hardware-oblivious in most systems and
configurations. However, there are specific cases where
features of modern hardware such aggressive on-chip
multi-threading make hardware-oblivious algorithms com-
petitive, thereby establishing an interesting architectural
option for future systems.
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