
Shifter Lists—A Data Structure for Massive Parallelism

ABSTRACT
A wide range of technology trends are creating the opportu-
nity to use highly parallel co-processors next to conventional
CPUs to improve the performance of data processing sys-
tems. However, it is often difficult to exploit the inherent
parallelism in these devices. Most systems available focus
on ad-hoc implementations of single operators. Rather than
focusing on how to parallelize a given operator, in this pa-
per, we propose a new data structure—shifter lists—that
has been designed to support data processing on massively
parallel hardware (hundreds to thousands of processing ele-
ments). A shifter list can accommodate processing of arbi-
trary complexity at each processing stage while guaranteeing
throughput-optimized processing. In the paper we present
shifter lists, characterize their behavior, show a first imple-
mentation (on an FPGA, for generality), and apply the re-
sult to a use case (skyline queries) to show how to determine
when this type of solution makes practical sense.

1. INTRODUCTION
There has been an increasing amount of research and

commercial systems that exploit heterogeneous, low power,
and massively parallel co-processors to accelerate data pro-
cessing operations. For instance, server vendors such as
Netezza [20] (acquired by IBM in 2010) and Convey [7]
equip their systems with configurable hardware accelerators
known as field-programmable gate arrays (FPGAs), which
are inherently parallel devices.

This new hardware provides aggregated compute power of
ever-increasing extent, but at the same time it has become
more difficult to turn the hardware’s parallelism into true
performance. An often-seen answer to this challenge is to
build specialized algorithm implementations that addresses
modern hardware characteristics for one specific application
task, e.g., by fitting the problem to an input data partition-
ing scheme. Not only does this tend to leave much of the
true hardware potential unused. Moreover, the lack of suit-
able abstractions prevents the invested efforts to carry over
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from one application solution to another.
In this work we provide one such abstraction. We propose

a new data structure, shifter lists, that helps in the design of
massively parallel and scalable algorithms for a wide range
of problems. Shifter lists combine data organization, com-
putational power, and synchronization into a new parallel
processing model that naturally supports the characteristics
of emerging parallel hardware. In our model, we think of
input data as a data stream that propagates through the
shifter list, which itself is distributed over many processing
elements. The processing elements are arranged as a pipeline
and locally update the shifter list as input data flows by.
The only communication required is between neighboring
processing elements.

We illustrate shifter lists based on a common database
problem, the computation of the skyline. Skyline computa-
tion is a good example where straightforward input data par-
titioning neither matches the complexity properties of the
problem—linear in the input data volume, but quadratic in
the (intermediate) skyline result—, nor does it fit with the
characteristics of modern parallel hardware. With shifter
lists, by contrast, we partition the working set of a block-
nested-loops (BNL) [4] variant and leverage the data struc-
ture’s lightweight partitioning mechanisms across many par-
allel processing units.

Shifter lists are a generic data structure that can be used
at different levels of granularity. In this paper, we aim at
scalability to very high degrees of parallelism. For evalua-
tion, we thus use field-programmable gate arrays (FPGAs),
where we can experiment with degrees of parallelism far
beyond those of commodity multi-core hardware (on our
FPGA hardware, we could accommodate almost two hun-
dred parallel processing units). Though absolute perfor-
mance is not the main focus of this paper, our experiments
show that we outperform existing CPU-based solutions by
almost a factor of 20, even on low-end FPGA hardware. As
such, our prototype could readily be used as a co-processor
to accelerate existing skyline applications.

We present shifter lists as follows. Section 2 motivates
our work from the hardware technology side and relates it
to existing ideas. In Section 3, we introduce shifter lists.
Section 4 illustrates the use of shifter lists in skyline com-
putation in a figurative way, before we realize the idea on
concrete (FPGA) hardware in Section 5. We evaluate the
characteristics of shifter lists in Section 6 and wrap up in
Section 7.

2. RELATED WORK AND MOTIVATION
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Figure 1: Scatter-Gather versus Pipeline of Cores

The prevalence of parallel hardware is pushing the soft-
ware side harder and harder to come up with efficient paral-
lel problem solutions. Berkeley researchers phrased this very
provocatively in a recent report [1]: “If researchers meet the
parallel challenge, the future of IT is rosy. If they don’t, it’s
not.”

2.1 Parallel Data Processing
The database community has investigated parallel data

processing techniques already long before the current multi-
core race. A good overview of parallel databases has been
published, e.g., by DeWitt and Gray [9]. Parallelism, thereby,
was used in essentially two ways: (i) data partitioning, large
input data is partitioned to run parallel instances of the same
operator on many nodes (e.g., [17]), and (ii) inter-operator
pipelining, where pipelined query plans are taken literally
and individual operators are assigned to distinct processing
resources (e.g., [16]).

Interestingly, intra-operator parallelism has been consid-
ered useful only if combined with input data partitioning,
and pipelining has been used exclusively across individual
operators (or, at least, across distinct stages of operators like
in merge join [14]). As noted in [9], inter-operator pipelining
bears a risk of uneven load distribution, because different
operators within the same pipeline may have considerable
differences in cost.

Modern Hardware. All of the above techniques (and re-
search on parallel databases in general) were an excellent fit
for the available hardware at the time. Meanwhile, however,
hardware characteristics—in particular with respect to the
availability of parallelism—have changed considerably. In
this work, we thus propose to re-think parallel algorithm
design and devise a new programming model that matches
the actual trends in hardware.

Most importantly, this affects the interplay of parallelism
with communication. With growing core counts, the av-
erage on-chip distance grows between arbitrary communi-
cation partners, requiring additional energy and increasing
latency [3]. What is more, the necessary routing logic scales
quadratically in the number of compute nodes, which limits
the observed bandwidth for arbitrary communication pat-
terns.

Communication Patterns. As illustrated in Figure 1,
algorithms based on scatter-gather mechanisms are particu-
larly affected by the cost of communication. Negative effects
can be avoided, however, if the communication follows very
simple topologies, such as pipelining along a series of parallel
units (Figure 1), or ring and tree topologies.

Existing algorithms for parallel database processing barely
reflect these effects. Most recently, e.g., Kim et al. [15] or
Blanas et al. [2] devised parallel variants of join algorithms
for multi-core hardware. But while the primary focus of
these techniques—cache awareness—can be viewed as one
particular type of communication (to main memory), nei-
ther technique is really aware of the implied inter-core com-
munication.

One of the few exceptions that do address core-to-core
communication is the work of Gao et al. [11]. QPipe places
database operators on individual cores and explicitly pipelines
data between cores. The proposed scheme is still limited,
however, to inter-operator pipelining, hence is not prepared
for really large degrees of parallelism.

With shifter lists, we address the design of parallel database
algorithms in two important ways: (i) shifter lists can be
used as a generic implementation strategy to build parallel
algorithms—no need to re-start platform optimization for
each new problem instance; (ii) shifter lists have the aware-
ness of communication cost built-in. It is applied by bringing
pipelining to the inside of individual operators.

Our work shares an interesting characteristic with the
work of Wang et al. [24] on large-scale parallelization of be-
havioral simulations. By running parallel code in two phases
(“query phase” and “update phase” in [24]), algorithms can
be phrased in a way that is intuitive, yet efficient to paral-
lelize.

2.2 Heterogeneous Hardware
The trend toward increasing degrees of parallelism is com-

plemented with a notion of hardware heterogeneity. Special-
ized co-processors and even programmable logic are already
used successfully to assist general-purpose cores on compute-
or data-intensive tasks.

A particular instance of this trend are field-programmable
gate arrays (FPGAs), which proved already very success-
ful in the database domain. FPGAs are digital logic de-
vices that can be used to realize any hardware circuit by a
mere (software-based) device re-configuration. The config-
ured logic can then solve a particular problem at very high
speeds and with favorable energy consumption properties.

IBM/Netezza’s TwinFin [20] is probably the most promi-
nent example of a commercial FPGA-powered database ap-
pliances. On the research side, FPGA solutions have been
proposed for sorting [19], XML filtering [18], or high-speed
event processing [22]. Nevertheless, those examples all con-
firm the observation of Chung et al. [6]: FPGAs still lack
essential abstractions that have become pervasive in general-
purpose computers; rather, most systems are developed in
an ad-hoc manner for just one particular problem setting.
With shifter lists, we work toward one such abstraction. In
this report, we illustrate how shifter lists can be used to
build parallel FPGA solutions for database tasks.

FPGAs are interesting for our research also because of
their inherent massive parallelism. The degree of parallelism
is limited mainly by the amount of available chip space on
the given piece of hardware. At the same time, the observed
effects of increased parallelism are representative for what
we can expect from future commodity hardware. Most im-
portantly, FPGAs can be used to illustrate the interplay of
parallelism and communication on hardware that is already
available today.
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Figure 2: Typical application pattern for a shifter
list: For each input item, the working set is accessed
and possibly modified.

2.3 Skyline Processing
After skyline queries were first introduced in 2001 [4], a

decade of research has produced a variety of different ap-
proaches to solving skyline queries (a comprehensive overview
of the general directions of approaches is given in [13]).
To demonstrate shifter lists, we revisit block-nested-loops
(BNL) [4], one of the early skyline algorithms, which is sim-
ple and yet still effective today.

Recently, there have also been some approaches to ex-
ploit parallelism for skyline queries. On multi-core ma-
chines, the main problem is that multi-threaded skyline al-
gorithms using traditional approaches often only scale up to
a few cores [21]. Using SIMD, the dominance test of skyline
queries [5] can be improved. However, maximal theoretical
speedup is limited by the vector size of the SIMD registers
(to 4 without AVX and to 8 otherwise).

3. SHIFTER LISTS
The main target of our shifter list data structure are ap-

plication patterns as illustrated in Figure 2. From a given
input data set, all items are consumed in turn. The single
input item is evaluated against many or even all the items in
an in-memory working set. Possibly, this evaluation results
in an update to the working set, such as adding the current
input item to the set or removing others.

Many common database tasks match this pattern. For in-
stance, stream processing engines often operate on windows
of tuples. For each input tuple, the window is consulted
(e.g., to compute a join) and also updated (to implement
sliding-window semantics). Top-k algorithms—to name an-
other example—typically maintain an in-memory set of can-
didates. For each input item, the candidate list is inspected
and updated if the input item is found to be closer than any
of the existing candidates.

In this work, we use skyline computation to showcase
shifter lists. We are going to base our work on the block
nested loops (BNL) algorithm [4] that, for each input item,
examines and updates a working set—consistent with the
pattern in Figure 2.

In all these examples, note that the processing order may
influence the operation’s final result. Many applications de-
mand that this causality implied by in-order processing is
preserved also in a parallel execution scheme.

3.1 Shifter Lists as a Data Structure
The high-level structure of shifter lists is illustrated in

Figure 3. Working set items are held in a number of nodes
(each of which we will later assign to a separate compute
resource). There is a defined total order among all nodes
νi in a shifter list. Oftentimes, node contents themselves

node 0 node 1 node 2

working set items message channels

Figure 3: Shifter lists group working set items into
nodes. Nodes are connected by asynchronous mes-
sage channels.

will have a defined order, resulting in a total order across all
working set items.

Nodes are organized independently, but communicate with
each other through well-defined message channels. As illus-
trated in Figure 3, these channels constrain communication
to neighbor-to-neighbor messaging. Besides for application-
defined messages, the channels will also be used to propagate
input data and to exchange working set items between nodes
(which ultimately results in a dynamic re-partitioning of the
working set).

Ready for Modern Hardware. A working set orga-
nized as in Figure 3 is well prepared for the runtime char-
acteristics of modern and future hardware. Grouping and
neighbor-to-neighbor communication both ensure spacial lo-
cality. Awareness of communication locality is exactly among
the properties that Borkar and Chien demand from the soft-
ware side if we want to see continuous performance growth
also on future hardware generations [3].

A possible way to implement messaging channels on com-
modity systems is to use asynchronous FIFO queues. Such
queues were shown to match the capabilities of modern multi-
core systems particularly well [12] and—if organized in a
linear structure like shifter lists—scale to large core counts
almost trivially. In FPGA designs, the point-to-point nature
of the channels avoids costly multiplexing logic and reduces
circuit complexity.

3.2 Shifter Lists are for Data Processing
To process input, we shift each input item into the left-

most list node. There, the item is evaluated against all lo-
cal working set items, then shifted on to the right neighbor
where the process repeats. Effectively, a sequence of input
items flows through all nodes in a pipeline fashion.

The actions performed at each node depend on the specific
task that is to be solved with the shifter list. Application
code may decide to alter the local working set partition (e.g.,
by dropping, inserting, or re-arranging items); drop the in-
put item from the pipeline; or send and/or receive messages
along the two message queues.

Self-Similarity. While the concrete action code has to be
written specifically for each shifter list use case, we often see
a “self-similarity” effect. Thereby, the local action code re-
sembles very closely the superordinate algorithm that solves
the overall application task. Typically, only side effects have
to be modified to obtain the code for node-local execution.
For instance, node-local “overflow tuples” in the BNL sky-
line algorithm have to be forwarded to the next shifter list
node, rather than be written to an overflow file (more details
later).

This self-similarity property not only eases application
development. It also means that we can slice the original
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Figure 4: Shifter list causality guarantees. The ear-
lier xi will see no effects caused by the later xj, while
xj sees all effects of xi.

task into smaller and smaller units in a hierarchical fashion.
Again, this fits well to what we see on the hardware side
where, e.g., functional units are combined to form one CPU
core, several CPU cores make one chip die, dies are pack-
aged into processors, etc. (e.g., [8]). Conceivably, shifter
lists could be applied across all these levels, or even up to
the network and data center scale.

3.3 Shifter Lists are for Parallelism
As described above, input items are evaluated over the

individual node contents in a strictly forward-oriented fash-
ion. This has important consequences that we can exploit
to parallelize the execution over many processing units and
still preserve the causality of the un-parallelized code.

Causality Guarantees. Forward-only processing implies
that the global working set is scanned exactly once (even in
a defined order if that is a desirable property by the algo-
rithm). What is more, once an input item xi has reached
a shifter list node νm, its evaluation cannot be affected by
any later input item xj that is evaluated over a preceding
node νn, n < m (while conversely, the later xj is guaranteed
to see all effects caused by the earlier xi).

These causality guarantees hold even if we let the execu-
tions of xi on νm and xj on νn run in parallel on independent
compute resources, as illustrated in Figure 4. To uphold the
guarantees, xj only must never overtake xi in the processing
pipeline, a requirement that is easy to meet if all message
channels are implemented as FIFO queues.

The preservation of causality hides much of the paralleliza-
tion difficulties from the application developer. But the two-
way interaction between two neighboring shifter list nodes
may still bear a risk for race conditions. More specifically,
an item xi might be affected by the evaluation of xj if xj
follows too closely in the processing pipeline and the inter-
action code is not engineered carefully. Explicit barriers,
placed between successive input items, are an easy method
to prevent such risks.

Application-Level Guarantees and Invariants. Spe-
cific applications may use the shifter lists’ causality guaran-
tees to further establish their own guarantees and invariants.
When solving the skyline problem in Section 4, for instance,
we add new items to the working set only on the right-most
position. Since items never overtake each other, this guar-
antees that the oldest working set element can always be
found at the front of node 0 (the left-most shifter list node).

3.4 Shifter Lists are Data and Logic
The intended use of shifter lists is to keep chunks of data—

the contents of a node—strictly co-located with the process-
ing logic that uses it. In a sense, this blurs the classical

separation of logic and data.
Releasing this strict separation indeed makes sense in the

light of ongoing hardware trends. There is a general con-
sensus that power and heat dissipation problems will force
a move toward heterogeneous system architectures, which
might even soon be dominated by highly specialized co-
processors or configurable hardware [3, 10]. In such designs,
data structures can be wrapped right into the correspond-
ing processing logic to further improve energy efficiency and
speed.

In the experimental part of this work, we make the in-
tegration of data and logic very explicit by implementing
shifter lists on top of FPGAs. The circuit that we propose
would be ready to become one part of a heterogeneous multi-
core architecture.

4. USE CASE: SKYLINE QUERIES
In a data warehouse appliance equipped with configurable

hardware, e.g., IBM/Netezza’s Twin Fin [20], a significant
performance optimization can be achieved when compute-
intensive, long-running queries are outsourced to a dedicated
co-processor previously loaded onto the configurable hard-
ware. Skyline queries, discussed in this section, are typi-
cally very compute-intensive and are related to many other
well-known database problems, e.g., top-K or convex hulls,
making skyline queries a good candidate for shifter lists.

4.1 The Lemming Skyline
To figuratively explain skyline queries, the BNL algorithm

[4], and the modified version of BNL using shifter lists, we di-
gress into the world of Lemmings. Lemmings1 are primitive
creatures that go on migrations in masses. On Lemmings
Planet every year a challenge—Lemmings got Talent—takes
place among the Lemmings with the goal to identify the
“best” Lemmings. Every Lemming has different skills: some
are very strong but slow and clumsy, others are agile but
neither strong nor fast, then again others are generalists
that do not have a particular skill that they are best in
but are pretty good in multiple skills. As the committee
of the competition could not agree on a weighting function
that would determine the best Lemmings, all Lemmings that
are not dominated (see Definition 1) by any other Lemming
are considered best. In other words, the winners are those
Lemmings that are part of the Lemming skyline (see Defi-
nition 2).

Definition 1. A Lemming li dominates (≺) another Lem-
ming lj iff every skill (dimension) of li is better or equal
than the corresponding skill of lj and at least one skill of li
is strictly better than the corresponding skill of lj.

Definition 2. Given a set of Lemmings L = {l1, l2, . . . ln},
the skyline query returns a set of Lemmings S, such that any
Lemming li ∈ S is not dominated by any other Lemming
lj ∈ L.

4.2 The Competition—1st Year (Best)
When the competition took place for the first time, the

committee had a definition for the set of best Lemmings
(see previous section) but it was still unclear how to deter-
mine this set. Thus, in the absence of sophisticated logistic

1As in the video game “Lemmings” originally developed by
DMA Design: http://www.dmadesign.org/



means, one committee member suggested the following sim-
ple algorithm. Initially all Lemmings queue up in front of a
bridge, as illustrated in Figure 5.

qi dominated

p0qi+1 requeue

queue

Figure 5: Lemming Skyline with Best [23]

The first Lemming in the queue q0 is considered a potential
skyline Lemming p0 and can advance onto the bridge. There,
the candidate Lemming has to battle all other Lemmings
in the queue q1 . . . qn−1. A battle can have three possible
outcomes. (1) p0 dominates qi. In this case, qi will be
pushed from the bridge and p0 remains on its position to
combat qi+1. (2) qi dominates p0. Now, p0 falls from the
bridge and qi becomes the new potential skyline Lemming
p0, i.e., has to battle qi+1. (3) If neither of the two Lemmings
dominates the other, they are considered incomparable. In
this case, p0 stays on the bridge and qi has to requeue.

The potential skyline Lemming p0 has to remain on the
bridge until it has fought all queued Lemmings once. When
a challenger qj confronts p0 for the second time, we know
that p0 is not dominated by any other Lemming. Hence,
p0 is part of the Lemmings skyline and can leave the bridge
safely and qj becomes the new p0. The algorithm terminates
when the queue is empty, i.e., all dominated Lemmings have
fallen from the bridge. The Lemmings still alive all belong
to the Lemming skyline. This algorithm, known as Best, has
been formally described in [23].

4.3 The Competition—2nd Year (BNL)
The following year many new Lemmings were born and it

was time to redetermine the Lemming skyline. The previous
year some Lemmings complained that they had to spend
too much time queuing. In particular, requeing was time-
consuming and delayed the entire competition. To improve
on this drawback, the set of potential skyline Lemmings was
increased from 1 to w. The modified version of the algorithm
is known as block-nested-loops (BNL) [4] and illustrated in
Figure 6.

qi dominated

[p0, pw−1]qi+1 requeue

queue

Figure 6: Lemming Skyline with BNL [4]

On the bridge there is room for a window of w poten-
tial skyline Lemmings. A challenging Lemming qi from the
queue has to battle all potential skyline Lemmings on the
bridge. If the challenging Lemming survives all battles, there
are two possibilities. (1) If there are already w other poten-
tial skyline Lemmings on the bridge, qi has to requeue. (2)
Otherwise qi becomes a potential skyline Lemming pi.

Unfortunately, now it is unclear when exactly a potential
skyline Lemming has been on the bridge long enough to
qualify as a true skyline Lemming. Luckily, the competition
committee found a simple solution to this problem. After a
Lemming qi survives all potential skyline Lemmings on the
bridge, it receives a timestamp independent of whether it
becomes a potential skyline Lemming or has to requeue. A
potential skyline Lemmings pi can now be said to be a true
skyline Lemming (and leave the bridge) when it encounters
the first challenging Lemming qj that has a larger timestamp
or when the queue is empty. When Lemmings initially queue
up for the first time, this timestamp is set to zero. A larger
timestamp indicates that the Lemmings must have already
competed against each other and since the queue is ordered,
all following Lemmings in the queue will also have larger
timestamps. More formally, the BNL algorithm is given in
Figure 7.

1 foreach Lemming qi ∈ queue do
2 isDominated = false;
3 foreach Lemming pj ∈ bridge do
4 if qi.timestamp > pj .timestamp then

/* pj ∈ Lemming skyline */
5 bridge.movetoskyline(pj);

6 else if qi ≺ pj then
7 bridge.drop(pj);

8 else if pj ≺ qi then
9 isDominated = true;

10 break;

11 if not isDominated then
12 timestamp(qi);
13 if bridge.isFull() then
14 queue.insert(qi);

15 else
16 bridge.insert(qi);

Figure 7: BNL Algorithm (≺ means dominates)

4.4 The Competition—3rd Year (Shifter List)
While the BNL algorithm used in the 2nd year signifi-

cantly reduced the number of times that Lemmings had to
requeue, there were new complaints coming from some Lem-
mings. In particular, potential skyline Lemmings criticized
that most of the time on the bridge they were idle, waiting
for their turn to battle the next challenger. Thus, in favor
of higher throughput, the competition committee decided
to slightly modify the BNL algorithm using the shifter list
approach. The basic idea is that instead of one challenger
qi now up to w challengers q(i+w−1) . . . qi are allowed on the
bridge, and each challenger can battle a different potential
skyline Lemming in parallel. This version of the algorithm
is illustrated in Figure 8.

To avoid chaos on the bridge the procedure is as fol-
lows: In each iteration there is a shift phase followed by
a battle phase. In the shift phase all challenger Lemmings
q(i+w−1) . . . qi move one position to the right to face their
next opponent (indicated by the lower arrows in the figure).
This frees the leftmost position on the bridge and allows a
new Lemming from the queue to step on the bridge every
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Figure 8: Lemming Skyline: BNL & Shifter List

iteration. Then in the battle phase all w pairs of Lemmings
battle concurrently. As can be seen in the figure, in some
situations a Lemming will not have an opponent because the
corresponding Lemming was previously dominated, i.e., fell
from the bridge. In that case, the Lemming does not need
to battle in this iteration.

Once a challenging Lemming qi safely reaches the right
end of the bridge, it qualifies as a potential skyline Lemming
if there is room on the bridge, otherwise as in standard BNL
it has to requeue. If during the battle phase a potential sky-
line Lemming pi falls from the bridge, the other Lemmings
pi+1 . . . pw−1 to the right of that Lemming should move up
in the subsequent shift phase and fill the gap (indicated by
the upper bent arrows in the figure). This is to make room
for new potential skyline Lemmings that reach the right end
of the bridge.

As in standard BNL, we can also use timestamping to de-
cide when potential skyline Lemmings turn into true skyline
Lemmings and can leave the bridge. Since the order among
the Lemmings on the bridge is maintained, it is always the
leftmost potential skyline Lemmings that can go first. Thus,
potential skyline Lemmings get on the bridge on the right
end and then gradually move towards the left end again,
where they need to wait until they encounter a challenger
with a larger timestamp.

5. PARALLEL BNL WITH FPGAS
When Börzsönyi et al. [4] first proposed the block-nested-

loops (BNL) algorithm, their main motivation was to sup-
port skyline computation for problem sizes that would re-
quire external (and slow) memory. With today’s hardware
characteristics, the bandwidth to read input or overflow data
(typically from large main memories) limits skyline compu-
tation only for extremely small working set sizes (few po-
tential skyline tuples). In most practical cases, CPU load
becomes the bottleneck when computing skylines.

This makes FPGAs a good alternative to conventional
CPUs, because the relevant window sizes (say, 100 skyline
candidates) conveniently fit into on-chip memories. Here we
show how shifter lists then help to parallelize the compu-
tation within the FPGA to make best use of its available
compute capacity. As our results in Section 6 show, this
brings the algorithm back to memory-bound behavior, which
in turn restores the original characteristics of the algorithm,
where reducing the number of overflow tuples translates into
faster execution of the algorithm—the larger the window,
the better the performance.

5.1 BNL Using Shifter Lists
Given the opportunity for very fine-granular parallelism

inside FPGAs, we configure our shifter list implementation
such that each node holds only a single working set item.
This allows us to fully leverage the available hardware par-

1 on each node do
2 q ← current input item ;
3 p← local working set content ;

4 if ¬p.empty then /* only if working set is valid */
5 if q.timestamp > p.timestamp then
6 p.isSkyline ← true ;

7 else if q.valid then
8 if q.data ≺ p.data then
9 p.empty ← true ; /* drop wnd tuple */

10 else if p.data ≺ q.data then
11 q.valid ← false ; /* drop input tuple */

12 else if p.isLast ∧ q.valid then
13 p.data ← q.data ; /* add input to window */
14 p.empty ← false ; /* bookkeeping */
15 q.valid ← false ;

Figure 9: Evaluation phase of shifter list-based BNL
implementation.

allelism and also helps us illustrate how shifter lists scale to
very high degrees of parallelism.

As illustrated in the previous section, data processing in
shifter lists can be viewed as a two-phase algorithm: during
the evaluation phase (the “battle” phase in the previous sec-
tion), a new state is determined for each shifter list node; but
these changes are not applied before the shift phase, which is
the phase that also allows neighbor-to-neighbor communica-
tion. In our FPGA-based implementation, those two phases
will run synchronously across the chip (since this is easy and
efficient to realize on FPGAs).

Thanks to the self-similarity property of shifter lists, the
partial algorithm executed locally on each shifter list node
in the evaluation phase very closely resembles the global
algorithm—BNL in our case. As shown in Figure 9, the only
changes to the original algorithm (Figure 7) are that all side
effects are now handled by the shift phase (and we handle
boundary cases more explicitly here). In this code, dropping
a “bridge” Lemming is implemented by setting the node’s
working set content to empty ; “challengers” are dropped off
the bridge by setting their valid flag to false.

All interactions between neighboring nodes are performed
in the following shift phase, which updates the global algo-
rithm state based on the outcome of the evaluation phase.
In essence, all input items are forwarded one shifter list
node toward the right, whereas candidate results (working
set items) move toward the left if there is space available,
i.e., the left-next working set is marked as empty. Since can-
didate results move toward the left, we report them on the
left-most node ν0 once their timestamp condition has been
satisfied. Likewise, on the right-most node νw−1, we write
input items to the overflow file if they were not invalidated
during their move along the shifter list pipeline, and cannot
be inserted into the shifter list because it is already full.

5.2 FPGA Specifics
Taken literally, the shift phase illustrated in Figure 10

passes items atomically between neighboring shifter list nodes.
In practice and for multi-dimensional input, this would lead
to very high bandwidth demand (e.g., 15 dimensions× 32 bits



1 foreach node νi do
/* all skyline results are emitted on ν0 */

2 if i = 0 ∧ νi.working set.isSkyline then
3 emit νi.working set.tuple as result ;
4 νi.working set.empty ← true ;
5 νi.working set.isSkyline ← false ;

6 if i < w − 1 then /* any but the last node */
7 if νi.working set.empty then

/* move up candidates to left */
8 νi.working set ← νi+1.working set ;
9 νi+1.working set.empty ← true ;

/* challengers move one position to right */
10 νi+1.current item ← νi.current item ;

11 else
12 if νi.working set.empty then
13 νi.working set.isLast ← true ;

14 if νi.current item.valid then
15 write νi.current item to overflow file ;

Figure 10: Shift phase of shifter list-based BNL im-
plementation. Result tuples are reported on ν0; can-
didates and input items move to left and right; items
after last node are written to the overflow file.

× 150 MHz clock frequency = 9 GB/s in- and outgoing traf-
fic), which is far out of reach for the hardware that we use.
Instead, our implementation streams all data one dimension
at a time, following best practices for hardware design.

Data Representation. Figure 11 illustrates this for the
case of three-dimensional data and a shifter list configuration
of ten nodes. After each data point, we pass input bits (such
as timestamp information or the valid flag) as two additional
32-bit words I1 and I2.
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Figure 11: Dimension-at-a-time processing. Two tu-
ples streaming by ten shifter list nodes.

Further, in a massively parallel environment like shifter
lists, timestamps are not a suitable means to impose a sta-
ble total order on input data—which is what timestamps
effectively do in [4]. Thus, we mark each input item with an
immutable sequence number instead and introduce a round
counter that is incremented whenever the tuple is written
to the overflow file. Together, they allow us to test whether
a candidate has seen all other input items without a need
for actual timestamps.

BNL in Logic. While phrased in Figure 10 as an algorithm
in pseudo code, its implementation in logic boils down to a
state automaton. It turns out that most of the transitions in
this automaton are not specific to a particular application
problem, but are determined by the general data processing

Flstart Ac

FaAs

insert

d
elete

output

Figure 12: State diagram to implement shifter list
nodes on top of FPGAs.

pattern that we saw in Figure 2. Only three transitions re-
ally depend on the concrete skyline problem, labeled ‘insert’,
‘output’, and ‘delete’ in Figure 12.

In this state automaton, each shifter list node can be in
any of four states:

Fl: “free and last in pipeline” This state indicates that
all following nodes are also free. An input item that
has reached this point will be written to the local node
(transition ‘insert’ in Figure 12), which means that a
new candidate is added to the global working set.

Fa: “free and anywhere in pipeline” A working set item
has been dropped along the pipeline (transition ‘delete’).
Another candidate can move up from the right.

Ac: “allocated; contains candidate tuple” An item in the
working set that has not (yet) been identified as a sky-
line result.

As: “allocated; contains skyline result tuple” The con-
tent of this node has been identified as a skyline result.
The item will be output to the user once it reaches the
left-most node.

State automata of this type are well supported by actual
FPGA hardware and, as we will see in the following section,
can run at high throughput rates.

Managing State. Up to now we have assumed that poten-
tial skyline tuples can be stored in memory local to a shifter
list node but we have not yet said anything about what this
memory looks like in detail. Modern FPGAs typically ship
with two types of on-chip memory: registers and block RAM
(BRAM).

Registers are composed from flip-flops and the configurable
logic resources on the FPGA. Registers are very fast and can
be customized precisely to special application needs, such as
wide word widths and high throughput, but they are also an
expensive and scarce resource. Therefore they are best used
for storing small amounts of data. Registers are automat-
ically inferred from hardware description language (HDL)
code by the tools that generate the configuration file for the
FPGA.

Block RAM on the other hand needs to be explicitly in-
stantiated by the hardware designer. Block RAM refers to
blocks of dedicated memory with address, data, and control
ports. A typical size for a single block of dual-ported BRAM
is 36 kbit or 18 kbit for single-ported BRAM respectively.
BRAM blocks are distributed across the FPGA chip, and
their count varies depending on the FPGA between several
hundred and a few thousand.



Shifter lists can be implemented using both memory types.
Which memory type is more suitable depends on the appli-
cation. For example, in our BNL skyline algorithm, BRAMs
with a word width of 32 bits provide sufficient bandwidth
and since our tuples can be quite large, e.g., consisting of
15 dimensions and more, we would quickly run into space
problems using registers for storing potential skyline tuples.
Hence, in this case BRAM is the adequate choice.
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Figure 13: BRAM-Copy-Mechanism

Neighbor-to-Neighbor Communication. In the BNL
algorithm, skyline tuples are output in the same order as
they were inserted into the window of potential skyline tu-
ples. This means that allocated nodes to the left of a given
nodes will be deallocated before that node’s content will be
output. Thus, we never have the situation, where we need
to swap to allocated nodes. We only swap free nodes with
allocated ones and hence only need to copy data in one di-
rection and then swap the state. The state however is stored
in a register and swapping the contents of two registers in
one clock cycle is not an issue. Figure 13 depicts the above
described copy-mechanism in detail.

In the figure, the first node (on the left) is in state Fa and
the second node is in Ac, which means that by shifter list
semantics these two nodes need to swap their contents. The
node in state Ac is performing dominance tests against input
tuples streaming by (each numbered box above the nodes
corresponds to one dimension of the input tuple). As data
is read from BRAM of the allocated node for the dominance
tests at the same time this data can be copied to the BRAM
of the free predecessor. After an entire input tuple has been
processed by the allocated node, all dimensions have also
been copied to the free predecessor. Now, if the input tuple
did not dominate the tuple, which is stored at the allocated
node, the states can be swapped. Otherwise the allocated
node is also freed since it was just dominated by the input
tuple.

6. EXPERIMENTS
In our experiments, we compare the FPGA-based skyline

operator against a software implementation. On the one
hand, we demonstrate the scalability of our approach and
show how throughput increases as we add more shifter list
nodes. On the other hand, our results are put in relation to
throughput measurements of a (faster clocked) CPU-based
BNL implementation.

On the FPGA side we use an XUPV5-LX110T from Xil-
inx. In all experiments the FPGA was clocked at 151.1 MHz.
Our CPU-based experiments were carried out on a 2.26 GHz
Xeon L5520 Intel machine. For more details on the hardware
that we used please refer to Appendix A.

6.1 Characteristics of BNL
Before we present our throughput measurements in the

next section, we first want to explain some characteristics of

the block-nested-loops (BNL) algorithm, which should help
to better understand the measurements discussed later.

The main objective of original BNL [4] as an external algo-
rithm was to reduce I/O operations. The larger the window,
the fewer runs are needed, as can be seen in Figure 14, where
the number of overflow tuples decreases almost linearly as
we increase the size of the window. Thus, with I/O being
the main bottleneck, a larger window directly translates into
a higher throughput. However, observe that the number of
tuple comparisons (see Figure 14) does not improve with a
larger window. In fact, the number of comparisons might
even slightly increase. Hence, if we run BNL in main mem-
ory the size of the window has little effect on runtime.

0 4 8 16 32 64 128 256
106

107

108

109

106

107

108

109

Overflow Tuples Comparisons

Window Size : Number of Tuples
C

o
m

p
a
ri

so
n
s

O
v
er

fl
ow

T
u
p
le

s

Figure 14: BNL: Comparisons vs. Overflow Tuples

Nevertheless, BNL as a main memory algorithm still ex-
hibits reasonable performance. For the experiment in Fig-
ure 14, the skyline was computed over 1,024,000 input tuples
of seven dimensions each following a uniform random distri-
bution. It took 3.7 seconds to compute the resulting skyline
of 15,154 tuples on this data. As a comparison, we also
ran a newer block-nested-loops algorithm designed for fast
in-memory processing called SSkyline, which was recently
presented in [21]. For SSkyline we measured an execution
time of 3.3 seconds. While SSkyline here is indeed a bit
faster (speedup = 1.12X), it is not orders of magnitude bet-
ter than BNL, and if we increase the number of dimensions
or the correlation of the tuple dimensions, the two algo-
rithms run practically at same speed.

In Figure 14 the number of comparisons increases with
a larger window. This would suggest that a window size
of one—BNL with a window size of one is referred to as
an algorithm called Best [23]—should yield the best results.
However, despite more comparisons BNL with a small win-
dow size executes faster than Best . In such a configuration,
the system becomes bottlenecked by memory bandwidth,
because of a very large number of overflow tuples. In the
following measurements we will always indicate for which
window size BNL achieved the best results.

6.2 Effects of Data Distribution
In the following experiments we evaluate throughput per-

formance of our FPGA-based skyline operator versus a CPU-
based block-nested-loops (BNL) implementation. Again, the
input data consists of 1,024,000 seven-dimensional input tu-
ples. Each dimension is represented by a 32-bit integer.
Thus, together with a 32-bit sequence number a single tu-
ples is 32 bytes wide and the size of the entire input set is



31.25 MiB. We use synthetic input data with three differ-
ent distributions: (1) random, (2) correlated, and (3) anti-
correlated. These distributions are commonly used to eval-
uate skyline operators. To generate the data we used the
data generator2 provided by [4].

6.2.1 Randomly Distributed Data
For our randomly distributed data set, the skyline consists

of 15,154 tuples, i.e., 1.48 % of the input data are skyline
tuples. This measure is called the density of skyline tuples.
On the y-axis we display throughput as number of input
tuples processed per second and on the x-axis we vary the
size of the window used in the BNL algorithm.
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Figure 15: Random Distr. → Tuples/second

As we already noted before, the size of the BNL window
has little effect in the CPU-based version. On the FPGA,
however, throughput increases linearly with the size of the
window. This is not surprising because in the FPGA case a
larger window also means more shifter list nodes or higher
degrees of parallelism. Since the BNL algorithm here is
compute-bound, we can significantly increase throughput by
performing more dominance tests in parallel. Also notice
that the frequency of the CPU with 2.26 GHz is roughly 15
times higher than that of the FPGA, which is 151.1 MHz.

Here, BNL executes the fastest (3.7 seconds) with a win-
dow size of 32. The best FPGA results are at a window size
of 192 with an execution time of 0.45 seconds. The break-
even-point between the two versions is at a window size of
16.

6.2.2 The Correlated Case
In the second experiment, we compute the skyline on data

that favors the CPU-based implementation. Our CPU runs
at higher clock speed and has a faster memory subsystem
than our FPGA. If the computational effort per input tuple
is very low, aggregated compute power is no longer the key
criteria for a fast execution of the algorithm and the CPU
will be faster than the FPGA. This is the case, when the
dimensions of the input tuples are strongly correlated, i.e.,
when a tuple is “good” in one dimension, it is likely to be
“good” also in the other dimensions. As a result, the skyline
is very small. For example, in our experiment, depicted
in Figure 16, the skyline consists of only 135 tuples, which
corresponds to a skyline tuple density of 0.013%.

2http://www.pubzone.org/pages/publications/
showWiki.do?task=showComment&commentId=201
&publicationId=298353&versionId=298378
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Figure 16: Correlated Distr. → Tuples/second

The first observation is that the CPU-based version is in-
deed faster than the FPGA-based version. This is not sur-
prising since the upper bound for throughput is also higher
for the CPU than for the FPGA because of the reasons men-
tioned above. The upper bounds are depicted in the figure
for both CPU and FPGA by a dashed line and a dotted line
respectively. These bounds were computed using a data set
where the first input tuple is the only skyline tuple, which
eliminates all other tuples. This results in a minimal num-
ber of tuple comparisons of n − 1, where n is the number
of input tuples, which is in line with the known best case
complexity of O(n) for BNL [13].

For the CPU version throughput decreases slightly with
a larger window. The reason for this is that a larger win-
dow means that more unnecessary tuple comparisons are
performed. By contrast, in the FPGA case, the additional
comparisons due to the larger window do not hurt since they
are computed in parallel. Therefore throughput increases
until we hit the limits of our memory subsystem.

While we cannot beat the CPU skyline operator with our
FPGA implementation when the skyline tuples have a very
low density, it is important to note that in absolute num-
bers both versions are very fast when dealing with correlated
data. For instance, the above query took 18.36 ms on the
CPU and 60.73 ms on the FPGA. Thus, for many use cases
with a reasonable number of input tuples, when the data is
strongly correlated, this performance difference will not be
very noticeable. However, as we will see in the next section,
with an increased density of skyline tuples the computation
of the skyline becomes extremely expensive and calls for an
optimized solution.

6.2.3 The Anti-Correlated Case
This experiment is the inverse of the previous experiment.

Here, the dimensions of the input tuples are anti-correlated
meaning that a tuple, which is “good” in one dimensions, is
likely to be “bad” in the other dimensions. In this case, a
lot more tuples are part of the skyline, e.g., now the skyline
consists of 202,701 tuples, which corresponds to a density
of 19.80%.

Now, the computation of the skyline has become signifi-
cantly more expensive, e.g., the best execution time of the
CPU-based version has gone from 18.36 milliseconds to al-
most 10 minutes, i.e., more than four orders of magnitude
slower than the correlated case. The slowdown can be ex-
plained by the increase in number of comparisons since all
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Figure 17: Anti-Correlated Distr. → Tuples/second

skyline tuples have to be pairwise compared with each other.
The number of comparisons among skyline tuples alone is
1
2
s(s+1), where s is the size of the skyline—hence, the worst

case complexity for BNL is O(n2) [13]. Therefore, the num-
ber of comparisons becomes the dominating factor as the
size of the skyline increases.

With this many comparisons—we measured an average of
∼ 25, 000 comparisons per input tuple—the skyline query
becomes compute-bound. In the FPGA case, this cost can
be reduced with every additional shifter list node. This
observation is also confirmed by the measurements in Fig-
ure 17: y-axis and x-axis are in logarithmic scale and the
throughput increases linearly with the size of the window,
i.e., the number of shifter list nodes.

With a 192 shifter list nodes we reach a throughput of
∼ 32 thousand tuples/second. This is almost two orders
of magnitude below the upper bound of ∼ 16 million tu-
ples/second for throughput (coming from the memory sub-
system). Therefore there is still a lot of leeway to further
increase performance by adding more shifter list nodes. The
number of shifter list nodes that we can put on an FPGA
is limited by FPGA real estate. Our results suggest that a
larger FPGA would further increase throughput, as (below
the upper bound) there is a one-to-one relationship between
chip space and throughput performance.

6.3 The Curse of Dimensionality
By now we know that the size of the skyline severely im-

pacts the performance of the BNL algorithm. Increasing
the number of dimensions of the input tuples naturally in-
creases the size of the skyline. This phenomenon is known
as the curse of dimensionality [25]. Here, we show an exper-
iment with tuples of 15 dimensions each. The dimensions of
every tuple follow a random distribution. Because of the in-
creased computational intensity we had to reduce the input
data set by a factor of ten. Out of the 102,400 input tuples
the skyline here consists of 76,657 tuples which translates to
a density of 74.86%. Our results are displayed in Figure 18.

The graph above looks similar to the one in Figure 17. The
break-even-point has moved even a bit further to the left,
close to a window size of four. Thus, even though the CPU
is clocked about 15 times faster than the FPGA, it cannot
do 15 times more comparisons per clock cycle, otherwise the
break-even-point should never be below a window size of 15.
A single comparison of two 15-dimensional tuples on the
FPGA takes 17 clock cycles, i.e., 112.5 ns at a 151.1 MHz
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Figure 18: Fifteen Dimensions → Random Distr.

clock. We also measured how long a comparison takes on
our CPU and the result was 34.4 ns. Thus, we need at least
d 112.5

34.4
e = 4 shifter list nodes to achieve better results than

the CPU.

6.4 Concluding Remarks
The important lesson to be learned from the experiments

in this section is that the computational intensity of skyline
queries is mainly driven by the density of the skyline tuples,
i.e., the size of the skyline. The density of skyline tuples
depends on how the dimensions of the tuples are distributed
and more importantly on the number of dimensions. The
FPGA-based skyline operator improves performance most
when the density of skyline tuples is high as then the par-
allel compute power of the FPGA is used most effectively.
For instance, with a density of 74.86% in the experiment in
Section 6.3, the FPGA with 192 shifter list nodes achieves
a 17.7X speedup over the CPU based version.

7. CONCLUSIONS
Nearly ten years ago the laws of physics changed the way

in which microprocessor architectures evolved. While minia-
turization of the transistors according to Moore’s Law still
prevails, this no longer translates into faster clock speeds.
Thus, the only hardware solution to further increasing per-
formance of algorithms seems to be parallelization. How-
ever, parallelization of algorithms is often a non-trivial task,
especially when the problem is not embarrassingly parallel.
In particular, when reasoning about parallelizing a partic-
ular task the focus is often on the computation while the
communication overhead is often overlooked. But the com-
munication overhead can become a severe bottleneck espe-
cially as the core count increases.

Until now, the usual way to address the parallelism chal-
lenge is to build a specialized parallel algorithm for each
and every given problem. With shifter lists, we propose a
general-purpose solution instead. A shifter list is a novel
data structure tailored at tightly-coupled many-core sys-
tems. A special property of shifter lists is that they can
be used to unify algorithmic data processing components
with the data structure itself. We used an FPGA as a
test platform for a many-core system of up to 192 process-
ing elements and showed by example of a skyline algorithm
how shifter lists help accessing this massive parallelism in a
highly scalable way.
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APPENDIX
A. HARDWARE USED IN EXPERIMENTS

All of our FPGA experiments were conducted on a low-
cost ($750.00 university price) Virtex-5 FPGA from Xilinx
clocked at 151.8 MHz. Commonly available resource types
hosted by FPGAs include lookup tables (LUTs) to realize
combinational logic, on-chip storage in terms of Block RAM
(BRAM) and flip-flops, and a configurable interconnect net-
work. Some selected characteristics are displayed in Table 1.

LUTs (6-to-1 lookup tables) 69,120
Flip-flops (1-bit registers) 69,120
BRAM (total kbit) 5,328
BRAM (dual-ported 36-kbit blocks) 148
BRAM (single-ported 18-kbit blocks) 296
Process 65 nm
Transistors 1.1 billion

Table 1: Xilinx Virtex-5 FPGA (XC5VLX110T)

All of the software experiments were run on an Intel Xeon
2.26 GHz server processor (Gainestown also known as Ne-
halem-EP). Further processor specifications are listed in Ta-
ble 2.

Number of Cores 4@2.26 GHz
L1 data & instr. 32 KiB
L2 unified cache 256 KiB
L3 shared cache 8 MiB
Process 45 nm
Transistors 731 million

Table 2: Intel Xeon Gainestown CPU (L5520).


