
Shifter Lists—Interleaving Data Storage and Computation

ABSTRACT
Database system vendors have started to explore massively
parallel co-processors such as FPGAs to further increase per-
formance of their systems. However, the lack of suitable ab-
stractions often makes it difficult to map a given database
task to these devices and fully exploit their inherent paral-
lelism.

In this paper, we focus on one such abstraction that can
be applied to a common class of compute-intensive database
operators that are based on nested loops. We propose a new
data structure—a shifter list—for FPGAs that interleaves
data storage and computation, allowing multiple operations
to be executed on the same data structure in parallel while
implicitly avoiding race conditions and other potential con-
flicts.

The shifter list abstraction allows many related database
tasks, e.g., top-k queries, k-nearest neighbor search (k-NN),
and skyline queries to be brought to FPGAs for improved
performance. In this paper, we apply shifter lists to skyline
queries, as one possible use case. Our experiments show that
we achieve very promising results compared to CPU-based
solutions.

1. INTRODUCTION
There has been an increase in both the number of re-

search projects and commercial systems that exploit hetero-
geneous, low power, and massively parallel co-processors to
accelerate data processing operations. For instance, server
vendors such as Netezza [20] (acquired by IBM in 2010) and
Convey [7] equip their systems with configurable hardware
accelerators, i.e., field-programmable gate arrays (FPGAs).

Modern FPGAs provide high aggregated compute power
but it is often difficult to turn the hardware’s parallelism into
true performance for a given database task. A common an-
swer to this challenge is to build specialized implementations
focused on one specific task, e.g., by fitting the problem to
an input data partitioning scheme and then fixing problem-
specific bottlenecks as they arise. This tends to leave much

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’13 February 11 - 13, Monterey, California USA
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of the true hardware potential unused. In addition, the lack
of suitable abstractions prevents the invested efforts from
carrying over from one application to another.

Contributions. In this work, we present a new data struc-
ture abstraction (shifter lists) that helps designing massively
parallel algorithms for a number of related database tasks.
Shifter lists combine data organization, computational power,
and synchronization into a novel parallel processing model
that naturally supports the characteristics of FPGAs. In our
model, we think of input data as a data stream that prop-
agates through the shifter list, which itself is distributed
over many parallel processing elements. The processing el-
ements are arranged as a pipeline and locally update the
shifter list as input data flows by. The only communication
required is between neighboring processing elements. As a
result, shifter lists exhibit high throughput and very good
scalability.

We illustrate shifter lists based on a common database
operator, skyline [4]. Skyline computation is a good ex-
ample where straightforward input data partitioning does
not fit the characteristics of FPGAs very well. With shifter
lists, by contrast, we dynamically partition the active work-
ing set in a way that allows throughput optimized process-
ing of the input data and concurrent manipulation of the
working set. In our experiments, we show how through-
put scales linearly with respect to the amount of FPGA
resources allocated. Using a low-end FPGA, we clearly out-
perform a single-threaded CPU-based skyline operator and
even achieve performance close to a parallel skyline operator
running on a high-performance 64-core server.

The rest of this paper is organized as follows. Section 2
motivates our work and relates it to existing ideas. In Sec-
tion 3, we introduce shifter lists. Section 4 illustrates using
shifter lists for skyline computation. A concrete implemen-
tation on the Xilinx (XUPV5) development platform is dis-
cussed in Section 5, and evaluated in Section 6. Additionally,
in Section 7, we briefly sketch a shifter list implementation
for (i) frequent item computation and (ii) top-k queries to
demonstrate the generality of shifter lists, before we wrap
up in Section 8.

2. RELATED WORK AND MOTIVATION
The prevalence of parallel hardware is pushing the soft-

ware side harder and harder to come up with efficient par-
allel problem solutions. Berkeley researchers phrased this
provocatively in a recent article [1] in Communications of
the ACM : “If researchers meet the parallel challenge, the fu-
ture of IT is rosy. If they don’t, it’s not.” The programma-

Scatter-gather Pipeline of PEs

· · ·

· · ·

· · ·

Figure 1: Scatter-gather versus pipelining along a
series of processing elements (PEs).

bility of complex parallel systems as well as dealing with the
cost of communication among parallel units are two of the
challenges that we face.

2.1 Parallel Hardware & Heterogeneity
The trend toward increasing degrees of parallelism is com-

plemented with a notion of hardware heterogeneity [23]. Spe-
cialized co-processors and even programmable logic are al-
ready used to assist general-purpose cores on compute- or
data-intensive tasks. A particular instance of this trend are
FPGAs, with IBM/Netezza’s 1000 (formerly Twinfin) [20]
being one of the most prominent examples of a commercial
FPGA-powered database appliance.

On the research side, there have been some approaches
to execute standard SQL queries on FPGAs by assembling
query plans from a component library either statically [19]
or at runtime using partial reconfiguration [8]. Furthermore,
FPGA solutions in the context of databases have been pro-
posed, e.g., for sorting [16], XML filtering [18], or high-speed
event processing [15, 22].

Nevertheless, those examples all confirm the observation
of Chung et al. [6]: FPGAs still lack essential abstractions
that have become pervasive in general-purpose computers;
rather, most systems are developed in an ad-hoc manner for
just one particular problem setting. In the field of high-level
synthesis, projects like Kiwi [13] or Liquid Metal [14] recog-
nize that the ease of programming FPGAs is an important
issue that will determine the success and impact of FPGAs
in future heterogeneous systems. With shifter lists, we work
towards the same goal as these projects, by providing an ab-
straction that aids in building parallel solutions for difficult
database tasks demanding high performance.

2.2 Communication Patterns
With increasing core counts, the average on-chip distance

grows between arbitrary communication partners, which re-
quires additional energy and increases latency [3]. What is
more, the necessary routing logic scales quadratically in the
number of compute nodes, which limits the observed band-
width for many communication patterns.

As illustrated in Figure 1, algorithms based on scatter-
gather mechanisms are strongly affected by the cost of com-
munication. However, negative effects, e.g., long communi-
cation paths or high fan-in/-out, can be avoided if the com-
munication follows very simple topologies, such as pipelin-
ing along a series of parallel processing elements (Figure 1),
known as nearest neighbor communication.

One of the first works that addressed core-to-core com-

?

current input item

input data set

working set

Figure 2: Typical application pattern for a shifter
list: For each input item, the working set is accessed
and possibly modified.

munication in databases is QPipe by Gao et al. [11]. QPipe
places database operators on individual cores of a multicore
processor and explicitly pipelines data between cores. How-
ever, the proposed scheme was designed for inter-operator
pipelining only and is hence limited to rather coarse-grained
parallelism.

Intra-operator pipelining has been discussed in a few re-
cent papers. In cyclo-join [10], the join operator is mapped
to a ring topology, where the inner relation is stationary
and fragments of the outer relation are rotated in the ring.
Handshake join [24] is a stream join algorithm devised for
many-core systems that distributes the join operator over
available parallel compute resources. Each parallel unit per-
forms a local join while the two join relations flow through
a series of such units in opposite directions. From these
works, shifter lists adopt the (pipelined) dataflow process-
ing paradigm. Yet, shifter lists are better viewed as a special
kind of data structure for highly parallel hardware, compris-
ing data storage and concurrent data processing.

With shifter lists, we address the design of parallel database
algorithms for FPGAs in two important ways: (i) shifter
lists can be used as a generic implementation strategy to
build parallel database operators—no need to re-start plat-
form optimization for each new problem instance; (ii) shifter
lists have the awareness of communication cost built-in. It
is applied by bringing pipelining to the inside of individual
operators.

3. SHIFTER LISTS
Our shifter list data structure targets application patterns

as illustrated in Figure 2. From a given input data set, all
items are consumed in turn. Each input item is evaluated
against many or even all of the items in an in-memory (on-
chip) working set. Possibly, this evaluation results in an
update to the working set, such as adding the current input
item to the set or removing others.

Note that the processing order of the input data may be
important for some database algorithms, i.e., a parallel com-
putation must preserve the causality inferred by a sequential
implementation. The importance thereof will become clearer
later when we use skyline computation to showcase shifter
lists—in the block nested loops (BNL) algorithm [4], for ev-
ery input item, a working set of items has to be examined
and updated (consistent with the pattern in Figure 2).

3.1 A Shifter List is a Data Structure
The high-level structure of a shifter list is illustrated in

Figure 3. Working set items are held in a number of pro-
cessing elements, which we will call shifter list nodes. There
is a defined total order among all nodes νi in a shifter list.
Oftentimes, node content itself will have a defined order,

node 0 node 1 node 2

working set items message channels

Figure 3: Shifter lists group working set items into
nodes. Neighboring nodes are connected via mes-
sage channels.

resulting in a total ordering across all working set items.
Nodes are organized independently but communicate with

each other through well-defined message channels. As il-
lustrated in Figure 3, these channels constrain communica-
tion to nearest-neighbor messaging. Besides for application-
defined messages, the channels will also be used to propa-
gate input data and to exchange (swap) working set items
between nodes (which ultimately results in a dynamic re-
partitioning of the working set).

3.2 A Shifter List is for Data Processing
To process input, we submit each input item to the left-

most shifter list node ν0. There, the item is evaluated against
all local working set items, then shifted on to the right neigh-
bor where the process repeats. Effectively, a sequence of
input items flows through all nodes in a pipeline fashion.

The actions performed at each node depend on the specific
task that is to be solved with the shifter list. Action code
may decide to alter the local working set partition (e.g., by
deleting, inserting, or re-arranging working set items); drop
the input item from the pipeline; or send and/or receive
messages along the message channels.

Self-Similarity. While the concrete action code has to be
written specifically for each shifter list use case, we often see
a “self-similarity” effect. Thereby, the local action code re-
sembles very closely the superordinate algorithm that solves
the overall application task. Typically, only side effects have
to be modified to obtain the code for node-local execution.
For instance, node-local “overflow tuples” in the BNL sky-
line algorithm have to be forwarded to the next shifter list
node, rather than be written to an overflow file as in the
subordinate algorithm (see Section 5.1).

3.3 A Shifter List is for Parallelism
As described above, input items are evaluated over the

individual shifter list node contents in a strictly forward-
oriented fashion. This has important consequences that we
can exploit in order to parallelize the execution over many
processing elements (shifter list nodes) while preserving the
causality of the corresponding sequential algorithm.

Causality Guarantees. Forward-only processing implies
that the global working set is scanned exactly once in a
defined order (which turns out to be a desirable property
for many algorithms). What is more, once an input item xi
has reached a shifter list node νh, its evaluation cannot be
affected by any later input item xj that is evaluated over a
preceding node νd (conversely, the later xj is guaranteed to
see all effects caused by the earlier xi).

These causality guarantees hold even if we let the execu-
tions of xi on νh and xj on νd run in parallel on independent
compute resources, as illustrated in Figure 4. To uphold the

? ?

node νd node νh

xj xi

· · ·

Figure 4: Shifter list causality guarantees. The ear-
lier xi will see no effects caused by the later xj but
xj sees all effects of xi.

guarantees, xj only must never overtake xi in the processing
pipeline, a requirement that is easy to meet if all message
channels are implemented as FIFO queues.

The preservation of causality hides much of the paralleliza-
tion difficulties from the application developer. But the two-
way interaction between two neighboring shifter list nodes
may still bear a risk for race conditions. More specifically,
an item xi might be affected by the evaluation of xj if xj
follows too closely in the processing pipeline and the inter-
action code is not engineered carefully (also see Section 5.3).

Application-Level Guarantees and Invariants. Appli-
cations may use the shifter lists’ causality guarantees to fur-
ther establish their own invariants. When solving the skyline
problem in Section 4, for instance, we add new items to the
working set only at the end of the shifter list (the rightmost
position) and then gradually shift them to the left. Since
items never overtake each other, this ensures that the oldest
working set item can always be found at the front of the
shifter list.

3.4 A Shifter List is Data and Logic
The intended use of shifter lists is to keep chunks of data—

the contents of a node—strictly co-located with the process-
ing logic that uses it. In a sense, this blurs the classical
separation of data and logic.

Releasing this strict separation indeed makes sense in the
light of FPGAs and ongoing hardware trends. There is a
general consensus that power and heat dissipation problems
will force a move toward heterogeneous system architectures,
which might even soon be dominated by highly specialized
co-processors or configurable hardware [3, 9, 23]. In such
designs, data structures can be wrapped right into the cor-
responding processing logic to further improve energy effi-
ciency and speed.

4. USE CASE: SKYLINE QUERIES
After skyline queries were first introduced in 2001 [4], a

decade of research has produced a variety of different ap-
proaches to solving skyline queries (a comprehensive overview
is given in [12]). Only recently, there have been a few at-
tempts to exploit parallelism for skyline query processing,
e.g., using SIMD instructions [5] or multiple threads [21]
on multicore machines. Nevertheless, the compute-intensive
nature of skyline queries suggests that even higher degrees
of parallelism are required to effectively tackle this type of
problems. This makes skyline queries a good candidate for
FPGAs and shifter lists.

4.1 The Lemming Skyline
To figuratively explain skyline queries, a popular algo-

rithm to solve skyline queries (the BNL algorithm [4]), and
the modified version of BNL using shifter lists, we are go-
ing to digress into the world of Lemmings. Lemmings1

are primitive creatures that go on migrations in masses.
On Lemmings Planet every year a challenge—Lemmings got
Talent—takes place among the Lemmings with the goal to
identify the “best” Lemmings. Every Lemming has different
skills: some are very strong but slow and clumsy, others are
agile but neither strong nor fast, then again others are gen-
eralists that do not have a particular skill that they are best
in but have multiple skills they are pretty good in. As the
committee of the competition could not agree on a weight-
ing function that would determine the best Lemmings, all
Lemmings that are not dominated (see Definition 1) by any
other Lemming are considered best. In other words, the
winners are the (pareto optimal) Lemmings that are part of
the Lemming skyline (see Definition 2).

Definition 1. A Lemming li dominates (≺) another Lem-
ming lj iff every skill (dimension) of li is better or equal
than the corresponding skill of lj and at least one skill of li
is strictly better than the corresponding skill of lj.

Definition 2. Given a set of Lemmings L = {l1, l2, . . . ln},
the skyline query returns a set of Lemmings S, such that any
Lemming li ∈ S is not dominated by any other Lemming
lj ∈ L.

4.2 The Competition—1st Year (Best)
When the competition took place for the first time, the

committee had a definition for the set of best Lemmings
(see previous section) but it was still unclear how to deter-
mine this set. Thus, in the absence of sophisticated logistic
means, one committee member suggested the following sim-
ple algorithm. Initially, all Lemmings queue up in front of a
bridge, as illustrated in Figure 5.

qi dominated

p0qi+1 requeue

queue

Figure 5: Lemming Skyline with Best [26].

The first Lemming in the queue q0 is considered a potential
skyline Lemming p0 and can advance onto the bridge. There,
the candidate Lemming has to battle all other Lemmings
in the queue q1 . . . qn−1. A battle can have three possible
outcomes. (1) p0 dominates qi. In this case, qi will be pushed
from the bridge and p0 remains on its position to combat
qi+1. (2) qi dominates p0. Now, p0 falls from the bridge
and qi becomes the new candidate Lemming p0, i.e., has to
battle qi+1. (3) If neither of the two Lemmings dominates
the other, they are considered incomparable. In this case, p0
stays on the bridge and qi has to requeue.

The candidate Lemming p0 has to remain on the bridge
until it has fought all queued Lemmings once. When a chal-
lenger qj confronts p0 for the second time, we know that p0
is not dominated by any other Lemming. Hence, p0 is part
of the Lemmings skyline and can leave the bridge safely and

1As in the video game “Lemmings” originally developed by
DMA Design: http://www.dmadesign.org/

qj becomes the new p0. The algorithm terminates when the
queue is empty, i.e., all dominated Lemmings have fallen
from the bridge. The Lemmings still alive all belong to the
Lemming skyline. This algorithm, known as Best, has been
formally described in [26].

4.3 The Competition—2nd Year (BNL)
The following year many new Lemmings were born and it

was time to redetermine the Lemming skyline. The previ-
ous year some Lemmings complained that they had to spend
too much time queuing. In particular, requeing was time-
consuming and delayed the entire competition. To improve
on this drawback, the set of candidate Lemmings was in-
creased from 1 to w. The modified version of the algorithm
is known as block-nested-loops (BNL) [4] and illustrated in
Figure 6.

qi dominated

[p0, pw−1]qi+1 requeue

queue

Figure 6: Lemming Skyline with BNL [4].

On the bridge there is room for a window of w candidate
Lemmings. A challenging Lemming qi from the queue has
to battle all candidate Lemmings on the bridge. If the chal-
lenging Lemming survives all battles, there are two possibil-
ities. (1) If there are already w other candidate Lemmings
on the bridge, qi has to requeue. (2) Otherwise qi becomes
a candidate Lemming pi.

Unfortunately, now it is unclear when exactly a candidate
Lemming has been on the bridge long enough to qualify as
a true skyline Lemming. Luckily, the competition commit-
tee found a simple solution to this problem. After a Lem-
ming qi survives all candidate Lemmings on the bridge, it
receives a timestamp independent of whether it becomes a
candidate Lemming or has to requeue. A candidate Lem-
mings pi can now be said to be a true skyline Lemming
(and leave the bridge) when it encounters the first challeng-
ing Lemming qj that has a larger timestamp or when the
queue is empty. When Lemmings initially queue up for the
first time, this timestamp is set to zero. A larger timestamp
indicates that the Lemmings must have already competed
against each other and since the queue is ordered, all follow-
ing Lemmings in the queue will also have larger timestamps.
More formally, the BNL algorithm is given in Figure 7.

4.4 The Competition—3rd Year (Shifter List)
While the BNL algorithm used in the 2nd year signifi-

cantly reduced the number of times that Lemmings had to
requeue, there were new complaints coming from some Lem-
mings. In particular, candidate Lemmings criticized that
most of the time on the bridge they were idle, waiting for
their turn to battle the next challenger. Thus, in favor of
higher throughput, the competition committee decided to
slightly modify the BNL algorithm using the shifter list ap-
proach. The basic idea is that instead of one challenger qi
now up to w challengers q(i+w−1) . . . qi are allowed on the
bridge, and each challenger can battle a different candidate

1 foreach Lemming qi ∈ queue do
2 isDominated = false;
3 foreach Lemming pj ∈ bridge do
4 if qi.timestamp > pj .timestamp then

/* pj ∈ Lemming skyline */
5 bridge.movetoskyline(pj);

6 else if qi ≺ pj then
7 bridge.drop(pj);

8 else if pj ≺ qi then
9 isDominated = true;

10 break;

11 if not isDominated then
12 timestamp(qi);
13 if bridge.isFull() then
14 queue.insert(qi);

15 else
16 bridge.insert(qi);

Figure 7: BNL Algorithm (≺ means dominates).

Lemming in parallel. This version of the algorithm is illus-
trated in Figure 8.

pk
qj

queue

q(i+w−1) requeue

Figure 8: Lemming Skyline: BNL & Shifter List.

To avoid chaos on the bridge the procedure is as fol-
lows: In each iteration there is a shift phase followed by
a battle phase. In the shift phase all challenger Lemmings
q(i+w−1) . . . qi move one position to the right to face their
next opponent (indicated by the lower arrows in the figure).
This frees the leftmost position on the bridge and allows a
new Lemming from the queue to step on the bridge every
iteration. Then in the battle phase all w pairs of Lemmings
battle concurrently. As can be seen in the figure, in some
situations a Lemming will not have an opponent because the
corresponding Lemming was previously dominated, i.e., fell
from the bridge. In that case, the Lemming does not need
to battle in this iteration.

Once a challenging Lemming qi safely reaches the right
end of the bridge, it qualifies as a candidate Lemming if
there is room on the bridge, otherwise it has to requeue
(as in standard BNL). If during the battle phase a candi-
date Lemming pi falls from the bridge, the other Lemmings
pi+1 . . . pw−1 to the right of that Lemming should move up
in the subsequent shift phase and fill the gap (indicated by
the upper bent arrows in the figure). This is to make room
for new candidate Lemmings that reach the right end of the
bridge.

As in standard BNL, we can also use timestamping to de-
cide when candidate Lemmings turn into true skyline Lem-
mings and can leave the bridge. Since the order among
the Lemmings on the bridge is maintained, it is always the
leftmost candidate Lemmings that may become the newest

skyline member. Thus, potential skyline Lemmings begin
on the right end of the bridge and then gradually move to-
wards the left end again, where they need to wait until they
encounter a challenger with a larger timestamp.

5. PARALLEL BNL WITH FPGAS
When Börzsönyi et al. [4] first proposed the block-nested-

loops (BNL) algorithm, their main motivation was to sup-
port skyline computation for problem sizes that would re-
quire external (and slow) memory. With today’s large main
memories and efficient memory subsystems, the bandwidth
to read input or overflow data only defines the performance
of skyline computations with extremely small working set
sizes (very few candidate skyline tuples). In most practical
cases, CPU load becomes the bottleneck when computing
skylines.

This makes FPGAs a good alternative to conventional
CPUs, because a window of reasonable size (say, 100 skyline
candidates) conveniently fits into on-chip memories. In this
section, we show how shifter lists help to parallelize the com-
putation within the FPGA to make best use of its available
compute capacity. As our results in Section 6 demonstrate,
this restores the original characteristics of the algorithm,
where reducing the number of overflow tuples translates into
faster execution of the algorithm, i.e., the larger the window,
the better the performance.

5.1 BNL Using Shifter Lists
Given the opportunity for very fine-grained compute and

communication parallelism inside FPGAs, we configure our
shifter list implementation such that each node holds only a
single working set item. This allows us to fully leverage the
available hardware parallelism and also helps us illustrate
how shifter lists scale to very high degrees of parallelism.

eval. shift eval. shift eval. shift eval. shift eval. shift

Figure 9: Two-phase processing of shifter lists.

As mentioned in the previous section, data processing in
shifter lists can be viewed as a two-phase algorithm: during
the evaluation phase (the “battle” phase in the Lemming ex-
ample), a new state is determined for each shifter list node;
but these changes are not applied before the shift phase,
which is the phase that also allows neighbor-to-neighbor
communication. In our FPGA-based implementation, those
two phases will run synchronously across the chip, as de-
picted in Figure 9. A similar concept has been proposed
in the work of Wang et al. [27] on large-scale paralleliza-
tion of behavioral simulations. By running parallel code in
two phases (“query phase” and “update phase” in [27]), al-
gorithms can be phrased in a way that is intuitive, and yet
efficient to parallelize.

Evaluation Phase. Thanks to the self-similarity property
of shifter lists, the partial algorithm executed locally on each
shifter list node in the evaluation phase very closely resem-
bles the global algorithm—BNL in our case. As shown in

1 on each node do
2 q ← current input item ;
3 p← local working set content ;
4 s← state of shifter list node ;

5 if q.valid then /* next challenger */
6 if s = working set then /* valid candidate */
7 if q.timestamp > p.timestamp then
8 s ← output ; /* found skyline tuple */

9 else if q.data ≺ p.data then
10 s ← deleted ; /* drop window tuple */

11 else if p.data ≺ q.data then
12 q.valid ← false ; /* drop input tuple */

13 else if s = free then /* add input to window */
14 timestamp(q) ;
15 p.data ← q.data ;
16 s ← working set ;
17 q.valid ← false ;

Figure 10: Shifter list-based BNL: evaluation phase.

Figure 10, the only changes to the original algorithm (Fig-
ure 7) are that all side effects are now handled by the shift
phase (and we handle boundary cases more explicitly here).

Shift Phase. All interactions between neighboring nodes
are performed in the following shift phase (Figure 11), which
updates the global algorithm state based on the outcome of
the evaluation phase. In essence, all input items are for-
warded one shifter list node toward the right, whereas can-
didate results (working set items) move toward the left if
there is space available, i.e., the left neighbor node is in
state ‘deleted’. Since skyline candidates move toward the
left, we report them on the leftmost node ν0 once their
timestamp condition has been satisfied. Likewise, on the
rightmost node νw−1, we write input items to the overflow
file if they were not invalidated during their move along the
shifter list pipeline, and cannot be inserted into the shifter
list because it is already full.

5.2 Shifter List Node State Automaton
While in Figures 10 and 11, we phrased BNL with shifter

lists as an algorithm in pseudo code, the implementation in
hardware logic boils down to a state automaton. It turns
out that most of the transitions in this automaton are not
specific to a particular application problem, but are deter-
mined by the general data processing pattern that we saw
in Figure 2. The few transitions that really depend on the
concrete BNL algorithm are labeled ‘insert’, ‘output’, and
‘delete’ in Figure 12. In this state automaton, each shifter
list node can be in any of four states:

F : “free” The current and all following nodes are free. In
BNL, an input item that reaches this point will be ‘in-
serted’ into the shifter list causing the state transition
F →W for the current node.

W : “working set” The current node holds an item of the
working set (in BNL, one candidate tuple). If the can-
didate tuple is dominated by an input tuple, the work-
ing set item is ‘deleted’ (W → X). If the timestamp

1 foreach node νi do
/* all skyline results are emitted on ν0 */

2 if i = 0 ∧ νi.state = output then
3 emit νi.working set.tuple as result ;
4 νi.state ← deleted ;

5 if i < w − 1 then /* any but the last node */
6 if νi.state = deleted then

/* move up candidates to left */
7 νi.working set ← νi+1.working set ;
8 νi.state ← νi+1.state ;
9 νi+1.state = deleted ;

/* challengers move one position to right */
10 νi+1.input item ← νi.input item ;

11 else /* the last node (physically) */
12 if νi.state = deleted then
13 νi.state ← free ;

14 if νi.input item.valid then
15 timestamp(νi.input item) ;
16 write νi.input item to overflow file ;

Figure 11: Shifter list-based BNL: shift phase. Re-
sults are reported on ν0; candidates and input items
move to the left and right, respectively; items after
last node are written to the overflow file.

Fstart W

XO

insert

d
eleteou

tp
ut

delete

Figure 12: State diagram: shifter list node.

condition in Figure 10 is satisfied the tuple can be ‘out-
put’ as a skyline tuple (W → O).

X: “deleted” The working set item of the current node has
been ‘deleted’. Due to the causality property men-
tioned earlier, we cannot directly perform the tran-
sition W → F but first need to propagate the freed
resource to the end of the pipeline, where transition
X → F can take place.

O: “output” The working set item of the current node is
ready for ‘output’. In BNL, this means that a skyline
tuple has been identified and is shifted to the leftmost
shifter list node, where it is ‘output’. Then the current
resource is freed (O → X).

The dashed transitions are built-in shifter list transitions.
They enable shifting of nodes (more precisely, their working
set content) toward the end or the beginning of the shifter
list. Nodes in state O are shifted to the beginning. On the
other hand, nodes in state X are shifted to the end, where
automatically the transition X → F is executed.

While not required for skyline queries, other algorithms

might need the global working set content of a shifter list to
remain sorted. In such a scenario, two nodes in state W or
O might need to swap their working set content, e.g., based
on some sort criteria. Therefore, we also added the dotted
transitions in the state diagram (omitted between W and O
for readability purpose).

5.3 Dimension-at-a-time vs. Tuple-at-a-time
Taken literally, the shift phase illustrated in Figure 11

passes items atomically between adjacent shifter list nodes.
For the multi-dimensional input of our benchmark (see Sec-
tion 6), this would lead to a very high bandwidth demand
(e.g., 15 dimensions × 32 bits × 150 MHz clock frequency
= 9 GiB/s). Since we are using BRAM (see below), this is
far out of reach for the hardware that we use. Instead, our
implementation streams all data one dimension at a time
through the shifter list.

Data Representation. Figure 13 illustrates this for the
case of three-dimensional data and a shifter list configuration
of eight nodes. After each data point, we pass meta data
(such as timestamp information or the data valid flag).

M ′

1

2

3
0

3′

1

2

3
1

2′

1

2

3
2

1′

1

2

3
3

M

1

2

3
4

3

1

2

3
5

2

1

2

3
6

1

1

2

3
7

Figure 13: Dimension-at-a-time processing. Two tu-
ples streaming by eight shifter list nodes.

Managing State. So far we have assumed that the work-
ing set content can be stored in memory local to a shifter
list node without saying anything about the type of this
memory. Shifter lists can be implemented using registers or
block RAM (BRAM) depending on the application’s needs.
For our BNL implementation, we used BRAM since entire
tuples (consisting of 15 dimensions and more) need to be
stored in the working set. Unfortunately, we cannot copy
entire chunks of memory from one BRAM block to another
in a single clock cycle—we have to do this word by word.
Nevertheless, as illustrated in Figure 14, copying is still pos-
sible without reducing throughput.

1

2

3

w

X

3

1

2

3

r

W

2

≺

copy

1

≺

Figure 14: BRAM copy mechanism.

The first node (on the left), in Figure 14, is in state X
(deleted). The second node is in state W (working set),
which means that by shifter list semantics these two nodes
need to be swapped. The node in state W is performing dom-
inance tests against input tuples streaming by (each num-
bered box above the nodes corresponds to one dimension of
the input tuple). As data is read (indicated by the r-flag)

from BRAM of the node in state W for the dominance tests,
at the same time this data can be written (indicated by the
w-flag) to the BRAM of the ‘deleted’ predecessor node. If
the input tuple did not dominate the current working set
tuple, the two nodes exchange states, otherwise the second
node is also ‘deleted’. Notice that with dual-ported BRAM
this mechanism can also be used to copy data in both direc-
tions simultaneously, e.g., to swap working set contents.

6. EXPERIMENTS
In our experiments, we first compare the FPGA-based

skyline operator against a single-threaded software imple-
mentation. On the one hand, we want to give a better un-
derstanding of the performance characteristics of the BNL
algorithm, and highlight what the relevant parameters are
that influence performance. On the other hand, we demon-
strate the linear scalability of our approach, and show how
throughput increases as we add more parallel resources, i.e.,
shifter list nodes. Finally, in Section 6.5, we also put our
results in relation to a state-of-the-art parallel skyline im-
plementation (PSkyline [21]) for multicore systems.

6.1 Experimental Setup
On the FPGA side we used a Xilinx XUPV5 development

platform with a Virtex-5 FPGA (XC5VLX110T) clocked at
150 MHz. All experiments were run from main memory. The
XUPV5 board ships with 256 MiB DDR2 memory, which we
accessed using MSR’s Speedy DDR2 controller [2].

The single-threaded CPU experiments were carried out
on an Intel Xeon 2.26 GHz server processor (Gainestown,
L5520) equipped with DDR3 memory. The multicore ex-
periments, in Section 6.5, were conducted on the same Intel
Xeon server (8 cores plus hyper-threading) and on a 64-
core (AMD Bulldozer, 2.2 GHz, DDR3 memory) PowerEdge
R815 Server from Dell.

6.2 Characteristics of BNL
Before we present throughput measurements, in the next

section, we first want to explain some characteristics of the
BNL algorithm. The main objective of original BNL [4] as
an external algorithm was to reduce I/O operations. The
number of I/O operations depends on the number of over-
flow tuples. Figure 15 shows that the number of overflow
tuples decreases almost linearly as we increase the size of
the window. Thus, with I/O being the main bottleneck,
a larger window directly translates into higher throughput.
However, observe that the number of tuple comparisons in
Figure 15 does not improve with a larger window. Hence,
if we run BNL in main memory of a CPU-based system,
we expect that the size of the window has little effect on
runtime unless we add more compute resources.

6.3 Effects of Data Distribution
In the following experiments we evaluate the throughput

of our FPGA-based skyline operator versus a CPU-based
BNL [4] implementation. The input data consists of 1,024,000
seven-dimensional input tuples. Each dimension is repre-
sented by a 32-bit integer. Thus, together with a 32-bit
timestamp a single tuples is 32 bytes wide and the size of
the entire input set is 31.25 MiB, which is stored in (off-
chip) DRAM memory. Synthetic input data was generated
according to three different distributions: (1) random, (2)
correlated, and (3) anti-correlated. These distributions are

0 4 8 16 32 64 128 256
106

107

108

109

106

107

108

109

Overflow Tuples Comparisons

Window Size : Number of Tuples

C
o
m

p
a
ri

so
n
s

O
v
er

fl
ow

T
u
p
le

s

Figure 15: BNL: #Overflow tuples (I/O) versus
#tuple comparisons (compute).

commonly used to evaluate skyline operators. To generate
the data we used the data generator2 provided by [4]. In the
following measurements we will always indicate for which
window size BNL achieved the best results by showing the
exact execution time for the respective window size.

6.3.1 Randomly Distributed Data
For our randomly distributed data set, the skyline consists

of 15,154 tuples, i.e., 1.48 % of the input data are skyline
tuples. This measure is called the density of skyline tuples.
On the y-axis we display throughput as number of input
tuples processed per second and on the x-axis we vary the
size of the window used in the BNL algorithm.

0 4 8 16 32 64 128 256
104

105

106

107

3.7 sec

0.45 sec

BNL Software

BNL FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 16: Random distr. → tuples/second.

As we already mentioned before, we expect the size of the
BNL window to have little effect in the CPU-based version.
On the FPGA, however, throughput increases linearly with
the size of the window because in the FPGA case a larger
window also means more shifter list nodes or a higher degree
of parallelism. Since the BNL algorithm here is compute-
bound, we can significantly increase throughput by perform-
ing more dominance tests in parallel.

6.3.2 The Correlated Case
In the second experiment, we compute the skyline on data

that favors the CPU-based implementation. If the computa-
tional effort per input tuple is very low, aggregated compute

2http://www.pubzone.org/pages/publications/
showWiki.do?task=showComment&commentId=201
&publicationId=298353&versionId=298378

power is no longer the key criteria for a fast execution of
the algorithm and the CPU will be faster than the FPGA.
This is the case, when the dimensions of the input tuples
are strongly correlated, i.e., when a tuple is “good” in one
dimension, it is likely to be “good” also in the other dimen-
sions. As a result, the skyline is very small, e.g., in this
experiment, the skyline consists of only 135 tuples, which
corresponds to a density of 0.013%.

In Figure 17, the CPU-based version of BNL is faster than
the FPGA-based one because the upper bound for through-
put is also higher for the CPU than for the FPGA due to the
faster memory subsystem (DDR3 plus caches versus DDR2
and no caches). The upper bounds are depicted in the figure
for both CPU and FPGA by a dashed line and a dotted line,
respectively. These bounds were computed using a data set
where the first input tuple is the only skyline tuple, which
eliminates all other tuples. This results in a minimal num-
ber of tuple comparisons of n − 1, where n is the number
of input tuples, which is in line with the known best case
complexity of O(n) for BNL [12].

0 4 8 16 32 64 128 256
106

107

108

109

18.36 ms

60.73 ms

BNL: Software FPGA

Ideal: Software FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 17: Correlated distr. → tuples/second.

For the CPU version, throughput decreases slightly with
a larger window. The reason for this is that a larger win-
dow means that more unnecessary tuple comparisons are
performed (for all of those potential skyline tuples that will
later be eliminated). By contrast, in the FPGA case, the ad-
ditional comparisons due to the larger window do not hurt
since they are computed in parallel. Therefore throughput
increases until we hit the limits of our memory subsystem.

While we cannot beat the CPU skyline operator with our
FPGA implementation when the skyline tuples have a very
low density, it is important to note that in absolute num-
bers both versions are very fast when dealing with correlated
data. For instance, the above query takes 18.36 ms on the
CPU and 60.73 ms on the FPGA. Thus, for many use cases
with a reasonable number of input tuples, when the data is
strongly correlated, this performance difference will not be
very noticeable.

6.3.3 The Anti-Correlated Case
This experiment is the opposite of the previous one. Here,

the dimensions of the input tuples are anti-correlated mean-
ing that a tuple, which is “good” in one dimensions, is likely
to be “bad” in the other dimensions. In this case, a lot more
tuples are part of the skyline, e.g., now the skyline consists
of 202,701 tuples, which corresponds to a density of 19.80%.

Observe that the computation of the skyline is now sig-

0 4 8 16 32 64 128 256
102

103

104

105

567 sec

32 sec

BNL Software

BNL FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 18: Anti-correlated distr. → tuples/second.

nificantly more expensive, e.g., the best execution time of
the CPU-based version has gone from 18.36 milliseconds to
almost 10 minutes. The slowdown can be explained by the
increase in number of comparisons since all skyline tuples
have to be pairwise compared with each other. The number
of comparisons among skyline tuples alone is 1

2
s(s+1), where

s is the size of the skyline—hence, the worst case complex-
ity for BNL is O(n2) [12]. With this many comparisons—
we measured an average of ∼25, 000 comparisons per input
tuple—the skyline query becomes highly compute-bound.
However, in the FPGA case, the cost of computation can be
reduced with every additional shifter list node.

6.4 The Curse of Dimensionality
Besides data distribution also the number of dimensions

severely affect performance in skyline queries. Increasing the
number of dimensions of the input tuples naturally increases
the size of the skyline. For example, in an experiment with
102,400 15-dimensional input tuples following a random dis-
tribution, the density of the skyline was 74.86%. As can be
seen in Figure 19, the FPGA achieved a 19X improvement
over the software algorithm in this case.

0 4 8 16 32 64 128 256
102

103

104

105

133 sec

7 sec

BNL Software

BNL FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 19: 15 dimensions (random distribution).

6.5 FPGA versus Multicore Server
The previous experiments demonstrated how our FPGA-

based implementation in most cases significantly outper-
formed the CPU-based BNL implementation. In this sec-
tion, we compare our FPGA results to PSkyline [21], which
is the fastest published skyline algorithm for multicore ar-
chitectures. We ran PSkyline on the same data sets as in

the previous experiments that consisted of 1,024,000 seven-
dimensional input tuples following a random, correlated, and
anti-correlated distribution. We measured the performance
of PSkyline on the 8-core (plus hyper-threading) Intel Xeon
server used previously, as well as on a 64-core PowerEdge
R815 Server from Dell. The FPGA was configured with 192
shifter list nodes. The results are depicted in Table 1.

Distribution FPGA Intel Xeon PowerEdge

Random 0.445 sec 0.722 sec 0.433 sec
Correlated 0.061 sec 0.003 sec 0.005 sec
Anti-correlated 31.633 sec 55.104 sec 18.574 sec

Table 1: Execution time: FPGA versus multicore.

On the Intel Xeon server best results were obtained using
16 threads respectively, and on the PowerEdge server using
64 threads. Notice that the performance for the compute-
intensive workload (anti-correlated) we get out of our $750
(academic price) FPGA is not so far from the performance
we measured on the $12,000 PowerEdge 64-core server.

It is also important to note that with 192 shifter list nodes
a throughput of ∼32, 000 tuples/second is reached on the
FPGA. This is almost two orders of magnitude below the
upper bound of ∼16, 000, 000 tuples/second (derived from
the performance of the memory subsystem). Therefore there
is still a lot of leeway to further increase performance by
adding more shifter list nodes. The number of shifter list
nodes that we can put on an FPGA is limited by FPGA
real estate. Therefore, a larger FPGA configured with a few
thousand shifter list nodes would again dramatically change
the picture.

7. OTHER ALGORITHMS (SKETCHES)
While we have applied shifter lists successfully to various

other database tasks, it is beyond the scope of this paper
to present these implementations in detail. Nevertheless, in
this section, we want to at least briefly sketch how shifter
lists could be applied to two other common database oper-
ators: (i) frequent item computation and (ii) top-k queries.

Frequent Item Computation. Many data mining tech-
niques start their data analysis by first looking at the most
frequently occurring items in a given input data set. In [25],
the computation of frequent items was solved on an FPGA
with a variation of the Space-Saving algorithm [17], which
achieved three times higher throughput as the best known
software results. Out of the three ad-hoc implementations
discussed in [25], the best one (Pipeline) can elegantly be
expressed using the shifter list abstraction.

The Space-Saving algorithm works as follows: n bins are
used to count the frequencies of the most frequent items.
For every input, item the count of the corresponding bin is
incremented if such a bin exists. Otherwise, the bin with the
lowest count is evicted and assigned to the new item, which
then inherits the incremented count of the evicted one [17].

For the parallel version of Space-Saving with shifter lists,
each bin is mapped to a shifter list node and we stream input
items through the list, just as we did for skyline queries. In
the evaluation phase, on each node we check if the node-local
input item matches the respective bin. If this is the case, we
simply increment the count and stop forwarding the item to
the subsequent shifter list node.

If the entire shifter list does not contain a matching bin,
we need to find the bin with the lowest count for eviction.
Finding that bin becomes trivial if we use the shift phase
to ensure that the bin with the minimum count is always
located at the rightmost shifter list node. To this end, the
bins of two adjacent shifter list nodes are compared after the
evaluation phase. If necessary, these bins are swapped in the
following shift phase to ensure that the bin with the lowest
count always resides at the rightmost shifter list node.

Top-k Queries. We may also use a shifter list for general
top-k selection queries that rank results according to some
compound scoring function over the attributes of a tuple.
For this purpose, we need to modify the shift and evalua-
tion phases from the frequent item algorithm only slightly:
Instead of counts, we now compute scores of tuples and store
those in the bins. Likewise, we need to modify the swap con-
dition such that it is based on scores now. Notice how this
swapping mechanism will eventually sort the shifter list and
is essentially equivalent to a parallel version of bubble sort.

8. CONCLUSIONS
In this paper, we presented a new data structure—a shifter

list—for FPGAs that helps in the parallelization of several
related database tasks. Shifter lists comprise both data stor-
age and computation in the sense that replicated logic units
are directly woven into the storage resources of the data
structure. This enables very high degrees of parallelism. In
addition, the pipelined architecture of a shifter list exhibits
very good scalability and enforces causality guarantees that
for many algorithms makes parallelization easy and effective.

Out of several related database tasks suitable for an im-
plementation with shifter lists on an FPGA, we chose sky-
line queries as one possible use case. The compute-intensive
nature of skyline queries makes them attractive to be off-
loaded to a dedicated co-processor such as an FPGA. Our
experiments show that our implementation on a rather low-
end FPGA significantly outperforms a single-threaded soft-
ware version of BNL on a CPU-based system and delivers
performance results close to those obtained from running a
highly-optimized parallel skyline algorithm (PSkyline [21])
on a modern multicore server using all available 64 cores.

9. REFERENCES
[1] Krste Asanovic et al. A View of the Parallel

Computing Landscape. Commun. ACM, 2009.

[2] Ray Bittner. The Speedy DDR2 Controller For
FPGAs. In ERSA, 2009.

[3] Shekhar Borkar and Andrew A. Chien. The Future of
Microprocessors. Commun. ACM, 2011.

[4] Stephan Börzsönyi, Donald Kossmann, and Konrad
Stocker. The Skyline Operator. In ICDE’01,
Heidelberg, Germany, 2001.

[5] Sung-Ryoung Cho et al. VSkyline: Vectorization for
Efficient Skyline Computation. SIGMOD Rec., 2010.

[6] Eric S. Chung, James C. Hoe, and Ken Mai. CoRAM:
An In-Fabric Memory Architecture for FPGA-based
Computing. In FPGA’11, Monterey, CA, USA, 2011.

[7] Convey Computer Corp.
http://www.conveycomputer.com.

[8] Christopher Dennl, Daniel Ziener, and Jürgen Teich.
On-the-fly Composition of FPGA-Based SQL Query

Accelerators Using A Partially Reconfigurable Module
Library. In FCCM’12, Toronto, ON, Canada, 2012.

[9] Hadi Esmaeilzadeh et al. Dark Silicon and the End of
Multicore Scaling. In ISCA’11, San Jose, CA, USA,
2011.

[10] Philip W. Frey et al. A Spinning Join That Does Not
Get Dizzy. In ICDCS’10, Genova, Italy, 2010.

[11] Kun Gao et al. Simultaneous Pipelining in QPipe:
Exploiting Work Sharing Opportunities Across
Queries. In ICDE’06, Atlanta, GA, USA, 2006.

[12] Parke Godfrey, Ryan Shipley, and Jarek Gryz.
Maximal Vector Computation in Large Data Sets. In
VLDB’05, Trondheim, Norway, 2005.

[13] David Greaves and Satnam Singh. Kiwi: Synthesis of
FPGA Circuits from Parallel Programs. In FCCM’08,
2008.

[14] Shan Shan Huang et al. Liquid Metal:
Object-Oriented Programming Across the
Hardware/Software Boundary. In European
Conference on Object-Oriented Programming, Paphos,
Cyprus, 2008.

[15] Hiroaki Inoue, Takashi Takenaka, and Masato
Motomura. 20Gbps C-Based Complex Event
Processing. In FPL’11, Chania, Crete, Greece, 2011.

[16] Dirk Koch and Jim Torresen. FPGASort: A High
Performance Sorting Architecture Exploiting Run-time
Reconfiguration on FPGAs for Large Problem Sorting.
In FPGA’11, Monterey, CA, USA, 2011.

[17] Ahmed Metwally, Divyakant Agrawal, and Amr El
Abbadi. An integrated efficient solution for computing
frequent and top-k elements in data streams. ACM
Transactions on Database Systems (TODS), 2006.

[18] Roger Moussalli et al. Massively Parallel XML Twig
Filtering Using Dynamic Programming on FPGAs. In
ICDE’11, Hannover, Germany, 2011.

[19] René Müller, Jens Teubner, and Gustavo Alonso.
Glacier: A Query-to-Hardware Compiler. In
SIGMOD’10, Indianapolis, IN, USA, 2010.

[20] Netezza Corp.
http://www.redbooks.ibm.com/abstracts/redp4725.html.

[21] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha
Kim, and Hyeonseung Im. Parallel Skyline
Computation on Multicore Architectures. In ICDE’09,
Shanghai, China, 2009.

[22] Mohammad Sadoghi et al. Efficient Event Processing
through Reconfigurable Hardware for Algorithmic
Trading. In VLDB’10, Singapore, 2010.

[23] Satnam Singh. Computing without Processors.
Commun. ACM, 2011.

[24] Jens Teubner and René Müller. How Soccer Players
Would do Stream Joins. In SIGMOD’11, Athens,
Greece, 2011.

[25] Jens Teubner, René Müller, and Gustavo Alonso.
FPGA Acceleration for the Frequent Item Problem. In
ICDE’10, Long Beach, CA, USA, 2010.

[26] R. Torlone and P. Ciaccia. Which Are My Preferred
Items? In Workshop on Recommendation and
Personalization in eCommerce (RPEC), Malaga,
Spain, 2002.

[27] Guozhang Wang et al. Behavioral Simulations in
MapReduce. In VLDB’10, Singapore, 2010.

