
The VLDB Journal manuscript No.
(will be inserted by the editor)

Sorting Networks on FPGAs

Rene Mueller · Jens Teubner · Gustavo Alonso

Received: date / Accepted: date

Abstract Computer architectures are quickly chang-

ing toward heterogeneous many-core systems. Such a

trend opens up interesting opportunities but also raises

immense challenges since the efficient use of hetero-

geneous many-core systems is not a trivial problem.

Software-configurable microprocessors and FPGAs add

further diversity but also increase complexity. In this

paper, we explore the use of sorting networks on field-

programmable gate arrays (FPGAs). FPGAs are very

versatile in terms of how they can be used and can

also be added as additional processing units in stan-

dard CPU sockets. Our results indicate that efficient

usage of FPGAs involves non-trivial aspects such as

having the right computation model (a sorting network

in this case); a careful implementation that balances all

the design constraints in an FPGA; and the proper in-

tegration strategy to link the FPGA to the rest of the

system. Once these issues are properly addressed, our

experiments show that FPGAs exhibit performance fig-

ures competitive with those of modern general-purpose

CPUs while offering significant advantages in terms of

power consumption and parallel stream evaluation.

Keywords Sorting Networks · FPGA · Hardware

Accelerators

1 Introduction

Taking advantage of specialized hardware has a long

tradition in data processing. Some of the earliest efforts

involved building entire machines tailored to database

R. Mueller
Systems Group, Department of Computer Science

ETH Zurich, Switzerland

E-mail: rene.mueller@inf.ethz.ch
http://www.systems.ethz.ch/

engines [9]. More recently, graphic processors (GPUs)

have been used to efficiently implement certain types of

operators [13; 14].

Parallel to these developments, computer architec-

tures are quickly evolving toward heterogeneous many-

core systems. These systems will soon have a (large)

number of processors [18] and the processors will not

be identical. Some will have full instruction sets, others

will have reduced or specialized instruction sets; they

may use different clock frequencies or exhibit differ-

ent power consumption; floating point arithmetic-logic

units will not be present in all processors; and there will

be highly specialized cores such as field-programmable

gate arrays (FPGAs) [15; 24]. An example of such a

heterogeneous system is the Cell Broadband Engine,

which contains, in addition to a general-purpose core,

multiple special execution cores (synergistic processing

elements, or SPEs).

In this paper, we focus our attention on FPGAs as

one of the more different elements that can be found

in many-core systems. FPGAs are (re-)programmable

hardware that can be tailored to almost any applica-

tion. However, it is as yet unclear how the potential

of FPGAs can be efficiently exploited. Our contribu-

tion with this work is to first study the design trade-

offs encountered when using FPGAs for data processing

tasks. In particular, we look at sorting networks that are

well suited for an implementation in hardware. Second,

we provide a set of guidelines for how to make design

choices such as:

(1) FPGAs have relatively low clock frequencies. Näıve

designs will exhibit a large latency and low through-

put. We show how this can be avoided by a care-

ful design using synchronous and asynchronous cir-

2

cuits. While the former increase throughput the lat-

ter reduce latency.
(2) Asynchronous circuits are notoriously more diffi-

cult to design than synchronous ones. This has led

to a preference for synchronous circuits in studies

of FPGA usage [15]. Using the example of sorting

networks, we illustrate systematic design guidelines

to create asynchronous circuits that solve database

problems.
(3) FPGAs provide inherent parallelism whose only lim-

itation is the amount of chip space to accommo-

date parallel functionality. We show how this can

be managed and present how the chip space con-

sumption of different implementation can be esti-

mated.
(4) FPGAs can be very useful as database co-processors

attached to an engine running on conventional CPUs.

This integration is not trivial and opens up several

questions on how an FPGA can fit into the com-

plete architecture. In two use-cases, we demonstrate

an embedded heterogeneous multi-core setup. In

the first use-case we connect the custom logic over a

bus to an embedded CPU. The second uses a tighter

integration to the CPU, implemented though a di-

rect connection to the CPU’s execution pipeline.

For both approaches study the trade-offs in FPGA

integration design.
(5) FPGAs are attractive co-processors because of the

potential for tailored design and parallelism. We

show that FPGAs are also very interesting in re-

gard to power consumption as they consume sig-

nificantly less power, yet provide at a performance

comparable to the one of conventional CPUs. This

makes FPGAs good candidates for multi-core sys-

tems as cores where certain data processing tasks

can be offloaded.

To illustrate the trade-offs for system integration

we present two applications scenarios that are based on

sorting networks. The first is the implementation of a

median operator. In the second use-case we evaluate a

hardware/software co-design on a FPGA. A 8-element

sorting co-processor is implemented in the FPGA logic

and combined with a merge sort algorithm running

on the embedded CPU. Through an extension of the

CPU’s instruction set we show how the FPGA acceler-

ator can be used in heterogeneous setup together with

existing CPU code. Our experiments show that FPGAs

can clearly be a useful component of a modern data pro-

cessing system, especially in the context of multi-core

architectures.

Outline. We start our work by setting the context with

related work (Section 2). After introducing the nec-

essary technical background on FPGAs in Section 3

and sorting networks in Section 4, we show how to

implement sorting networks on an FPGA (Section 5).

We evaluate several implementations of different sort-

ing networks in Section 6. While this allows an in-depth

analysis of FPGA-specific implementation aspects it

does not provide any insight of how the FPGA be-

haves in a complete system. We make up for that in

Sections 7 and 8 where we illustrate two complete use-

cases. In Section 7 we illustrate the implementation of

a median operator using FPGA hardware (Section 7).

The second use-case (Section 8) consists of a sorting

co-processor that is directly connected to the execution

pipeline of the embedded PowerPC CPU. We finally

wrap up in Section 9.

2 Related Work

A number of research efforts have explored how databases

can use the potential of modern hardware architectures.

Examples include optimizations for cache efficiency (e.g.,

[23]) or the use of vector primitives (“SIMD instruc-

tions”) in database algorithms [37]. The QPipe [17]

engine exploits multi-core functionality by building an

operator pipeline over multiple CPU cores. Likewise,

stream processors such as Aurora [1] or Borealis [2]

are implemented as networks of stream operators. An

FPGA with database functionality could directly be

plugged into such systems to act as a node of the oper-

ator network.

The shift toward an increasing heterogeneity is al-

ready visible in terms of tailor-made graphics or net-

work CPUs, which have found their way into commod-

ity systems. Govindaraju et al. demonstrated how the

parallelism built into graphics processing units can be

used to accelerate common database tasks, such as the

evaluation of predicates and aggregates [13].

GPUTeraSort [14] parallelizes a sorting problem over

multiple hardware shading units on the GPU. Within

each unit, it achieves parallelization by using SIMD

operations on the GPU processors. The AA-Sort [20],

CellSort [11], and MergeSort [7] algorithms are very

similar in nature, but target the SIMD instruction sets

of the PowerPC 970MP, Cell, and Intel Core 2 Quad

processors, respectively.

The use of network processors for database process-

ing was studied by Gold et al. [12]. The particular bene-

fit of such processors for database processing is their en-

hanced support for multi-threading. We share our view

on the role of FPGAs in upcoming system architectures

with projects such as Kiwi [15] or Liquid Metal [19].

Both projects aim at off-loading traditional CPU tasks

to programmable hardware. Mitra et al. [24] recently

outlined how FPGAs can be used as co-processors in

3

an SGI Altix supercomputer to accelerate XML filter-

ing.

The advantage of using customized hardware as a

database co-processor is well known since many years.

For instance, DeWitt’s direct system comprises of a

number of query processors whose instruction sets em-

brace common database tasks such as join or aggregate

operators [9]. Similar ideas have been commercialized

recently in terms of database appliances sold by, e.g.,

Netezza [28], Kickfire [21], or XtremeData [36]. All of

them appear to be based on specialized, hard-wired ac-

celeration chips, which primarily provide a high degree

of data parallelism. Our approach can be used to exploit

the reconfigurability of FPGAs at runtime. By repro-

gramming the chip for individual workloads or queries,

we can achieve higher resource utilization and imple-

ment data and task parallelism. By studying the foun-

dations of FPGA-assisted database processing in detail,

this work is an important step toward our goal of build-

ing such a system.

FPGAs are being successfully applied in signal pro-

cessing, and we draw on some of that work in Sections 7.

The particular operator that we use in Section 7 is a

median over a sliding window. The implementation of

a median with FPGAs has already been studied [33],

but only on smaller values than the 32 bit integers con-

sidered in this paper. Our median implementation is

similar to the sorting network proposed by Oflazer [29].

An early version of this work was published in [26].

This article contains significant contributions beyond

[26]. Most importantly, a general discussion of even-

odd merging and bitonic sorting networks was added.

Furthermore, a detailed model describing the chip area

utilization of the different designs is presented and eval-

uated. In this article, all implementations and measure-

ments are based on a new Virtex-5 FPGA chip instead

of an older Virtex-II Pro chip. Next to the median oper-

ator which served as an example use-case in [26] another

use-case is added that illustrates the how sorting on a

CPU can be accelerated. This further illustrates how an

FPGA-based sorting co-processor can be directly con-

nected to the execution pipeline of a CPU.

3 Overview of FPGAs

Field-programmable gate arrays are re-programmable

hardware chips for digital logic. FPGAs are an array

of logic gates that can be configured to construct arbi-

trary digital circuits. These circuits are specified using

either circuit schematics or hardware description lan-

guages such as Verilog or VHDL. A logic design on an

PowerPC 440

core 0
PPC440 X0Y0

PowerPC 440

core 1

PPC440 X0Y1

Fig. 1 Simplified FPGA architecture: 2D array of CLBs each

consisting of 2 slices. IOBs connect the FPGA fabric to the pins
of the chip. Additionally available in silicon are: two PowerPC

cores, BRAM blocks and multipliers .

PowerPC cores 2

Slices 20,480

36 kbit BRAM blocks 298 (=10,728 kbit)
25×18-bit multipliers 320

I/O pins 840

Table 1 Characteristics of Xilinx XC5VFX130T FPGA.

FPGA is also referred to as a soft IP-core (intellec-

tual property core). Existing commercial libraries pro-

vide a wide range of pre-designed cores, including those

of complete CPUs. More than one soft IP-core can be

placed onto an FPGA chip.

3.1 FPGA Architecture

Figure 1 sketches the architecture of the Xilinx Virtex-5

FX130T FPGA used in this paper [34; 35]. The FPGA

is a 2D array of configurable logic blocks (CLBs). Each

logic block consists of 2 slices that contain logic gates

(in terms of lookup tables, see below) and a switch box

that connects slices to an FPGA interconnect fabric.

In addition to the CLBs, FPGA manufacturers pro-

vide frequently-used functionality as discrete silicon com-

ponents (hard IP-cores). Such hard IP-cores include

block RAM (BRAM) elements, each containing 36 kbit

fast storage, as well as 25×18-bit multiplier units.

A number of Input/Output Blocks (IOBs) link to

pins, e.g., used to connect the chip to external RAM

or networking devices. Two on-chip PowerPC 440 cores

4

LUT

A6
A5
A4
A3
A2
A1

O6
O5

D

clk
CE

Q

Flip-flop

≥1

carry-in

carry-out

AQ

A

AMUX

Fig. 2 Simplified LUT–Flip-flop combination of a Virtex-5 slice.
A slice contains four of these structures.

are directly wired to the FPGA fabric and to the BRAM

components. Table 1 shows a summary of the character-

istics of the FPGA used in this paper. Each PowerPC

core has dedicated 32 kB data and instruction caches.

The caches have similar latency as the BRAM mem-

ory and are intended to speed-up accesses to external

memory with longer latency. The superscalar cores im-

plement the 32-bit fixed-point subset of the PowerPC

architecture. The embedded PowerPC 440 cores are also

used in the IBM Blue Gene/L supercomputer where

they perform all non-floating point calculations.

Configurable Logic Blocks (CLBs) are further split

into slices. On the Virtex-5 each CLB is made up of two

slices. Each slice contains four lookup tables (LUTs) and

four Flip-flops. Figure 2 depicts one of the four LUT–

Flip-flop configurations a Virtex-5 slice. LUTs can im-

plement arbitrary Boolean-valued functions that can

have up to six independent Boolean arguments. Tradi-

tionally, a LUT has one output. On the Virtex-5 a LUT

has two outputs (identified as O5 and O6 in Figure 2).

A Virtex-5 LUT either implements a single function on

output O6 that uses up to six inputs or, alternatively,

two functions on O5 and O6 that in total use five in-

puts. The outputs O5 and O6 are fed to two multiplex-

ers that configure which signals are fed to the output

of the slice and to the flip-flop. The flip-flop acts as a

register that can store one single bit. The design of a

slice provides dedicated elements for carry logic that

allow for efficient implementation of, e.g., adders and

comparators. The carry logic connects the LUTs inside

a slice and different slices in an FPGA column.

Certain LUTs on the Virtex-5 can also be used as a

16- or 32-element shift register or as 32× 1-bit or 64×
1-bit RAM cells. Memory instantiated through LUTs

configured as RAM cells is referred to as distributed

memory. In contrast to the aforementioned block RAM

(BRAM) distributed memory can be instantiated on

finer scale, however, at a significantly lower density.

3.2 Hardware Setup

FPGAs are typically available pre-mounted on a cir-

cuit board that includes additional peripherals. Such

circuit boards provide an ideal basis for the assessment

we perform here. Quantitative statements in this report

are based on a Xilinx ML510 development board with a

Virtex-5 FX130T FPGA chip. Relevant for the discus-

sion in this paper are the DDR2 DIMM socket which

we populated with two 512 MB RAM modules. For ter-

minal I/O of the software running on the PowerPC, a

RS-232 UART interface is available. The board also in-

cludes a gigabit Ethernet port.

The board is clocked at 100 MHz. From this external

clock additional clocks are generated for the various

clock regions on the chip and for the external external

I/O connectors, such as the DDR RAM. The PowerPC

cores are clocked at 400 MHz.

4 Sorting Networks

Some of the most efficient traditional approaches to

sorting are also the best options in the context of FPGAs.

Sorting networks are attractive in both scenarios, be-

cause they (i) do not require control flow instructions

or branches and (ii) are straightforward to parallelize

(because of their simple data flow pattern). Sorting net-

works are suitable for relatively short sequences whose

length is known a priori. Sorting networks have been

extensively studied in literature. For a detailed treat-

ment see [5; 8; 22]. On modern CPUs, sorting networks

suggest the use of vector primitives, which has been

demonstrated in [11; 14; 20].

The circuits of the sorting networks are composed

of horizontal wire segments and vertical comparators.

We represent the comparator elements using the widely

known a Knuth notation . The unsorted elements are

applied at the left, one element per wire (Figure 8). The

sorted output then appears on the right side. Wire seg-

ments connect the different compare-and-swap stages.

Each wire segment can transfer an m-bit number. The

comparator elements perform a two-element sort, such

that the smaller of the two input values leaves the ele-

ment on the right side through the upper output wire

and the larger value through the lower wire.

In the following, we describe two systematic meth-

ods to build sorting networks. The first method is based

on Even-odd Merging networks, the second on Bitonic

Merging network. Both were proposed by K. E. Batcher

in [5].

5

b0

a0

c1

c0

Eos(2)

(a) Basis

b0
b1

bN−1

...
Eos(N)

a0
a1

aN−1

...
Eos(N)

Eom(N)

c0
c1

cN−1

...

cN
cN+1

c2N−1

...

...

...

EOS(2N)

(b) Recursion

Fig. 3 Recursive definition of even-odd sorter Eos(2N).

4.1 Even-odd Merging Networks

Even-odd merging networks are built following a re-

cursive definition that is assumed to be efficient when

number of elements N = 2p is a power of two [22]. In

this paper, we use the exponent p to describe the size

of a network. At the heart of the networks are even-

odd merging elements that combine two sorted subse-

quences a0 ≤ · · · ≤ aN−1 and b0 ≤ · · · ≤ bN−1 into a

single sorted sequence c0 ≤ · · · ≤ cN−1 ≤ cN ≤ · · · ≤
c2N−1. Using these merging elements a sorting network

can be built recursively as shown in Figure 3. The input

sequence of size 2N is split into two sequences of size

N . Each of these sequences is sorted by an even-odd

sorter Eos(N). The sorted outputs are then merged

using an even-odd merger Eom(N) of size N . The re-

cursive definition of Eos(N) is depicted in Figure 3(b).

Figure 3(a) shows the basis of the recursion where a

single comparator is used to sort the two elements.

The even-odd merging elements Eom(N) that com-

bine the two sorted sequences of length N are defined

in a similar recursive form. The basis of the recur-

sion Eom(1) is a single comparator as shown in Fig-

ure 4(a). The recursion step illustrated in Figure 4(b)

works as follows: Given are two sorted input sequences

a0, a1, . . . , a2N−1 and b0, b1, . . . , b2N−1 for an even-odd

merger Eom(2N). The N even-indexed elements a0, a2,

. . . , a2k, . . . , a2N−2 are mapped to the a-inputs of the

“even” merger. The N odd-indexed elements a1, a3, . . . ,

a2k+1, . . . , a2N−1 are mapped to the a-inputs of the

“odd” merger. The b inputs are routed similarly. As

it can be easily shown the inputs of the even and odd

mergers are sorted, hence, each produces a sorted se-

quence at the output. The two sequences are then com-

bined by an array of 2N − 1 comparators as shown in

Figure 4(b). By unrolling the recursion of Eos(N) and

Eom(N) a sorting network consisting of comparators is

created. An example of an even-odd merging network

that is able to sort eight inputs is shown in Figure 8(a).

b0

a0

c1

c0

Eom(1)

(a) Basis

a0
a1
a2

a2N−2
a2N−1

b0
b1
b2

b2N−2
b2N−1

even
Eom(N)

c0
c1
c2
c3...

c2N−2
c2N−1

...

...

odd
Eom(N)

c2N
c2N+1
c2N+2
c2N+3...
c4N−3
c4N−2
c4N−1

...

...

Eom(2N)

(b) Recursion

Fig. 4 Recursive definition of Even-odd merger Eom(N) for 2×
N elements.

z1

z0

y1

y0

Bs(1)

(a) Basis

z0
z1
z2

zN−1
zN

zN+1
zN+2

z2N−1

...
...

...
...

Bs(N)

Bs(N)...

...

y0
y1
y2

yN−1
yN
yN+1
yN+2

y2N−1

Bs(2N)
b

it
o
n

ic

so
rt

ed

(b) Recursion

Fig. 5 Bitonic Sorters produce a sorted output from a bitonic

input sequence.

4.2 Bitonic Merging Networks

In CellSort [11] and GPUTeraSort [14] sorting is based

on Bitonic Merging networks. A bitonic sequence can

be regarded as a partially sorted list which consists of

two sorted monotonic subsequences, one ascending the

other descending. For example, 1, 4, 6, 5, 2 is a bitonic

sequence whereas 1, 4, 6, 5, 7 is not.

A bitonic sequence can be transformed into a sorted

monotonic sequence using a Bitonic Sorter [5]. Fig-

ure 5 shows the recursive definition of a bitonic sorter

Bs(2N) that transforms the 2N bitonic input sequence

z0, z1, . . . , z2N−1 into a sorted output sequence.

The reason for introducing bitonic sequences in the

first place is that they can be easily generated from two

two sorted sequences a0, . . . , aN−1 and b0, . . . , bN−1. It

can be shown that concatenating a0, . . . , aN−1 and the

sequence bN−1, . . . , b0, i.e., the a sequence with the re-

versed b sequence, yields a bitonic sequence. This bitonic

sequence can then be sorted by a bitonic sorter Bs(2N).

This process generates a network that merges two sorted

input sequences of length N . The resulting Bitonic Merg-

ing network is shown in Figure 6(a). Using the fact that

reversing a bitonic circuit is also bitonic the circuit can

be redrawn without wire-crossings in Figure 6(b).

6

a0
a1

aN−2
aN−1

b0
b1

bN−2
bN−1

...

...
...

...

Bs(N)

Bs(N)

y0
y1

yN−1

yN
yN+1

y2N−1

...

...

Bm(N)

so
rt

ed
so

rt
ed

so
rt

ed

(a) Merge network using two Bitonic Sorters and

flipping the b sequence.

a0
a1

aN−2
aN−1

b0
b1

bN−2
bN−1

...

...
...

...

Bs(N)

Bs(N)

y0
y1

yN−1

yN
yN+1

y2N−1

...

...

Bm(N)

so
rt

ed
so

rt
ed

so
rt

ed

(b) Equivalent circuit without wire-crossings.

Fig. 6 Sorting network as recursive definition of a merging net-

work based on Bitonic Sorters.

x0 y0

x1 y1

x2 y2

x3 y3

(a) Bubble Sort

x0 y0

x1 y1

x2 y2

x3 y3

(b) Insertion Sort

Fig. 7 Sorting networks based on Insertion Sort and Bubble Sort

are equivalent.

Following the divide-and-conquer approach bitonic

merger in Figure 6 can be recursively applied producing

a complete sorting network. Such a network is shown

in Figure 8(b) for size N = 8.

4.3 Bubble and Insertion Sort Networks

Sorting networks can also be generated from traditional

sorting algorithms. Figure 7 shows two networks that

are generated from Bubble and Insertion Sort. When

comparing the two circuits diagrams 7(a) and 7(b) it

can be seen that the resulting networks are structurally

equivalent. Like their algorithmic counterparts these

sorting networks are inefficient. Networks generated by

this approach require many comparator elements.

4.4 Sorting Networks Comparison

In general, the efficiency of a sorting network can be

measured in the number of comparators required and

the number of stages, i.e., steps, through the sorting

network. Table 2 shows the resulting number of com-

parators C(N) of a sorting network of size N and S(N)

the number of stages.

Bitonic Merge and Even-odd Merge sorters have the

same depth and the same asymptotic complexity. How-

ever, asymptotic behavior is of little interest here, as

we are dealing with relatively small array sizes. An in-

teresting result was published in [3] that proposes a

sorting network with a better asymptotic complexity

C(N) = O
(
N ln(N)

)
and depth S(N) = O

(
ln(N)

)
.

However, the constant dropped in the O-notation is too

big and thus renders it unsuitable for practical sorting

networks [22].

Despite requiring more comparators bitonic merge

sorters are frequently used because they have two im-

portant properties: (1) all signal paths have the same

length and (2) the number of concurrent compares for

each stage is constant. For example, in the Bitonic Merg-

ing network in Figure 8(b) every wire undergoes six

compares. In contrast, consider the the uppermost wire

of the even-odd merger sorter in Figure 8(a). The path

x0 y0 passes only through three comparator stages,

whereas x2 y2 passes through all 6 stages. This has

the disadvantage that different signal lengths must be

considered, for example, if the data is clocked through

the network, i.e., one stage every clock, additional regis-

ters may be necessary of buffering intermediate values.

In a bitonic merging network, N/2 compares are

present in each stage. For even-odd mergers the num-

ber is not constant. In Figure 8(b) for example, stage

1 has 4 concurrent compares, whereas stage 3 has only

2. A constant number of comparisons is useful to effi-

ciently implement the sorting network in a sequential

form using a fixed number of comparators M given by

the architecture, e.g., the SIMD vector length. A single

stage can be executed in N/(2M) steps. If a stage is

not using all operators, some comparators remain idle.

This fact is exploited in [11; 14].

5 Implementing Sorting Networks

The sorting networks shown in Section 4 can be imple-

mented in several ways using different technologies. In

this context we study two implementations in FPGA

hardware and a CPU-based implementation. For the

hardware variant we differentiate between three types of

circuits: asynchronous and a synchronous and pipelined

implementations. Before diving into the implementa-

tion details we first discuss the key properties of these

circuit types.

7

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

(a) Even-odd Merging Network

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

(b) Bitonic Merging Network

Fig. 8 Sorting networks for 8 elements.

bubble/insertion even-odd merge bitonic merge

exact C(N) =
N(N−1)

2
C(2p) = (p2 − p + 4)2p−2 − 1 C(2p) = (p2 + p)2p−2

S(N) = 2N − 3 S(2p) =
p(p+1)

2
S(2p) =

p(p+1)
2

asymptotic C(N) = O(N2) C(N) = O
(
N log2(N)

)
C(N) = O

(
N log2(N)

)
S(N) = O(N) S(N) = O

(
log2(N)

)
S(N) = O

(
log2(N)

)
N = 8 C(8) = 28 C(8) = 19 C(8) = 24

S(8) = 13 S(8) = 6 S(8) = 6

Table 2 Comparator count C(N) and depth S(N) of different sorting networks of size N . For sizes N = 2p the exponent p is given.

in
p

u
t

o
u

tp
u

t

logic

stages: 1

latency: L

throughput: 1/L

(a) asynchronous

in
p

u
t

o
u

tp
u

t

lo
g
ic

lo
g
ic lo
g
ic

stages: 3

latency: 3/fclk

throughput: 1/2fclk

(b) synchronous

in
p

u
t

o
u

tp
u

t

lo
g
ic

lo
g
ic lo
g
ic

stages: 3

latency: 3/fclk

throughput: fclk

(c) fully pipelined

Fig. 9 Implementation approaches for digital circuits.

5.1 Asynchronous vs. Synchronous Pipelined Circuits

Asynchronous circuits are operated without a clock sig-

nal. They consist of combinatorial logic only. Figure 9(a)

illustrates the combinatorial logic as a cloud between a

pair of registers. Input signals are applied from a reg-

ister at the left. The signals travel through the combi-

natorial logic that comprises the sorting network. The

comparators are implemented primarily using FPGA

lookup tables (combinatorial logic). The signals travel

through the sorting stages without following a synchro-

nization signal such as a clock. At some predetermined

time instances the signals at the output are read and

stored in another register. The key characteristics of

asynchronous circuits is the absence of registers.

In asynchronous implementations of sorting networks

only one single N -set can reside in the network at any

given time. The next N -set can only be applied after

the output signals for the previous set are stored away

in a register following the sorting network. Hence, both

the latency and the issue interval are determined by the
length of the combinatorial signal path between the in-

put and the output of the sorting network. More pre-

cisely, they are given by the longest delay path L from

the any input to any output. The throughput of the

asynchronous design is 1/L N -sets per second. The path

delay is difficult to estimate in practice, as it involves

not only the delay caused by the logic gates themselves

but also the signal delay in the routing fabric. The max-

imum delay path L directly depends on the number

stages S(N) but also on the number of comparators

C(N) as they contribute to the routing pressure and

further increase latency. In Section 6 we measure the

propagation delay for different network sizes. For even-

odd merging network with N = 8 and m = 32 we mea-

sure L = 18 ns for the FX130T–2 chip. The throughput

of the asynchronous design is 1/L N -sets per second. For

the example circuit this translates into 56 M 8-sets/sec

which corresponds to a processing rate of 1.66 GB/s.

By introducing registers in the combinatorial cir-

cuit the length of the signal path can be broken up.

8

The computation of the circuit is thereby divided into

stages that are separated by registers (see Figure 9(b)).

The resulting circuit is called synchronous since a com-

mon clock is used to move the data through the net-

work from stage to stage at specific instants. Clearly,

both types perform the same computation, hence, the

combinatorial logic is conceptually identical. The cru-

cial difference are the registers. They require additional

space but have an interesting advantage.

A natural way is to place the register after each

stage in the sorting network. Since the path delays be-

tween registers are smaller than the delay of the en-

tire asynchronous network it can be clocked faster. The

highest possible clock frequency is now determined by

a shorter maximal path. The overall latency of the syn-

chronous circuit is S(N)fclk where fclk is the frequency

of the clock that drivers the registers. The registers can

be inserted arbitrarily in the combinatorial signal paths,

not necessarily at the end of each sorting stage, allow-

ing to trade-off the latency S(N)fclk with operational

clock speed fclk. In VLSI design this technique is known

as register balancing. In this work, we assume that reg-

isters are added after each comparator.

Note, that by introducing stage registers alone the

circuit does not necessarily become fully pipelined. In a

fully pipelined circuit a new input set can be applied ev-

ery clock cycle resulting in a throughput of fclk N -sets

per second. However, just adding a register at the out-

put of a comparator does not necessarily make it fully

pipelined. Additional register are required to buffer the

value on wires that are not processed between stages.

This is illustrated in Figure 9. The first wire in 9(b)

is not buffered by the second register stage. It seems

unnecessary as this signal is not involved in the in the

combinatorial logic of the second stage. While this saves

a flip-flop, now special care needs to be taken for timing

the signals. In order to have the signals line up correctly

at the output registers, the inputs have to be applied

during two consecutive cycles. When buffering every

signal as shown in 9(c) the circuit is fully pipelined,

i.e., the all signal path reaching the output register have

the same length and a new input can be applied at ev-

ery clock cycle. This is particularly relevant for even-

odd sorting networks as we will see later. The network

shown in Figure 11 can be clocked at fclk = 267 MHz on

our chip. Being fully-pipelined, this directly translates

into a data processing rate of 7.9 GB/s.

5.2 Implementing Comparators on FPGAs

The sorting network circuits shown in Section 4 can be

directly translated into digital circuits. The essential

component is the implementation of the comparator

in FPGA logic. The sorting network can then be built

by instantiating the required comparators and wiring

them up accordingly.

In the following we look at how the comparator can

be defined in a high-level hardware description language

VHDL. Then we study how the FPGA tool chain trans-

late this description and maps it to the FPGA primi-

tives shown in Figures 1 and 2. This allows us to analyze

the resource utilization on the chip.

Asynchronous Comparators. The complexity of the

comparator is given by the width of its inputs. For

this analysis we consider fixed-length m-bit integer val-

ues. The results we provide in this article are based on

m = 32 bit integers. In general, however, any m and

any comparison function can be used, e.g., double pre-

cision floats etc. In hardware, the choice of the data

type only affects the implementation of the compara-

tor not the sorting network itself. This is different from

sorting network realizations on GPUs and CPUs where

different types are provided in different configurations,

e.g., a compare-and-swap instruction is only provided

for integers but not for floating-point values.

We specify the behavior of the comparator element

in the VHDL hardware description language as follows

(where <= indicates a signal assignment):

entity comparator is

port (

a : in std_logic_vector(31 downto 0);

b : in std_logic_vector(31 downto 0);

min : out std_logic_vector(31 downto 0);

max : out std_logic_vector(31 downto 0));

end comparator;

architecture behavioral of comparator is

min <= a when a < b else b;

max <= b when a < b else a;

end behavioral;

The two conditional signal assignments are concur-

rent assignments, i.e., they describe the functional re-

lationship between the inputs and the outputs and can

be thought as being executed “in parallel”. The com-

ponent comparator is instantiated once for each com-

parator element in the sorting network. The vendor-

specific FPGA synthesis tools will then compile the

VHDL code, map it to device-primitives, place the prim-

itives on the 2D grid of the FPGA and finally compute

an efficient routing of the signal between the sites on

the chip.

Figure 10 shows the circuit for our Virtex-5 FPGA

generated by the Xilinx ISE 11.3 tool chain. The 32 bits

of the two inputs a and b are compared first (upper half

of the circuit), yielding a Boolean output signal c for

the outcome of the predicate a < b. Signal c drives

9

a

b

a < b

min(a, b)

max(a, b)

f6, f5

O6
O5

0
1

0 1

0 1

f6, f5

O6
O5

0
1

2 3

2 3

f6, f5

O6
O5

0
1

30 31

30 31

1

g6

O6

h6

O6

0

0

0

0

g6

O6

h6

O6

1

1

1

1

g6

O6

h6

O6

31

31

31

31

Fig. 10 FPGA implementation of an asynchronous 32-bit com-

parator requiring 80 LUTs (16 for evaluating a < b and 2× 32 to

select the minimum/maximum values).

2 × 32 LUTs configured as multiplexers that connect

the proper input lines to the output lines for min(a, b)

and max(a, b) (lower half of the circuit).

For the comparisons a < b, the LUTs are configured

to compare two bits of a and b each. As shown earlier

in Figure 2 the LUTs on the Virtex-5 chip can have

up to two outputs and can be connected to up to 5

common inputs. The two outputs are then connected

through the fast carry-multiplexers . This results in

a carry chain where the multiplexer selects the lower

input if O6 is high. Otherwise, the carry-multiplexer

selects the output O5 of the LUT. Therefore, the two

Boolean functions f5 and f6 implemented by the LUT

are

f6(ai, ai+1, bi, bi+1) =
(
āib̄i ∨ aibi

)(
āi+1b̄i+1 ∨ ai+1bi+1

)
f5(ai, ai+1, bi, bi+1) = āibi+1bi ∨ āi+1āibi ∨ āi+1bi+1 .

Here, ai and bi refers to the i-th of the two integers a

and b bit in little-endian order. f6 compares the two

bit positions (ai+1, ai) and (bi+1, bi). If they are not

equal f5 evaluates the predicate (ai+12i+1 + ai2
i) <

(bi+12i+1 + bi2
i).

The lower array of LUT pairs implement a multi-

plexers that select the right bits for the min- and the

max-output of the comparator element using the pred-

icate a < b. Let c the Boolean value of the comparison.

Then, the LUT g6 for the minimum-output is

g6(ai, bi, c) = aic ∨ bic̄

and for the maximum-output

h6(ai, bi, c) = bic ∨ aic̄ .

Resource Usage. From Figure 10 it can be seen that

a comparator which performs a compare-and-swap op-

eration of two m-bit numbers can be implemented us-

ing d5m/2e LUTs and dm/2e carry-multiplexers. Usually,

chip utilization is measured in the number of occupied

slices. The number of slices used for a design consisting

of a given number of LUTs depends on the packaging

strategy followed by the placer of the FPGA tool chain.

In a optimal packaging with maximum density where

all four LUTs in a slice are used (see Figure 2) in to-

tal d5m/8e FPGA slices are used for each comparator.

Thus, for m = 32 at least 20 slices are required for each

comparator. This results in an upper bound of 1,024

comparators that be placed on our Virtex-5 FX130T

chip. Note that in practice, however, the placer does

not use this maximum packing strategy. In general, not

every slice is fully occupied, i.e., all its LUTs are in

use. Sometimes is is more efficient to co-locate a LUT

with the input output block (IOBs) to the chip pins

in order to reduce routing distances and hence latency.

The slice usage can be even higher as the tool may be

forced to use LUTs as plain “route-through” elements

when it runs short on direct connection wires in the

interconnect fabric.

Latency of a Single Comparator. The FPGA im-

plementation in Figure 10 is particularly time efficient.

All lookup tables are wired in a way such that all table

lookups happen in parallel. Outputs are combined us-

ing the fast carry logic implemented in silicon for this

purpose. Ignoring routing delays for the moment the

latency of the circuit, i.e., the time until until output

signals “min” and “max” of the comparator are valid

after applying the inputs is given by sum of two LUTs

(one of the comparison chain and one multiplexer LUT)

and the propagation delay of the chain of d5m/2e carry-

multiplexer. From the Virtex-5 data sheet [34] the logic

delay (excluding routing in the network) is 0.89 ns for

m = 32.

Comparators for Floating Point Numbers. When

sorting floating point numbers the compare-and-swap

elements of the sorting network have to be replaced.

The logic used to evaluate the predicate a < b for two

floating point numbers is significantly different from

two integer values. Xilinx provides an IP core that im-

plements the a > b comparison for floating-point num-

bers. It supports the basic IEEE-754 single- and double-

precision format, however, without denormalized num-

bers (treated as zeros). Table 3 shows the number of

lookup tables used for a single compare-and-swap ele-

ment for different data types. The numbers are subdi-

vided into the logic used to evaluated to the predicate

a > b and the multiplexer logic to select the min/max

value. Since single-precision is also 32 bits wide the

multiplexer logic has the same complexity as the inte-

gers used in this paper. The single-precision comparison

a > b requires 108 Virtex-5 LUTs in total compared to

10

a > b min/max total

32-bit integer 16 LUTs 64 LUTs 80 LUTs

single precision float 44 LUTs 64 LUTs 108 LUTs

double precision float 82 LUTs 128 LUTs 210 LUTs

Table 3 Number of LUTs required for different comparator

types. The numbers are subdivided into the logic evaluating the
predicate and the logic that selects the min/max values based on

the predicate value.

the dm/2e = 16 LUTs for integers. For double-precision

210 LUTs are required.

5.3 Asynchronous Sorting Networks

The sorting network is implemented by instantiating

comparators and wiring them accordingly. As pointed

out earlier, there are no explicit stages and register that

buffer intermediate results. Instead, the comparator cir-

cuits (LUTs and carry-multiplexer) form a large net-

work of combinatorial logic.

We can provide a lower-bound for the chip area re-

quired for the entire sorting network. As pointed out in

the previous section, comparator elements require 5m/2

LUTs each, where m is the data width in bits. The total

number of lookup tables thus is

#LUTs =
5

2
C(N)m .

Using the C(N) from Table 2 we compute the num-

ber of lookup tables for even-odd mering and bitonic

merging networks:

#LUTs even-odd = 5m(p2 − p + 4)2p−3 − 5m

2

#LUTs bitonic = 5m(p2 + p)2p−3 .

The total area consumption measured in number of

occupied slices depends on the packaging. We can pro-

vide a lower bound based on the following simplifying

assumption that that multiplexer LUTs (see Figure 10)

are not placed in the same slice slice as the logic used to

evaluate the a < b predicates (no combination of “un-

related” logic). The area utilization can be estimated

as

#slices even-odd = 5m
[
(p2 − p + 4)2p−5 − 1/8

]
#slices bitonic = 5m(p2 + p)2p−5 .

Ignoring additional LUTs used as “route-throughs” the

chip area of the 8-element even-odd merging network

(for m = 32) shown in Figure 8(a) containing 19 com-

parators requires 380 slices, i.e., 1.86 % of the Virtex-

5 FX130T chip. The corresponding network based on

bitonic mergers (Figure 8(b)) requires 24 comparators

resulting in 480 FPGA slices, or equivalently, 2.34 % of

the chip.

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

Fig. 11 Pipelined synchronous even-odd merge sorting networks

using six 8 × 32 = 256 bit pipeline registers. Dotted rectangles
indicate register stages that can be combined into a shift register.

5.4 Synchronous Implementation on FPGA

In a synchronous design an external clock signal moves

the data from stage to stage through the sorting net-

work. To this extent, the comparator outputs are con-

nected to banks of flip-flips, called stage registers. The

register store the input during the rising edge of the

clock signal. The output of a stage register is then fed

to the next comparator stage as shown in Figure 11.

Latency. The latency is determined by the clock

frequency f and the depth S(N) of the sorting network.

In fact, the time between applying the data at the input

and reading the sorted data at the output is given by
S(N)/fclk. For example, the even-odd merging network

shown in Figure 11 on our Virtex FX130T–2 FPGA

can be operated at fclk = 267 MHz. Hence, the overall

latency for the 6-stage network is 6/267 MHz = 22.5 ns.

Pipelining. Synchronous sorting networks can fur-

ther be implemented in a fully-pipelined way. This al-

lows to keep an N -item set “in-flight” at every stage of

the sorting network. Because the outputs of the com-

parator are buffered in a register after every stage, a

complete new N -set can be inserted at the input every

cycle.

As it can seen in Figure 11, in even-odd merging

networks not all wires are processed by a comparator

in every cycle. For example, in the third stage, the wires

x0, x3, x4, and x7 are not processed by a comparator.

In order to obtain a pipeline these wires still need to

buffered by a register as shown in the Figure 11. This

increases the number of occupied slices.

Resource Usage. The synchronous implementation

differs from the asynchronous network by the stage reg-

isters. In a non-fully pipelined implementation the reg-

isters can be easily accommodated in the comparator

logic. The outputs of the lookup tables g and h of

the asynchronous comparator implementation (see Fig-

ure 10) can simply be connected to the corresponding

flip-flops (see Figure 2 for the LUT–flip-flop configu-

11

ration in an FPGA slice). Hence, no additional slices

are used for comparators and the total resource con-

sumption of a sorting network identical to the asyn-

chronous implementation, i.e., for a sorting network

consisting of C(N) comparators on N m-bit inputs

C(N)d5m/8e FPGA slices. Again, this is a lower-bound

that is only reached if all slices are fully-occupied, i.e.,

all 4 LUTs/flip-flops of a slice are used, and no addi-

tional lookup tables are used as “route-throughs”.

For the fully-pipelined implementation we can pro-

vide a simpliar lower-bound for the chip area required

for fully-pipelined implementation. Now, a complete Nm-

bit register is needed for each stage. Hence, the total

number of LUTs and flip-flops (FFs) required is

#LUTs =
5

2
C(N)m

#FFs = S(N)Nm .

It can be easily verified that the resource usage in even-

odd mering and bitonic merging networks is given by

#LUTs even-odd = 5m(p2 − p + 4)2p−3 − 5m

2

#LUTs bitonic = 5m(p2 + p)2p−3 .

The number of stages S(N) is the same for both net-

work types, therefore, also the number of registers:

#FFs = 4m(p2 + p)2p−3 .

For the lower bound on the slice count we are using

the assumption that the register following a compara-

tor is always placed in the same slice, i.e., the output

of the multiplexer-LUT is directly routed to the flip-

flop register that is co-located with that LUT. Further-

more, we assume that flip-flops of stage registers with-

out a comparator (e.g., shown inside dotted rectangles

in Figure 11) are not placed in the same slice as the

logic used to evaluate the a < b predicates (no combi-

nation of “unrelated” logic). The area utilization then

is:

#slices even-odd = m
[
(5p2 + 3p + 4)2p−5 − 1/8

]
#slices bitonic = 5m(p2 + p)2p−5 .

Note that under these placement assumptions the

slice usage for bitonic merging networks is identical to

the asynchronous implementation. This is due to the

fact that in bitonic networks there is a comparator for

each wire in every stage, hence, all flip-flops registers

can be co-located with a lookup table belonging to a

comparator such that no additional slices are required.

5.5 Sorting Networks on CPUs

Sorting networks for CPUs have been extensively stud-

ied in literature, in particular for exploiting data paral-

lelism on modern SIMD processors [7; 10; 11; 20]. In this

section we show how sorting networks can be directly

implemented on general-purpose CPUs. We show the

implementations for two different hardware architec-

tures: Intel x86-64 and PowerPC. We use these imple-

mentations later to compare the FPGA design against.

Neither of the two architectures provides built-in

comparator functionality in its instruction set. We there-

fore emulate the functionality using conditional moves

(x86-64) or the carry flag (PowerPC). The following two

sequences of assembly code implement the comparator

operation for PowerPC and x86-64 processors:

[r8, r9]← [min(r8, r9),max(r8, r9)] .

PowerPC Assembly x86-64 Assembly

subfc r10,r8,r9 movl %r8d,%r10d

subfe r9,r9,r9 cmpl %r9d,%r8d

andc r11,r10,r9 cmova %r9d,%r8d

and r10,r10,r9 cmova %r10d,%r9d

add r9,r8,r11

add r8,r8,r5

Neither piece of code makes use of branching instruc-

tions. The same property has important consequences

also in code for traditional CPUs. Branch instructions

incur a significant cost due to flushing of instruction

pipelines (note that sorting algorithms based on branch-

ing have an inherently high branch mis-prediction rate).

This is why the use of a sorting network is a good choice

also for CPU-based implementations.

Related Implementations using SIMD. Chhugani

et al. [7] describes an SIMD implementation for sort-

ing single precision floating point numbers using Intel

SSE instructions. Similar work is done for PowerPC
AltiVec instruction set for both integer and single pre-

cision floating point data in [20]. In both cases, data

parallelism in SIMD is used to sort multiple elements

in a SIMD vector register in one step. For example,

in [7] four 32-bit single precision floating point num-

bers are compared and swapped. Below, we briefly out-

line how in [7] two vectors A = (a3, a2, a1, a0)T and

B = (b3, b2, b1, b0)T are compared.

Assume that we want to compare a0 to a1, a2 to a3,

b0 to b1 and b2 to b3. This pattern occurs, for exam-

ple, in the first stage of 8-element bitonic merging net-

work shown in Figure 8(b). The Intel SSE architecture

provides two instructions that determine the element-

wise minimum and maximum of two vectors. In order

to perform the desired comparisons the elements in the

two vectors have to be shuffled into the correct position

which is done by additional shuffle instructions. The

required shuffle operations are illustrated in Figure 12.

The operations can be directly implemented in C using

SSE-intrinsics as follows:

12

B b3 b2 b1 b0 Aa3 a2 a1 a0

D a3 b2 a1 b0 Cb3 a2 b1 a0

E b2 a3 b0 a1

MIN min(b2, b3) min(a3, a2) min(b0, b1) min(a1, a0)

MAX max(b2, b3) max(a3, a2) max(b0, b1) max(a1, a0)

Fig. 12 Vector compare implemented using SSE instructions.

0 0

1 1

7 7

0 0

1 1

7 7

.

.

.FIFO
in1

32
.
.
. FIFO

out1
32

.

.

.FIFO
in0

32
.
.
. FIFO

out0
32

sorting
network
(N = 16)

FPGA Chip

Fig. 13 Sort chip architecture used to evaluate implementations

of sorting networks. Example shown for N = 16.

__m128 A, B, C, D, E, MIN, MAX;

C = _mm_blend_ps(A,B,0xA);

D = _mm_blend_ps(B,A,0xA);

E = (__m128)_mm_shuffle_epi32((__m128)D,0xB1);

MIN = _mm_min_ps(C,E);

MAX = _mm_min_ps(C,E);

In [7] sorting is split into different stages to ac-

count for the fixed-length SIMD registers. First, an in-

register sort phase sorts 16 elements in 4 SIMD regis-

ters. Then a 2 × 4 bitonic merging network Bm(4) is

used to merge two resulting sorted lists. The fixed vec-

tor length of SSE makes Bitonic networks a good choice

as they have a constant number of comparators N/2 in

each stage. Even-odd sorters would require additional

buffering which adds to the cost for shuffling elements

in vectors. This shuffling overhead increases for larger

networks which along with the fixed number of SIMD

registers (16 on x86-64) available limit the scalability

of this approach. In FPGAs implementations this addi-

tional shuffling translates into an increased signal rout-

ing complexity which also limits scalability.

6 Evaluation: Sorting Circuits on FPGAs

In this section we provide a detailed evaluation of the

sorting network implementations on our Virtex-5 FPGA

(FX130T). Before turning to the application use-cases

in Sections 7 and 8 we analyze both the asynchronous

and synchronous implementation of the even-odd merg-

ing and bitonic merging networks without the side-

effects caused by the attachment of FPGA (e.g., bus

and memory performance).

To this extent, we implement the sorting network as

a dedicated sort chip. Data to be sorted is applied at

I/O pins of the FPGA. Similarly, the sorted output can

be read from an other set of I/O pins. The sort chip

approach can be regarded as being artificial because an

integrated circuit in custom silicon only implementing

sorting in practice is of limited use. Nevertheless, it pro-

vides an environment to evaluate the sorting networks.

When designing the chip we consider two important

aspects. First, the implementation must be fully func-

tional, that is, no simplifications are allowed that might

lead the FPGA tool chain to shortcut parts of the de-

sign. For example, all input and outputs of the sort-

ing networks must be connected to an I/O pin of the

chip, otherwise, sub-circuits driving unconnected sig-

nals might be pruned in the optimization stage of the

synthesis.

Second, for evaluating the raw performance of the

sorting circuit, routing pressure when connecting to I/O

blocks must not dominate the overall speed. Although it

is in principle possible to connect all inputs and outputs

for an N = 8 element sorting network to the FPGA pins

it leads to longer routing distances because a large chip

area needs to be covered since the I/O are uniformly

distributed over the chip. For larger networks N > 8

more than the 840 I/O pins available on the Virtex-

5 FX130T FPGA are required to interface the sorting

network.

Hence, in order to minimize the impact of rout-

ing I/O signals we significantly reduced the width of

the chip interface and use an architecture as shown in

Figure 13. The key are FIFO buffers (BRAM blocks)

placed at the input and output of the sorting network.

The FIFO buffers that have different widths at the read

and write interfaces. Xilinx provides FIFO IP cores that

can have a width ratio between inputs and outputs of

up to 1:8 or 8:1. For example, for N = 8 we use an

input-side FIFO with an write with of 32 bit. This al-

lows us to write one 32 bit word per clock cycle. Using

a width ratio 1:8 we can read 8 consecutive elements

from this FIFO into the sorting network. Similarly for

the output-side FIFO in a 8:1 configuration, we can

write all 8 32-bit outputs of the sorting network into

13

10
3

10
4

10
5

 10 20 30 40 50 60

#
 f

li
p
-f

lo
p
s

network size N

model prediction
bitonic measured

even-odd measured

Fig. 14 Flip-flop usage of synchronous fully-pipelined implemen-

tations. While the model accurately predicts the resource require-
ments for bitonic merging networks it overestimates the flip-flop

usage for even-odd merging networks.

the FIFO. The output FIFO is the connected to the

output pins of the chip through a 32-bit wide interface,

such that we can read the sorted output one element

per clock cycle. For network sizes N > 8 we use multi-

ple FIFO lanes with ratio 1:8 and 8:1. Figure 13 shows

two FIFO lanes for N = 16.

An additional advantage of using FIFOs is that they

can be clocked at a different rate than sorting network.

This isolates the timing analysis of the sorting network

from the IOBs. Although it is impossible to clock the

FIFOs eight times higher than the sorting network, we

nevertheless can try to maximize the clock of the sorting

network in order to determine the raw speed of the

sorting network alone.

We evaluate resource consumption the network types

and the synchronous and asynchronous implementa-

tions as follows. The resources used by the implemen-

tations (number of lookup tables, flip-flop registers and

slices) are shown for the sorting network alone exclud-

ing logic for handling clock and the FIFOs. We estimate

the resource consumption of the sorting network by us-

ing the number of the complete circuit. To this extent,

we replace the sorting network by a “pass-through” and

the full implementation including the sorting network.

Since the input/output logic in both case is the same,

the difference is due to the actual sorting network. In

the following we only report the difference numbers.

6.1 Synchronous Implementations

Figure 14 shows the number of flip-flops (registers) used

in the synchronous, fully-pipelined implementation of

the even-odd and bitonic sorting network. The dotted

line shows the prediction of the cost model introduced

in Section 5.4. The model predicts the same value for

both network types. It can be seen in Figure 14 that

10
3

10
4

10
5

 10 20 30 40 50 60

#
 L

U
T

s

network size N

bitonic prediction
bitonic measured

even-odd measured
even-odd prediction

even-odd measured minus mem. LUTs

Fig. 15 LUT usage of synchronous fully-pipelined implementa-

tions. The model accurately predicts the resource consumption
of bitonic merging networks. When LUTs used as shift register

lookup table in even-odd merging networks are subtracted the

model predictions are also correct for even-odd networks.

the model accurately predicts the flip-flop number for

the bitonic sorting network. However, for even-odd sort-

ing networks the model overestimates the register us-

age. This can be explained by the specific structure of

even-odd networks that is not considered by the sim-

ple model. In even-odd networks not every wire has a

comparator in every stage. This has an important con-

sequence in a fully-pipelined implementation shown in

Figure 11. Several stages without comparators repre-

sent shift registers (shown as dotted rectangles in Fig-

ure 11). Instead of using flip-flop registers the shift reg-

isters can be implemented more efficiently on Xilinx

FPGAs using LUTs configured as such called shift reg-

ister lookup tables (SRL). Hence, the actual number of

flip-flop registers is reduced for even-odd sorting net-

works.

Replacing flip-flops by LUTs increases number of

LUTs, such that the LUT resource model will under-

estimate the LUT usage for even-odd networks. This

can be seen in Figure 15 that shows the LUT utiliza-

tion. The figure also shows the predicted values for both

network types (from Section 5.4). Whereas the model

prediction is correct for bitonic networks it underesti-

mates the LUT usage for even-odd networks. However,

when subtracting the number of LUTs configured as

SRL from the total number the model for even-odd net-

works is accurate too.

When comparing the synchronous implementation

the two network architectures even-odd networks re-

quire less chip space, both, in number of flip-flop regis-

ters and lookup tables.

14

10
3

10
4

10
5

 10 20 30 40 50 60

#
 L

U
T

s

network size N

bitonic async.
bitonic sync.

even-odd async.
even-odd sync.

Fig. 16 LUT usage of asynchronous and synchronous fully

pipelined implementations. Asynchronous circuits result in a
higher LUT usage.

6.2 Asynchronous Implementation

Asynchronous implementations do not contain any flip-

flops in the sorting network. By analysing the routed

FPGA design we could verify that FPGA design tools

furthermore did not introduce any flip-flops, for exam-

ple, registers for pipelining or latency balancing. The

lookup table utilization is shown in Figure 16. For com-

parison the figure also shows the effective number of

LUTs used in the synchronous designs. It can be seen

that for bitonic merging networks the asynchronous im-

plementation always requires more LUTs than for the

synchronous design. It turns out that this also holds

even-odd networks once the additional LUTs used in

synchronous implementations for shift registers are sub-

tracted.

It is not quite clear why the asynchronous version

require more lookup tables. We believe it is an arte-

fact introduced by the Xilinx design tools. An analysis

of the routed design showed that LUTs were not fully

used, e.g., not all four inputs in the comparators for

evaluating the predicates a > b. The difference to syn-

chronous circuits is that in the asynchronous case each

output bit of the sorting network can be expressed as a

huge Boolean function of all inputs bits, e.g., for N = 8

sized network, there are 256 Boolean functions with 256

Boolean inputs each. During synthesis, the tools try to

minimize these functions and later on map the result-

ing expressions back to FPGA LUTs. We believe that

this process is based on heuristics and has limitations

in performance.

6.3 Chip Usage

Figure 17 and 18 show the overall chip utilization in %

of FPGA slices for the synchronous and asynchronous

implementations respectively. Both plots are down in

10
0

10
1

10
2

 10 100

%
 c

h
ip

 u
sa

g
e

(s
li

ce
s)

network size N

bitonic sync.
even-odd sync.

bitonic prediction
even-odd prediction

Fig. 17 Chip usage (measured in slices) of fully-pipelined syn-

chronous implementations.

10
0

10
1

10
2

 10 100

%
 c

h
ip

 u
sa

g
e

(s
li

ce
s)

network size N

bitonic async.
even-odd async.

bitonic prediction
even-odd prediction

Fig. 18 Chip usage (measured in slices) of asynchronous imple-
mentations.

double-logarithmic scale. The resulting straight line cor-

responds to a power function. We are able to place de-

signs up to N = 64 elements onto the Virtex-5 FX130T

FPGA chip. When synthesizing networks for N = 128

the tools will abort due to overmapping over both reg-

isters and lookup tables.

In general, the slice utilization highly depends on

the timing constraints, i.e., the clock frequency for syn-

chronous networks and the maximum signal delay through

asynchronous network. The chip utilization values we

report here are obtained at the highest performance

constraints that can be met by the FPGA tools. For

the fully-pipelined implementations in Figure 17 we can

observe that the slice usage roughly corresponds to the

model prediction. The outlier for even-odd networks at

N = 16 seems to related again to heuristics in the tools

as it only occurs at tight timing constraints.

The chip utilization for asynchronous circuits (Fig-

ure 18) significantly deviates from the model predic-

tions. In general, the model underestimates the utiliza-

tion, in particular for larger network sizes. An analysis

of the synthesized design showed that many slices are

not fully occupied, i.e., not all LUTs or flip-flops are

used. We observe this behavior when the place&route

15

 140

 160

 180

 200

 220

 240

 260

 280

 10 20 30 40 50 60

f c
lk

 [
M

H
z]

network size N

even-odd sync.
bitonic sync.

even-odd async.
bitonic async.

Fig. 19 Maximum clock frequencies the sorting network imple-

mentations can be operated.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 20 30 40 50 60

la
te

n
cy

 [
n
s]

network size N

even-odd sync.
bitonic sync.

even-odd async.
bitonic async.

Fig. 20 Data latency in the different sorting network implemen-

tations.

stage optimizes for speed instead of space. This the case

here as we chose tight timing constraints while there is

still enough resources (area) available on the chips such

that the tools are not forced to combine unrelated logic

into the same slices.

In conclusion, we can observe that the resource mod-

els introduced earlier work best for flip-flop and LUT

usage for synchronous circuits. They are less accurate

for asynchronous circuits, in particular for slice usage.

6.4 Circuit Performance

For FPGA as for any hardware design, performance

is given by the timing behavior. The timing behavior

is specified during synthesis through one or more time

constraints. The tools then try to find a design during

the place&route phase that meets these constraints. If

this phase completes successfully the system is able to

operate that at this timing. The phase fails if one or

more constraints are not met. In this case, the system

does not operate correctly at this timing. The designer

is then left to operate the circuit as close to the desired

parameters the tool was able to synthesize a design,

otherwise, the timing constraints have to be relaxed and

the entire process repeated until a successful design is

found.

For synchronous designs we only set the desired

clock frequency of the sorting network. We gradually

decrease the clock frequency until the place&route phase

completes successfully. We plot the clock frequency in

Figure 19. Asynchronous networks have two timing con-

straints. First, the core clock which es needed to drive

the scheduler that reads the input data from the FIFOs,

applies the data to sorting network, waits until the out-

put of the sorting work is valid, and then stores the

output in the out-FIFO. The second, parameter is the

latency in the asynchronous sorting network which cor-

responds to the longest delay path in the sorting net-

work. We round this path delay down to the next clos-

est number of clock cycles. Clearly, the two timing pa-

rameters are correlated. We perform a search in this

2-dimensional space as follows. First, we maximize the

clock frequency fclk and set delay constraint for the

sorting network to bS(N)/fclkc. S(N) is the number of

swap stages in sorting network. Once we found the max-

imum fclk we gradually reduce the path delay constraint

until no valid design can be found.

As it can be seen in Figure 19 the clock frequency de-

creases as the network size increases. This behavior cor-

responds to algorithms in traditional computing where

execution times increase (or throughput decreases) with

the problem size. If the clock frequency would not in-

crease the throughput would increase as N grows. It

can also be seen from the figure that synchronous cir-

cuits can be clock significantly higher. There is no sig-

nificant difference between the two network types. For

asynchronous circuits the higher complexity of bitonic

networks result in a lower clock speed.

Figure 20 shows the latency of the sorting network.

It is measured as the time between applying the inputs

at the sorting works and reading the sorted data the

output of the sorting network. For the fully-pipelined

implementations the latency is equal to S(N)/fclk. For

asynchronous implementations we directly determine

the latency L. It can be seen that for networks N > 8

synchronous circuits have lower latency, even though

the additional register stages in the sorting network in-

herently uses the signal propagation through the net-

work. The reason why asynchronous networks do have

a higher latency is due to the lower overall clock speed

that feeds and extracts data to and from the network.

The large combinatorial circuits of asynchronous im-

plementations have a significant negative impact on the

clock frequency as shown in Figure 19 such that latency

gains by omitting the stage register cannot compensate

the loss in the overall clock frequency.

16

Throughput is related to latency L. Fully-pipelined

implementations can process an N -set every clock cy-

cles while asynchronous implementations can process a

tuple every dLfclke cycle. Here we can observe the sig-

nificant gains of fully-pipelined designs. For example,

both synchronous networks can process 64 elements at

220 MHz. This corresponds to a throughput of 14.08×
109 elements/sec. Since the elements are 32-bit in size,

the resulting throughput is 52.45 GiB/sec. In contrast,

the fastest corresponding asynchronous network (even-

odd as shown Figure 20) has a latency of 113.3 ns

150 MHz which results in a throughput of 8.8×106 ele-

ments/sec or equivalently 2.1 GiB/sec. The high through-

put numbers are very promising for the FPGA tech-

nology. However, so far we only analyzed the isolated

performance the sorting network. The overall system

performance depends on the integration, that it the at-

tachment of the FPGA to the rest of the system. We

analyze this performance through to different use cases

in the next two sections.

7 Use Case: A Streaming Median Operator

As a first use-case for the sorting network circuits we

choose a median operator over a count-based sliding

window implemented on the aforementioned Xilinx board.

This is an operator commonly used to, for instance,

eliminate noise in sensor readings [31] and in data anal-

ysis tasks [32]. For illustration purposes and to simplify

the figures and the discussion, we assume a window

size of 8 tuples. For an input stream S, the operator

can then be described in CQL [4] as

Select median(v)

From S [Rows 8] .
(Q1)

The semantics of this query are illustrated in Fig-

ure 21. Attribute values vi in input stream S are used

to construct a new output tuple T ′i for every arriving

input tuple Ti. A conventional (CPU-based) implemen-

tation would probably use a ring buffer to keep the last

eight input values (we assume unsigned integer num-

bers), then, for each input tuple Ti,

(1) sort the window elements vi−7, . . . , vi to obtain an

ordered list of values w1 ≤ · · · ≤ w8 and

(2) determine the mean value from the ordered list. For

the even-sized window we return w4, corresponding

to the lower median. Alternatively, w5 corresponds

to the upper median.

The ideas presented here in the context of the me-

dian operator are immediately applicable to a wide range

of other common operators. Operators such as selection,

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

t

input stream

v2

w1

v3

w2

v4

w3

v5

w4

v6

w5

v7

w6

v8

w7

v9

w8

count-based window

sorting network
(N = 8)

v1

T ′0 T ′1 T ′2 T ′3 T ′4 T ′5 T ′6 T ′7 T ′8 T ′9

t

output stream

Fig. 21 Median aggregate over a count-based sliding window
(window size 8).

Tk Tk+1 Tk+2 Tk+3

vk−7 vk−6 vk−5 vk−4 vk−3 vk−2 vk−1 vk vk+1 vk+2 vk+3

Eos(8)

T ′k

Eos(8)

T ′k+1

Eos(8)

T ′k+2

Eos(8)

T ′k+3

Fig. 22 Implementation of median operator able to process four
items per clock tick.

projection, and simple arithmetic operations (max, min,

sum, etc.) can be implemented as a combination of log-

ical gates and simple circuits similar to the ones pre-

sented here. We described one strategy to obtain such

circuits in [27].

7.1 An FPGA Median Operator

We take advantage of the inherent hardware parallelism

when implementing the operator. The goal is to max-

imize throughput by choosing a design that is able to

process several tuples per clock cycle. The design of the

median operator is illustrated in Figure 22. The opera-

tor accepts four consecutive tuples Tk, Tk+1, Tk+2, Tk+3

in every clock cycle. The tuple’s values vk, . . . , vk+3 is

then inserted into the sliding window which is imple-

mented as a shift register. The shift register stores 11

32-bit elements. Since four new elements are inserted

17

x0

x1

x2

x3

x4

x5

x6

x7

lower
median

Fig. 23 When computing the median the complexity of the fully-

pipelined synchronous even-odd merge sorting network can be
reduced from 19 comparators and 48 32-bit registers to 10 com-

parators, 7 half-comparators and 29 32-bit registers.

every cycle the elements have to move by four posi-

tions to the left. The 11-element shift register contains

four overlapping sliding windows of length eight that

are separated by one element. The elements of the four

windows are then connected to four instances of syn-

chronous, fully-pipelined even-odd merging sorting net-

works Eos(8) (see Figure 11). The lower median for

each window finally appears at the fourth output of

the corresponding sorting network. In summary, the re-

sult tuples T ′k, . . . , T
′
k+3 are computed as follows from

the windows:

T ′k ← Eos
(
[vk, vk−1, . . . , vv−7]

)
4

T ′k+1 ← Eos
(
[vk+1, vk, . . . , vv−6]

)
4

T ′k+2 ← Eos
(
[vk+2, vk+1, . . . , vv−5]

)
4

T ′k+3 ← Eos
(
[vk+3, vk+2, . . . , vv−4]

)
4
.

Since we are only interested in the computation of

a median, a fully sorted data sequence is more than re-

quired. Consider the even-odd sorting network shown

in Figure 11. The lower median value appears at out-

put y3. Therefore the upper and lower comparators of

the last stage that sort y1, y2 and y5, y6 as well as the

preceding register stages are not needed and can be

omitted. The FPGA synthesis tool is able to detect un-

connected signals and automatically prunes the corre-

sponding part of the circuit. The pruned network is

shown in Figure 23. Besides the reduction by 2 com-

parators and 19 32-bit registers the circuit complex-

ity can further be reduced. Note that in Figure 23 7

comparators have one output unconnected. This means

that the one the two 32-bit multiplexer that select the

min/max value can be saved, which reduces the com-

plexity by 32 LUTs.

512 MB

DDR2 DIMM

module

serial port

FPGA chipcircuit board

UART

MPMC PPC440

CPU

BRAM
128 kB

program

memory

PLB

128

median core

shift register

Eos Eos Eos Eos
FIFO

1

2

3

Fig. 24 Architecture of the on-chip system: PowerPC core, 3

aggregation cores, BRAM for program, and interface to external
DDR2 RAM.

7.2 System Design

So far we have looked at our FPGA-based database op-

erator as an isolated component. However, FPGAs are

likely to be used to complement regular CPUs in va-

riety of configurations. For instance, to offload certain

processing stages of a query plan or filter an incom-

ing stream before feeding it into the CPU for further

processing.

In conventional databases, the linking of operators

among themselves and to other parts of the system is

a well understood problem. In FPGAs, these connec-

tions can have a critical impact on the effectiveness of

FPGA co-processing. In addition, there are many more

options to be considered in terms of the resources avail-

able at the FPGA such as using the built-in PowerPC

CPUs and soft IP-cores implementing communication

buses or controller components for various purposes. In

this section we illustrate the trade-offs in this part of

the design and show how hardware connectivity of the

elements differs from connectivity in software.

7.3 System Overview

Using the Virtex-5-based development board described

in Section 3.2, we have implemented the embedded sys-

tem shown in Figure 24. The system primarily con-

sists of FPGA on-chip components. We use additional

external (off-chip) memory to store larger data sets.

The memory is provided by a 512 MB DDR2 DIMM

module that is directly connected to the FPGA pins.

The DIMM module operates at a bus clock of 200 MHz

which corresponds to DDR2-400 with a peak transfer

rate of 3200 MB/sec.

18

On the FPGA we use one of the built-in PowerPC 440

cores which we clock at the highest specified frequency

of 400 MHz. The on-chip components are connected over

a 128-bit wide processor local bus (PLB). We use 128 kB

on-chip memory (block RAM) to store the code exe-

cuted by the PowerPC (including code for our mea-

surements). External memory used for the data sets

is connected to the PLB through a multi-port memory

controller (MPMC). It implements the DDR2 protocol.

To control our experiments we interact with the system

through a serial terminal. To this extent, we instanti-

ate a soft IP-core for the serial UART connection link

(RS-232).

Our streaming median operator participates in the

system inside a dedicated processing core (Figure 24).

As described in Section 7.1 the core contains the 11-

element shift register and four sorting network instances.

Additional logic is required to connect the core to the

PLB. A parameterizable IP interface (IPIF, provided

by Xilinx as a soft IP-core) provides the glue logic to

connect the user component to the bus. In particular,

it implements the bus protocol and handles bus arbi-

tration and DMA transfers.

In order maximize performance while minimizing the

CPU load we use DMA transfers initiated by the me-

dian core to access the memory. The DMA controller

is implemented in the IPIF logic of our core. For our

experiments we generate random data corresponding to

the input stream in the external memory from a pro-

gram running on the PowerPC core. Next, the CPU sets

up the DMA transfers to read the input data from mem-

ory and to write back the median results. The two DMA

transfers are setup by specifying the start addresses of

the input data and result data as well ad the number of

items to process. Note that the output data size is equal

to the input data size. The CPU communicates these

parameters to median core by writing them into three

memory-mapped registers of the median core. The logic

for the registers is also implemented in the IPIF. We im-

plemented the core such that the processing is started

implicitly after writing the size register. The processing

consists of three phases shown in Figure 24.

(1) A read transfer moves the data from the external

memory into the median transfer. For maximum

efficiency the full 128-bit width of the bus is used. In

other words 16 bytes are sent over the bus per clock

cycle. The PLB operates at 100 MHz resulting in a

peak bus bandwidth of 1,600 MB/sec. During for

each clock cycle 4 32-bit elements are received by

the aggregation. This is the reason why we designed

the aggregation core in Figure 22 such that it can

process four items at once.

0%

20%

40%

60%

80%

100%

flip-flops LUTs

median operator median IPIF rest of system

Fig. 25 Distribution of FPGA resources in a system with median

core.

(2) The sorting network is fully pipelined hence we can

process the input data immediately as it arrives.

The median computation is performed in pipelined

manner for four elements in parallel. The PLB and

IPIF only permit one active DMA transfer at any

given time, hence, we need store the result data

for the later write-back DMA transfer to external

memory. We implement this on-chip buffer as a

FIFO memory. The size of the memory is equal to

maximum transfer size of 4,080 bytes supported by

the controller. Our logic splits larger data sizes in

multiple read/write DMA transfers without CPU

involvement.

(3) After completing a data chunk the result data in

the FIFO buffer is written back to memory by write

DMA transfer. After a 4,080 byte chunk is complete

the next data chunk is read into the core (phase 1).

After the last chunk is processed the median core

signals completion to the CPU by rising an inter-

rupt.

7.4 Evaluation

Resource Usage. The entire system occupies 28 % of

the FPGA slices available on Virtex-5 FX130T chip.

This includes not only the median core but also all addi-

tional soft IP-cores that are implemented using FPGA

logic, for example, the memory controller, processor

bus, and UART core. This figure does not include used

components that are available in discrete silicon (hard

IP-cores), such as the PowerPC core and block RAM.

The design tools report 225 kB of block RAM memory

used which corresponds to 17 % of the available on-chip

memory.

We further analyzed the resources used by the me-

dian core itself. In particular, how much is spent for

implementing the interface to the PLB and the DMA

logic. As for the evaluation in Section 6 we replace the

19

operator implementation by a simple “route-through”

logic, synthesize the design and compute the difference

in flip-flops and LUTs to the complete design in order

to estimate the chip resources used by the median oper-

ator alone. Figure 25 shows the distribution of flip-flop

registers and lookup tables. The median core consisting

of four 8-element even-odd sorting networks the sliding

window, and control logic that schedules inserting data

into the sorting network and extracting the results oc-

cupies about 40 % of all flip-flops and LUTs used by

design. Also shown in Figure 25 is the space required

for IP-core interface (IPIF) implementing the PLB in-

terface and DMA transfer. 10 % of flip-flops and 18 %

of the lookup tables are spent for the IPIF. Approxi-

mately half of the overall chip resources were used for

logic unrelated to the median operator (memory con-

troller, PLB, UART, etc.).

The implementation of median core is dominated by

LUT usage. The median core uses 8.2 % of the LUTs

available on the Virtex-5 FX130T FPGA while rest of

the system occupies 6.3 % of chip’s LUTs. Hence, from

space perspective, it can be estimated that 11 instances

of the median core can be placed on the chip. However,

the number of components that can be connected to

the PLB for DMA operations is limited to eight. Since

the DMA bus functionality is also used by the PowerPC

core this leads to at most 7 median cores that can be

instantiated under the current system design.

Performance. The overall performance of the system

is determined by the clock frequency as well as the la-

tency and bandwidth limitations of the bus and mem-

ory interface. We operate the median core at the core

system clock of 100 MHz. This clock is determined by

other system components. In particular, the DDR2 mem-

ory controller is very sensitive to timing errors. Al-

though, the sorting network operates at significantly

lower clock speed compared to the evaluation in Sec-

tion 6 (100 MHz vs 267 MHz) the design of the median

operator still allows us to process a full bus width of

data every cycle. Performance limitations is not due to

the aggregation core but to the other system compo-

nents.

For processing the 256 MB data set we the hardware im-

plementation of the median operators requires 1.302 sec-

onds. While processing this data set 2 × 256 MB are

transferred, once from external memory into the sort-

ing network and once from the on-chip memory holding

the result data back to the external memory. This leads

to an effective end-to-end throughput of 393 MB/sec.

Putting this figure in contrast to the peak bandwidth

of the DDR2 memory (3,200 MB/sec) and the PLB

(1,600 MB/sec) there is an significant loss. The mem-

ory is accessed sequentially and we paid special care to

avoid contention on the processor bus. For example, we

made sure that the PLB is not occupied by other com-

ponents (e.g., the CPU) during while the median core

is processing data. We believe that the observed reduc-

tion in bandwidth is due to the arbitration overhead of

the bus.

FPGA Performance in Perspective. FPGAs can

be used as co-processor of data processing engines run-

ning on conventional CPUs. This, of course, presumes

that using the FPGA to run queries or parts of queries

does not result in a net performance loss. In other words,

the FPGA must not be significantly slower than the

CPU. Achieving this is not trivial because of the much

slower clock rates on the FPGA.

Here we study the performance of the FPGA com-

pared to that of CPUs. To ensure that the choice of a

software sorting algorithm is not a factor in the compar-

ison, we have implemented eight different sorting algo-

rithms in software and optimized them for performance.

Seven are traditional textbook algorithms: quick sort,

merge sort, heap sort, gnome sort, insertion sort, selec-

tion sort, and bubble sort. Building accelerators with

FPGAs is a complex and non-trivial processing. In or-

der to perform a fair comparison we deliberately spent

a considerable effort to also optimize the CPU-based

implementations. The eighth implementation is based

on the even-odd merge sorting network shown in Fig-

ure 23 using CPU registers. We implemented the sorting

network using the assembly code variant shown in Sec-

tion 5.5. Just as for the hardware implementation we

applied the same optimization of the sorting that are

possible for computing the lower median, i.e., removing

comparator stages and optimizing the assembly code for

“half-comparators”. This process has lead to a hand-

written, fully optimized and branch-free implementa-

tion of median computation in assembly language. The

PowerPC implementation consists of 88 instructions.

For Intel x86-64 we end up with 61 instructions.

We ran the different algorithms on several hardware

platforms. We used an off-the-shelf Intel x86-64 CPU

(2.66 GHz Intel Core2 quad-core Q6700) and the fol-

lowing PowerPC CPUs: a 1 GHz G4 (MCP7457) and

a 2.5 GHz G5 Quad (970MP), the PowerPC element

(PPE not SPEs) of the Cell, and the embedded 405 core

of our FPGA. All implementations are single-threaded.

For illustration purposes, we limit our discussion to the

most relevant subset of algorithms.

Figure 26 shows the wall-clock time observed when

processing 256 MB (as 32-bit tuples) through the me-

dian sliding window operator shown in Figure 21. The

horizontal line indicates the execution time of the FPGA

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

x
8
6
-6

4

C
el

l
P

E
E

P
P

C
 G

5

P
P

C
 G

4

P
P

C
 4

4
0

ti
m

e
[s

ec
]

bubble
merge
quick
heap

even-odd
FPGA

Fig. 26 Execution time for computing the stream median of a

256 MB data set on different CPUs using different sorting algo-
rithms and on the FPGA.

implementation. Timings for the merge and heap sort

algorithms on the embedded PowerPC core did not fit

into scale (162 s and 92 s, respectively). All our soft-

ware implementations were clearly CPU-bound. It is

also worth noting that given the small window, the

constant factors and implementation overheads of each

algorithm predominate and, thus, the results do not

match the known asymptotic complexity of each algo-

rithm. The best CPU result is obtained for the hand-

written even-odd merging implementation on the Intel

Core2 Q6700. Processing 256 MB requires 1.314 sec.

The performance observed indicates that the im-

plementation of the operator on the FPGA is able to

slightly outperform a modern conventional CPU. Pro-

cessing 256 MB requires 1.314 sec on the Intel Core2,

compared to 1.302 s on the FPGA. This is a bit dis-

couraging result given the large effort spent for the

FPGA implementation. As we already pointed out Sec-

tion 6, the sorting network itself is very fast. Here,

the comparatively low full-system performance is due

to the currently available system components and bus

design. Building FPGA-based accelerators is no unlike

to GPU difficult as the culprit is the same; getting data

to and from the device. In [25; 27] we show that if di-

rectly combined with I/O FPGA can lead to significant

performance improvements over traditional information

systems. In [27] we build a 1 gigabit network interface

(UDP/IP) for the FPGA and combined it with a data

processing engine on the same chip. This allowed us to

process data wire speed. In [25] we apply the same tech-

nique to object deserialization. Nevertheless, being not

worse than CPUs the FPGA is a viable option for of-

floading data processing out of the CPU which then can

be devoted to other purposes. When power consump-

tion and parallel processing are factored in, FPGAs look

even more interesting as co-processors for data manage-

ment.

Intel Core 2 Q6700:

Thermal Design Power (CPU only) 95 W
Extended HALT Power (CPU only) 24 W

Measured total power (230 V) 102 W

Xilinx ML510 development board:

Calculated power estimate (FPGA only) 10.0 W
Measured total power (230 V) 40.8 W

Table 4 Power consumption of an Intel Q6700-based desktop
system and the Xilinx ML510 FPGA board used in this paper.

Measured values are under load when running the median com-

putation.

Power Consumption. While the slow clock rate of

our FPGA (100 MHz) reduces performance, there is an-

other side to this coin. The power consumption of a

logic circuit depends linearly on the frequency at which

it operates (U and f denote voltage and frequency, re-

spectively):

P ∝ U2 × f .

Therefore, we can expect our 100 MHz circuit to con-

sume significantly less energy than a 3.2 GHz x86-64

CPU. It is difficult to reliably measure the power con-

sumption of an isolated chip. Instead, we chose to list

some approximate figures in Table 4. Intel specifies the

power consumption of our Intel Q6700 to be between

24 and 95 W (the former figure corresponds to the “Ex-

tended HALT Powerdown State”) [30]. For the FPGA,

a power analyzer provided by Xilinx reports an esti-

mated consumption of 10.0 W. A large fraction of this

power (5.3 W) is used to drive the outputs of the 234

pins that connect the FPGA chip. CPU having large

pin counts have the same problem. Additional power is

also spent for the PowerPC (0.8 W) and the different

clock signals (0.5 W).

More meaningful from a practical point of view is

the overall power requirement of a complete system

under load. Therefore, we took both our systems, un-

plugged all peripherals not required to run the me-

dian operator and measured the power consumption of

both systems at the 230 V wall socket. As shown in

Table 4, the FPGA has a 2.5-fold advantage (40.8 W

over 102 W) compared to the CPU-based solution here.

The power values are signficantly higher for the Virtex-

5 board that the 8.3 W wall power what we reported

in [26] where we used a smaller board with a Virtex-

II Pro FPGA. The higher power consumption is only

partially due to increased power requirements of Virtex-

5 FGPA. The new ML510 board also contains addi-

tional and faster components which even when inactive

their quiescent currents lead to a higher overall power

consumption. Additionally, the 250 W ATX power sup-

ply we use for the ML510 board is a switching power

21

supply which are known to have a low efficiency when

operated singificantly below the nominal power (16 % in

our case). A power-aware redesign of the board and the

used of matching power supply can reduce the power

consumption much below 40 W.

As energy costs and environmental concerns con-

tinue to grow, the consumption of electrical power (the

“carbon footprint” of a system) is becoming an increas-

ingly decisive factor in system design. Though the accu-

racy of each individual number in Table 4 is not high,

our numbers clearly show that adding a few FPGAs

can be more power-efficient than simply adding CPUs

in the context of many-core architectures.

Modern CPUs have sophisticated power manage-

ment such as dynamic frequency and voltage scaling

that allow to reduce idle power. FPGAs offer power

management even beyond that, and many techniques

from traditional chip design can directly be used in an

FPGA context. For example, using clock gating parts of

the circuit can be completely disabled, including clock

lines. This significantly reduces the idle power consump-

tion of the FPGA chip.

8 Use Case: A Sorting Co-Processor

In the second use-case we directly integrate the sorting

network into a system. We build an 8-element even-

odd merging network and connect it to the PowerPC

core. Instead of connecting it over the processor local

bus (PLB) and mapping the core into the main mem-

ory seen by the CPU we implement the sorting core

is implemented as an Auxiliary Processor Unit (APU).
The APU is directly connected to the execution pipeline

of the PowerPC 440 CPU. It was designed by IBM as

a PowerPC extension to connect a floating-point unit

(FPU) to the embedded core. For example, the FPUs of

the IBM Blue Gene/L supercomputer are connected to

the PowerPC 440 core through the APU interface. The

APU does not have access to memory bus but the de-

sign benefits from a short communication path to the

embedded CPU. This use-case illustrates another ap-

proach to integrate an FPGA accelerator into a hetero-

geneous system.

8.1 Heterogeneous Merge Sort

The hardware solutions described in this paper have

the disadvantage that they can only operate on a fixed-

length data set. As a workaround that allows variable

sized input make used of the CPU to merge chunks of

data that is sorted in hardware. The sorting algorithm

. . .

. . .array

sort L
levels on

accelerator

merge
on CPU

2L

Fig. 27 Heterogeneous merge sort where the lowest L levels are
performed on the FPGA accelerator.

WB

EX

ID

IF

CPU

ID

ld/st addr

Ra source

Rb source

store data

load data

result data

APU
controller

32

32

128

128

32

s0

s1
Eos(8)

s0

s1

opcode

32
target

APU sort core
fabric co-processor module (FCM)

Fig. 28 Sort core as Auxiliary Processor Unit.

of choice here is merge sort. In this use-case we im-

plement an 8-element even-odd merging network as a

sort core in the APU. The FPGA accelerator will sort

consecutive blocks of 8 elements in-place. The sorted

blocks are then merged on the CPU as shown in Fig-

ure 27. This corresponds to a merge sort where the

lowest L = 3 (leaf) levels are performed by the APU.

For sorting N elements in total dlog2(N)e are required.

Hence, for N = 2p elements, p−L merge levels in soft-

ware are needed.

8.2 Attachment to CPU Execution Pipeline

The APU processor is accessed through a set of addi-

tional machine instructions. These additional instruc-

tions include load/store, floating-point and as well as

completely user-defined instructions. The APU proces-

sor can contain its own register file. The load/store in-

structions can then be used to transfer data between

memory and APU register file. Since the APU is di-

rectly connected to the memory unit of the CPU the

APU can also benefit from the data cache which makes

sharing data between CPU and APU very efficient. The

user-defined instruction can be used to pass data from

the CPU register to the APU. Figure 28 shows the

architecture. The APU consists of a controller imple-

22

mented in hard silicon and co-located with the CPU

core and the custom-defined fabric co-processor mod-

ule (FCM) implemented using FPGA components. The

APU connects to the CPU at different points of this

simplified 5-stage RISC pipeline. The APU controller

first decodes APU-specific instructions (ID stage). Pos-

sible instruction include user-defined instructions such

as udi0fcm Rt,Ra,Rb or FCM load/store instructions.

The necessary operands are provided to the APU dur-

ing the execution phase (EX stage), e.g., values for the

two register operands Ra and Rb or the computed mem-

ory address for loads and stores. For user-defined in-

structions, the FCM computes the result and returns

it to the CPU where it is into the target register Rt in

the CPU’s register file. For load instruction the CPU

provides the data from memory up to 16 bytes in par-

allel. For stores the data returned by the FCM is writ-

ten back to the memory. The connection between the

APU controller and the FCM is implemented through a

well-defined interface which contain the necessary sig-

nals that allow the CPU-side APU controller control

the FCM and exchange data.

We access our sorting core through load/store in-

structions. The FCM contains two 16-byte registers s0

and s1 that are able to store 4 elements each. The CPU

code for sorting 8-elements is shown below:

APU Assembly

r8← address of input array

r9← address of output array

r10← 16 stride in bytes

ldfcmux s0,r8,r10 s0← mem[r8 + r10],
r8← r8 + r10

ldfcmx s1,r8,r10 s1← mem[r8 + r10]

. . . 6 additional writes to s1

stfcmux s0,r9,r10 mem[r9 + r10]← s0,

r9← r9 + r10

stfcmx s1,r9,r10 mem[r9 + r10]← s1

For sorting 8 values on the APU, we first load the

input data from memory into s0 and s1. The data

loaded by using to instruction. s0 corresponds to the

first 4 elements, while the last 4 elements are written

to s1. The ldfcmux instruction also updates the first

source register operand whereas ldfcmx does not. We

designed the FCM such that after writing s1 the con-

tent [s0,s1] is fed into the sorting network (Eos(8)).

The sorting network is implemented following a fully-

pipelined synchronous design. In order to simplify in-

struction scheduling we clock the sorting network based

on writing s1, i.e., after writing 6× to register s1 the

 1

 1.2

 1.4

 1.6

 1.8

 2

256 1K 4K 16K 64K 256K 1M 4M 16M

sp
ee

d
u
p

data set size [# elements]

measured
T(n) with L=3, H=0

Fig. 29 Speedup of APU sorting core over traditional on chip

sort
.

sorted output appears at the output of the sorting net-

work. The sorted output is written back to memory us-

ing a FCM store instruction. Note that in fact s0 and

s1 each refers to two different registers when loading or

storing (see Figure 28). We can hide this 6-instruction

latency by using software pipelining in the assembly

program.

8.3 Evaluation

We evaluate the APU implementation and compare it

to a CPU-only version of the merge sort algorithm run-

ning on the PowerPC 440 core. Figure 29 shows the

speedup of the hardware acceleration for sorting arrays

containing 256–16M elements.

The speedup decreases asymptotically as the size

of the data set increases. The reason is that ratio be-

tween the work done by the CPU to work done in the

accelerator decreases as the data set increases as the

following simple analysis shows. Let T (n) be the time

to sort n elements. The recursive merge sort leads to re-

currence equation T (n) = 2T (n/2) + n. By considering

only n = 2p, i.e., power of twos we obtain the following

recursive definition:

T (2p) = 2T (2p−1) + 2p with T (21) = 2 .

The solution to this recurrence equation is T (2p) = p2p.

This corresponds to the execution time for the CPU-

only implementation. Now, with the hardware acceler-

ation the lowest L levels are performed in the APU,

say spending a processing time H for each 2L-element

set. This changes the initial condition of the recur-

rence equation to T (2L) = H. As it can easily be veri-

fied, the solution for the accelerated implementation is

T ′(2p) = H2p−L + (p− L)2p. Hence, the speedup is

speedup =
T (2p)

T ′(2p)
=

p

H2−L + p− L

H=0−→ p

p− L

23

Figure 29 also shows the speedup for the when H = 0,

i.e., the operation performed by the accelerator requires

no time. Clearly, it follows that for large datasets the

speedup decreases to 1. The sharp decrease can see be-

tween 4K and 8K is the effect of the 32 kB data cache

on the core. Using the aggregation the cache pressure

can be reduced as not temporary data needs to be kept,

hence, as long as the data fits into the cache the aggre-

gation core can provide higher speedups. Although, the

absolute values of the speedup obtained is not particu-

larly high, this use-case illustrates how a tightly coupled

accelerator can be implemented in a heterogeneous sys-

tem. Also, it is another attempt to release the power of

sorting network in hardware we observed in Section 6.

9 Summary

In this paper we have assessed the potential of FPGAs

to accelerate sorting. We presented different approaches

to implement sorting networks on FPGAs and discussed

the on-chip resource utilization. Despite the complexity

involved with designs at the hardware level the flip-flop

and LUT utilization of a circuit can be estimated be-

forehand, in particular, for synchronous fully-pipelined

implementations. We also showed how FPGAs can be

used as a co-processor for data intensive operations

in the context of multi-core systems. We have illus-

trated the type of data processing operations where

FPGAs have performance advantages (through paral-

lelism, pipelining and low latency) and discussed differ-

ent ways to embed the FPGA into a larger system so

that the performance advantages are maximized. Our

evaluation shows that implementations of sorting net-

works on FPGA do lead a high performance (through-

put and latency) on their own. However, the two use-

cases put these high performance numbers into perspec-

tive. It challenging to maintain this performance once

the hardware implementation of the algorithm is inte-

grated into a full system. Next to raw performance, our

experiments also show that FPGAs bring additional ad-

vantages in terms of power consumption. These prop-

erties make FPGAs very interesting candidates for act-

ing as additional cores in the heterogeneous many-core

architectures that are likely to become pervasive. The

work reported in this paper is a first but important

step to incorporate the capabilities of FPGAs into data

processing engines in an efficient manner. The higher

design costs of FPGA-based implementations may still

amortize, for example, if a higher throughput (using

multiple parallel processing elements as shown in Sec-

tion 7) can be obtained in a FPGA-based stream pro-

cessing system for a large fraction of queries.

Acknowledgements

This work was supported by an Ambizione grant of

the Swiss National Science Foundation under the grant

number 126405 and by the Enterprise Computing Cen-

ter (ECC) of ETH Zurich (http://www.ecc.ethz.ch/).

References

1. Abadi DJ, Carney D, Çetintemel U, Cherniack M,

Convey C, Lee S, Stonebraker M, Tatbul N, Zdonik

S (2003) Aurora: A new model and architecture

for data stream management. The VLDB Journal

12(2):120–139

2. Abadi DJ, Ahmad Y, Balazinska M, Çetintemel U,

Cherniack M, Hwang JH, Lindner W, Maskey AS,

Rasin A, Ryvkina E, Tatbul N, Xing Y, Zdonik S

(2005) The design of the Borealis stream processing

engine. In: Conference on Innovative Data Systems

Research (CIDR), Asilomar, CA, USA

3. Ajtai M, Komlós J, Szemerédi E (1983) An O(n log

n) sorting network. In: ACM Symposium on Theory

of Computing (STOC), pp 1–9

4. Arasu A, Babu S, Widom J (2006) The cql con-

tinuous query language: semantic foundations and

query execution. The VLDB Journal 15(2):121–142

5. Batcher KE (1968) Sorting networks and their ap-

plications. In: AFIPS Spring Joint Computer Con-

ference, pp 307–314

6. Boyd-Wickizer S, Chen H, Chen R, Mao Y,

Kaashoek F, Morris R, Pesterev A, Stein L, Wu M,

Dai Y, Zhang Y, Zhang Z (2008) Corey: An operat-

ing system for many cores. In: USENIX Symposium

on Operating Systems Design and Implementation

(OSDI), San Diego, CA, USA

7. Chhugani J, Nguyen AD, Lee VW, Macy W, Hagog

M, Chen YK, Baransi A, Kumar S, Dubey P (2008)

Efficient implementation of sorting on multi-core

SIMD CPU architecture. Proc VLDB Endowment

1(2):1313–1324

8. Cormen TH, Leiserson CE, Rivest RL, Stein C

(2001) Introduction to Algorithms, 2nd edn. MIT

Press

9. DeWitt DJ (1979) DIRECT—a multiprocessor or-

ganization for supporting relational database man-

agement systems. IEEE Trans on Computers c-

28(6)

10. Furtak T, Amaral JN, Niewiadomski R (2007)

Using SIMD registers and instructions to enable

instruction-level parallelism in sorting algorithms.

In: ACM Symposium on Parallel Algorithms and

Architectures (SPAA), pp 348–357

24

11. Gedik B, Bordawekar RR, Yu PS (2007) CellSort:

High performance sorting on the Cell processor. In:

Proc. of the 33rd Int’l Conference on Very Large

Data Bases (VLDB), Vienna, Austria, pp 1286–

1297

12. Gold BT, Ailamaki A, Huston L, Falsafi B (2005)

Accelerating database operators using a network

processor. In: Int’l Workshop on Data Management

on New Hardware (DaMoN), Baltimore, MD, USA

13. Govindaraju NK, Lloyd B, Wang W, Lin M,

Manocha D (2004) Fast computation of database

operations using graphics processors. In: Proc. of

the 2004 ACM SIGMOD Int’l Conference on Man-

agement of data, Paris, France, pp 215–226

14. Govindaraju NK, Gray J, Kumar R, Manocha D

(2006) GPUTeraSort: High performance graphics

co-processor sorting for large database manage-

ment. In: Proc. of the 2006 ACM SIGMOD Int’l

Conference on Management of Data, Chicago, IL,

USA, pp 325–336

15. Greaves DJ, Singh S (2008) Kiwi: Synthesis of

FPGA circuits from parallel programs. In: IEEE

Symposium on Field-Programmable Custom Com-

puting Machines (FCCM)

16. Gschwind M, Hofstee HP, Flachs B, Hopkins M,

Watanabe Y, Yamazaki T (2006) Synergistic pro-

cessing in Cell’s multicore architecture. IEEE Micro

26(2):10–24

17. Harizopoulos S, Shkapenyuk V, Ailamaki A (2005)

QPipe: A simultaneously pipelined relational query

engine. In: Proc. of the 2005 ACM SIGMOD Int’l

Conference on Management of Data, Baltimore,

MD, USA

18. Howard J, Dighe S, Hoskote Y, Vangal S, Finan D,

Ruhl G, Jenkins D, Wilson H, Borkar N, Schrom G,

Pailet F, Jain S, Jacob T, Yada S, Marella S, Sal-

ihundam P, Erraguntla V, Konow M, Riepen M,

Droege G, Lindemann J, Gries M, Apel T, Hen-

rissi K, Lund-Larsen T, Steibl S, Borkar S, De V,

Wijngaart RVD, Mattson T (2010) A 48-core IA-

32 message-passing processor with DVFS in 45nm

CMOS. In: ISCC ’10: Solid-State Circuits Confer-

ence, pp 108 –109

19. Huang SS, Hormati A, Bacon DF, Rabbah R

(2008) Liquid Metal: Object-oriented programming

across the hardware/software boundary. In: Eu-

ropean Conference on Object-Oriented Program-

ming, Paphos, Cyprus

20. Inoue H, Moriyama T, Komatsu H, Nakatani T

(2007) AA-Sort: A new parallel sorting algorithm

for multi-core SIMD processors. In: Int’l Conference

on Parallel Architecture and Compilation Tech-

niques (PACT), Brasov, Romania, pp 189–198

21. Kickfire (2009) http://www.kickfire.com/

22. Knuth DE (1998) The Art of Computer Program-

ming, Volume 3: Sorting and Searching, 2nd edn.

Addison-Wesley

23. Manegold S, Boncz PA, Kersten ML (2000) Op-

timizing database architecture for the new bottle-

neck: Memory access. The VLDB Journal 9(3):231–

246

24. Mitra A, Vieira MR, Bakalov P, Tsotras VJ, Najjar

W (2009) Boosting XML filtering through a scal-

able FPGA-based architecture. In: Conference on

Innovative Data Systems Research (CIDR), Asilo-

mar, CA, USA

25. Mueller R, Eguro K (2009) FPGA-accelerated de-

serialization of object structures. Tech. Rep. MSR-

TR-2009-126, Microsoft Research Redmond

26. Mueller R, Teubner J, Alonso G (2009) Data pro-

cessing on fpgas. Proc VLDB Endowment 2(1)

27. Mueller R, Teubner J, Alonso G (2009) Streams on

wires – a query compiler for FPGAs. Proc VLDB

Endowment 2(1)

28. Netezza (2009) http://www.netezza.com/

29. Oflazer K (1983) Design and implementation of a

single-chip 1-d median filter. IEEE Trans on Acous-

tics, Speech and Signal Processing 31:1164–1168

30. Q6700 datasheet (2007) Intel Core 2 Extreme

Quad-Core Processor XQ6000 Sequence and Intel

Core 2 Quad Processor Q600 Sequence Datasheet.

Intel

31. Rabiner LR, Sambur MR, Schmidt CE (1975)

Applications of a nonlinear smoothing algorithm

to speech processing. IEEE Trans on Acoustics,

Speech and Signal Processing 23(6):552–557

32. Tukey JW (1977) Exploratory Data Analysis.

Addison-Wesley

33. Wendt PD, Coyle EJ, Gallagher, Jr NC (1986)

Stack filters. IEEE Trans on Acoustics, Speech and

Signal Processing 34(4)

34. Xilinx (2009) Virtex-5 FGPA Data Sheet: DC and

Switching Characteristics. Xilinx Inc., v5.0 edn

35. Xilinx (2009) Virtex-5 FPGA User Guide. Xilinx

Inc., v4.5 edn

36. XtremeData (2009) http://www.xtremedatainc.

com/

37. Zhou J, Ross KA (2002) Implementing database

operations using SIMD instructions. In: Proc. of

the 2002 ACM SIGMOD Int’l Conference on Man-

agement of Data, Madison, WI, USA

Institute for Pervasive Computing

René Müller

ETH Zurich
CAB E77.2
CH-8092 Zurich

Tel. +41-44-632 8037
Fax +41-44-632 1425
E-Mail rene.mueller@inf.ethz.ch
Web http://people.inf.ethz.ch/muellren/

Editors of the VLDB Journal
Reviewers of the VLDB Journal

Zurich, 4. April 2010

Submission to VLDB Journal: “Sorting Networks on FPGAs”

Dear Editors,

this journal submission is a generalization of our VLDB 2009 publication “Data Processing on FPGAs”. We
believe the attached submission makes interesting and relevant contributions over the VLDB submission. The
journal article focuses on the generalization of sorting networks on FPGAs while the VLDB publication described
a concrete operator implemented using FPGAs. The new paper focuses on sorting networks in general and then
explains how to use them to implement data processing operators of which the median operator of previous
publication is now just one more use-case.

Although, this article builds on top of the VLDB 2009 publication it has undergone a significant revision. The
changes are in the paper are:

• The discussion of sorting networks on FPGAs was significantly extended. In particular, differences between
even-odd merging and bitonic sorting networks and their implementations are discussed (Sections 4 and 5).

• A detailed model that describes the chip utilization for the different implementations is added in Secti-
ons 5.3 and 5.4. The model prediction are evaluated in Section 6 together with the performance of the
implementations.

• We added a section (5.5) that covers how sorting networks can be implemented on traditional CPUs using
general-purpose registers. We use this implementation in a direct comparison with the FPGA-based solution
(Section 7.4). We also provide an overview of related SIMD work and contrast it with the hardware approach.
The section can easily be removed if the reviewers feel this distracts too much from the main story.

• In the evaluation of the implementation we now differentiate between the sorting network itself and the
integration of the circuit with the rest of the system.

• All measurements are now based on a new Virtex-5 FPGA chip. We provide a detailed analysis of the chip
resource utilization for the different sorting network implementations.

• The median operator that was used as a running example in the VLDB 2009 paper was reduced to a use-case
(Section 7). This use-case describes the bus-based system integration of our custom logic. We significantly
simplified the discussion of the implementation details.

• As promised in the future work in the VLDB paper we attached the sorting network core as a co-processor
to the execution pipeline of the embedded PowerPC CPU. This is presented as a second use-case where we
also sketch how a software/hardware co-design can look like (Section 8).

With kind regards,

René Müller, Jens Teubner, Gustavo Alonso

