Efficient Frequent Iltem Counting in Multi-Core Hardware

Pratanu Roy

Jens Teubner

Gustavo Alonso

Systems Group, Dept. of Computer Science, ETH Zurich, Switzerland
{firsthame.lastname}@inf.ethz.ch

ABSTRACT

The increasing number of cores and the rich instruction sets
of modern hardware are opening up new opportunities for
optimizing many traditional data mining tasks. In this pa-
per we demonstrate how to speed up the performance of
the computation of frequent items by almost one order of
magnitude over the best published results by matching the
algorithm to the underlying hardware architecture.

We start with the observation that frequent item count-
ing, like other data mining tasks, assumes certain amount of
skew in the data. We exploit this skew to design a new algo-
rithm that uses a pre-filtering stage that can be implemented
in a highly efficient manner through SIMD instructions. Us-
ing pipelining, we then combine this pre-filtering stage with
a conventional frequent item algorithm (Space-Saving) that
will process the remainder of the data. The resulting opera-
tor can be parallelized with a small number of cores, leading
to a parallel implementation that does not suffer any of the
overheads of existing parallel solutions when querying the
results and offers significantly higher throughput.

Categories and Subject Descriptors
H.2.4 [Database Management]: Data Mining

Keywords

frequent items, parallelism, data flow

1. INTRODUCTION

Concerned by the looming data deluge, users are looking
more than ever at the properties of their core data mining al-
gorithms. Algorithms that adapt well to the characteristics
of modern hardware—such as parallelism or advanced in-
struction sets (e.g., SIMD)—can benefit from technology ad-
vances, which ultimately is the only way to escape a drown-
ing in data [7, 17].

Unfortunately, key characteristics of data mining algo-
rithms are often at odds with classical approaches to par-
allelism. For instance, skew in the input data often lies at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’12, August 12-16, 2012, Beijing, China.

Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

Space-
Saving

input :
set Filter I:{>

Figure 1: Input filtering for the frequent item prob-
lem. A filter absorbs much of the input data set and
forwards only the remaining items to state-of-the-
art Space-Saving instance.

the heart of the mining problem, but will lead to strong load
imbalances in typical data partitioning schemes.

In this work we show how input skew can be turned into
an advantage instead. Intuitively, we dynamically create an
optimized code path for those input items that are frequent
in the data set. An input filter routes each input item to its
respective code path, making the common case fast without
a noticeable slow-down of the remaining cases.

To illustrate the idea, we focus on the frequent item count-
ing problem: given a data set, count the number of times
each item appears in the set. In practice, this problem
has to be answered with limited memory and with a sin-
gle pass over the input data. Frequent item counting is used
as a preliminary processing step to many data mining algo-
rithms and it is a well-studied problem in the literature [5,
14]. Available sequential solutions are very efficient. For
instance, Space-Saving can process close to 20 million items
per second [15].

Besides being simple to describe and illustrate, the fre-
quent item problem is interesting because it was shown to
be difficult to parallelize by conventional means [6] and it
is a good example of a data mining algorithm that is most
meaningful when the input data is heavily skewed (otherwise
all items has similar counts and none has a higher frequency
than others). To date, there is no parallel implementation
of frequent item counting that reaches the performance of
the best sequential implementation of the algorithm.

Figure 1 sketches how we speed up frequent item counting
through input filtering. A “Filter” stage at the front absorbs
the most common cases with an optimized code path and
routes only the remaining items to a conventional Space-
Saving instance. Notice that, to speed up frequent item
counting, we do not need to modify Space-Saving itself, but
encapsulate all hardware awareness in the input filter. This
makes our work complimentary to any optimizations that
might be proposed for Space-Saving in the future.

As we show in the paper, input filtering can easily be
parallelized using a small number of cores. Our actual im-

1 foreach stream item z € S do

2 find bin b, with b,.item = x ;
3 if such a bin was found then
4 L by.count < b;.count + 1 ;

5 else

6 bmin < bin with minimum count value ;
7 bmin-count <— bmin.count + 1 ;

s Dmin-item < x ;

Figure 2: Algorithm Space-Saving. A fixed num-
ber of bins monitors the most frequent items in the
stream S [15].

plementation reaches throughput rates (up to 200 million
tuples per second) that are almost an order of magnitude
faster than the best published results today. Moreover, we
can sustain that throughput also in the presence of concur-
rent queries while the counting is in progress. Concurrent
queries were shown to be a key performance blocker in ear-
lier work [6].

2. COUNTING FREQUENT ITEMS

Several data mining techniques (such as top-k algorithms
or a-priori [1]) start their data analysis by looking at the
most frequently occurring items in the input data set. More
formally, the frequent item problem is defined as

Given a data set S of size N and a threshold ¢, return
all items x that have a frequency fo of at least N in S.

To solve the problem accurately, the occurrences of all
items have to be counted in memory, which requires an un-
realistic (V) space [5]. Fortunately, all common uses of
frequent item counting can tolerate a small error € in the
counting result, allowing the result to include some addi-
tional items for which (¢ —)N < fr < ¢N.

This e-approzimate frequent item problem can be solved
very efficiently and with little space. e-approximate solu-
tions have been studied extensively (most recently by a sur-
vey article of Cormode and Hadjieleftheriou [5]), with the
Space-Saving algorithm of Metwally et al. [15] (or variants
thereof) generally seen as the most efficient solution.

2.1 State of the Art: Space-Saving

The basic idea behind Space-Saving is to limit space con-
sumption by counting (“monitoring” in [15]) only the oc-
currences of those items that are actually frequent. The
algorithm allocates a configurable number k of (item, count)
pairs in main memory (we call them bins) that are supposed
to monitor the most frequent items in S. Input items are
then processed as listed in Figure 2. If an input item x is
among those currently monitored, the corresponding count
value is incremented. Otherwise, the bin with the lowest
count value, bmin is replaced by the pair (z, bmin.count + 1).
In the latter case, item z receives the benefit of doubt:
it could have occurred as often as bmin.count times before.
Space-Saving never under-estimates frequencies and, hence,
records bmin.count as the frequency estimate for x.

The number of bins k reserved for monitoring is a con-
figuration parameter that can be used to trade accuracy for
space. As rule of thumb, [1/e] counters are required to find
frequent items with an accuracy of €. For details we refer
o [5, 15].

“buckets” (count values) mi

3

<—> 36 H@(—) <—><—>

m
th

- bins (item values)

<—@<—

H
@

Figure 3: Stream-Summary data structure [15]. Bins
with the same count value are grouped under one
“bucket.” Buckets form a double-linked list.

Zipf data throughput cycles/item

1.0 13.7 x 10°items/sec 135cy/item

2.0 22.8 x 10°%items/sec 82cy/item
3.0 26.7 x 10%items/sec 70cy/item

Table 1: Runtime characteristics of Space-Saving.
Intel Nehalem-EX, 1.87 GHz; k = 1, 000.

Implementation-wise, Space-Saving is typically based on
two data structures. A linked-list variant (termed Stream-
Summary in [15]; cf. Figure 3) keeps all bins ordered by their
count values to make line 6 in Algorithm Space-Saving fast.
Lookups by item value (line 2) are performed using a hash
table. Both data structures allow updates with (approxi-
mated) constant-time complexity. That is, the time spent
per input item is independent of the bin count parameter k.

2.2 Space-Saving Characteristics

Space-Saving is primarily characterized by its extremely
tight loop within which it accesses a very compact data
structure. The iterations of the loop execute remarkably
fast (cf. Table 1): several ten million input items are pro-
cessed per second, leaving less than a hundred CPU cycles
for each loop iteration on current hardware. These CPU
cycles per item counts are similar to those reported for the
most efficient implementations of join operators [3, 10].

The primary reason for this is the cache efficiency of Space-
Saving. For typical problem sizes, all data structures conve-
niently fit into modern CPU caches. Skewed input data—
the typical case for frequent item computation—further in-
creases data locality. In spite of its random access behavior,
Space-Saving thus processes its data almost entirely within
the L1 cache on typical computing hardware.

The individual iterations of Space-Saving update the item
and count fields. The resulting data dependency makes it
difficult to apply local optimizations, such as loop unrolling,
vectorization, or fine-grained data parallelism. Without such
optimizations, implementations leave much of the strength
of modern computing hardware entirely unused.

2.3 Itis Hard to Parallelize Space-Saving

The prevalence of multi-core hardware has spurred in-
terest in parallel variants of Space-Saving [4, 6]. But it
turns out the problem is hard to parallelize, even though the
single-core solution is well understood and very efficient.

2.3.1 Data Partitioning

Intuitively, Space-Saving can be parallelized by running
multiple independent executions of the original algorithm,

each of which gets one share of the input data stream. De-
pending on the application scenario, input data may already
be provided as a set of disjoint streams (as in [6]) or addi-
tional logic performs, e.g., round-robin partitioning:

CPU 1

Space-

Saving - merge
result

Space-

Saving (—>

CPU 2

The overall counting result is then obtained by merg-
ing the data structures of the independent Space-Saving in-
stances.

Result merging is a highly expensive operation that has
to be performed each time an on-line query arrives. Das et
al. [6] have shown that even in the presence of low query
rates the overall execution time increases almost linearly
with the number of parallel instances. Even for “hierar-
chical merging,” which they showed to be the best strategy,
merging is responsible for 65-98 % of the overall execution
time.

Unfortunately, result merging cannot be avoided in parti-
tioning-based schemes. Input sets to frequent item counting
are usually heavily skewed (Manerikar and Palpanas report
Zipfian skew in real-world data with at least z 2 1.5 [14]).
Any value-based input partitioning (e.g., by a hash on item
values) will lead to strong load imbalances, leaving the setup
bottlenecked in one of the Space-Saving instances.

Cafaro and Tempesta [4] have implemented the data par-
titioning strategy sketched above, using an MPI-based sys-
tem. But their study ignores result merging and on-line
querying and thus works around a key challenge in paral-
lelizing the frequent item problem.

2.3.2 Shared Data Structures

Result merging could be avoided if all processors access
the same “shared” data structure:
CPU 1

Space-

Saving |
Space- |~

Saving
CPU 2

= result

Queries would then get a consistent view on the counting
state simply by reading out the shared data structure. This
convenience, however, would come at a significant price. The
shared state has to be protected with locks during every ac-
cess. As mentioned before, the amount of time spent by
Space-Saving on each input item is very small. Any addi-
tional lock maintenance code will immediately result in a
noticeable performance degradation.

Cost of Cache Coherency. Given the very high cache lo-
cality of Space-Saving, participating processors will not ac-
tually share the “shared state” physically. Rather, the state
ends up distributed over the respective L1 caches, depending
on which piece was last accessed by which processor.

To mimic a shared memory, the system’s cache coherency
protocol will actively ship cache lines between cores when-
ever a requested data item cannot be found in a local cache.

'S 1004 same chip

il —
o]

5 807 N

T 6ot ¢ 3

0 o ©

e S g

g 4071 2 g |

o g @ I3

Q S ©w

[72] 4 n (9}

s 20 o

g oL DD ° IIID

= 1 2 2 2 1 2 8 threads

Figure 4: Cache coherency cost, depending on phys-
ical thread placement and degree of parallelism.

The cost of this can be significant: Molka et al. [16] mea-
sured a latency of 83 cycles for a single core-to-core cache
line shipment in the Intel Nehalem architecture, which is
similar to the processing time for a single item in Space-
Saving (Table 1). The cost is intrinsic to shared data access
and independent of any application-level locking strategy.

A Micro-Benchmark for Cache Coherency Cost. To
judge the impact that cache coherency cost can have on
frequent item processing, we performed a micro-benchmark
where a number of threads accesses a shared memory array.
Each thread performs random counter increments in this
array, following a Zipfian access pattern much like Space-
Saving (no locking involved). On truly shared memory,
thread performance should not depend on the number of
threads in the system. The test platform was a 1.87 GHz
Intel Nehalem EX (eight physical cores per CPU).

In the base case, exclusive data access by a single thread,
each counter increment takes around 6.6 ns to complete. As
Figure 4 shows, co-running threads significantly increase this
access time to 20ns (one co-runner) or even 84ns (seven
co-runners). In practice, cache coherency costs will offset
any gain that parallel processing over shared data struc-
tures might bring. As mentioned before, the cost cannot
be avoided by tuning the application’s locking protocol (as
proposed by [6]).

In summary, neither partitioning nor sharing can ade-
quately leverage the capabilities of current hardware. In
fact, the current trends toward de-centralization and lack of
cache coherence protocols really work against using shared
data structures.

3. INPUT FILTERING

The intuition behind input pre-filtering is simple: a filter
is placed in front of an instance of Space-Saving, as shown
in Figure 1. Out of a high-volume data stream, the filter
takes out those input items that are particularly frequent
and routes them through an optimized “shortcut” code path.
If enough input items follow the shortcut, optimizing the
filtering stage will lead to an improved overall throughput.

3.1 Algorithm

More formally, in Algorithm Filter we partition the in-
memory bin set of Space-Saving into two groups X and Y.
X consists of the heavy hitters for which we define a short-
cut implementation. Only if an input item is not monitored

n fact, locks are a shared data structure and thus will even
exacerbate the problem.

1 foreach stream item x € S do

2 look-up bin b, in X with by.item =z ;

3 if such a bin was found then /* shortcut */
4 L by .count < by.count + 1 ;

5 else /* forward to Space-Saving */
6 update Y according to Space-Saving ;
7 decrement consistency_limit ;
8 increment n’ ;
9 if consistency_limit = 0 then
10 bxmin < bin in X with min. count value ;
11 if bxmin.count < ‘717/ then

// actual violation of consistency limit
12 bymax <— bin in Y with max. count value ;
13 remove bxmin from X and add it to Y ;
14 remove bymax from Y and add it to X ;
15 n' < n' 4+ bxmin.count — by max.count ;
16 bxmin < bin in X with min. count value ;
17 consistency_limit < bxmin.count — b%J ;

Figure 5: Algorithm Filter.

within X, we forward it to a Space-Saving instance that
maintains the set Y. To achieve overall consistency with
Space-Saving semantics, Filter must ensure the following in-
variant: the item with the overall minimum count bmin must
be monitored by the bin set Y. This is further explained later
in this section.

Filtering becomes efficient whenever the size of X is small,
yet catches a relevant share of the input data stream. These
assumptions are reasonable since any meaningful input to
the frequent item problem will be skewed. For data that
follows a Zipf distribution (z = 1), we find that |X| values
between 4 and 16 are enough to achieve effective filtering
(we study the impact of this parameter in the experimental
evaluation).

Figure 5 shows Algorithm Filter in pseudo code. Each
input item is first compared to the bins in set X. If the item
can be found there, the respective bin count is updated.
Otherwise, bin set Y is updated according to the Space-
Saving algorithm (line 6). In practice, bin sets X and Y are
kept in separate data structures and accessed independently.

Consistency with Space-Saving. A partitioned execu-
tion over X and Y is consistent with the semantics of Space-
Saving only if the processed item is either a heavy hitter
(i.e., it can be found in X) or if bmin, the bin with the min-
imum count value, is part of the bin set Y (i.e., bmin ¢ X).
Otherwise, the forwarded item might overwrite a bin whose
count value is not minimal. At the same time, we want to
avoid checking bmin ¢ X too often, because X is part of
the shortcut code path and not optimized for count-based
searches.

Avoiding Expensive bnin Lookups. count-based searches
on X can be mostly avoided if we (a) regularly push high-
count bins into X and low-count bins into Y and (b) con-
servatively estimate whether bmin could possibly be found
within X. This is what lines 7-17 do in Algorithm Filter.
In this code, consistency_limit tells how many items can still
safely be forwarded to the Space-Saving part without violat-
ing the consistency constraint bmin € Y. This safety margin

is decremented for every input item that is forwarded to
Space-Saving (line 7).

Once the safety margin hits zero (line 9), consistency_limit
is re-estimated based on bxmin.count (the minimum count
value in X) and n’, the total number of items forwarded to
Space-Saving (lines 10/16 and 17). If bmin € Y can no longer
be guaranteed from statistics alone, lines 11-16 push one
high-count bin from Y to X and one low-count bin from X
to Y (as motivated before).

The setting of consistency_limit can be motivated as fol-
lows. Let us assume we have forwarded n’ items to Space-
Saving. Let |Y| denote the size of Y. Then, the following
guarantee on the bin with minimum count in Y holds:

/
in- < |21 .
by min.count < LYlJ (1)
That is, the largest minimum count that is possible in Y can
not be larger than this value (Lemma 3.3 in [15] identifies a
similar bound for bmin.count in Space-Saving).

Observe that the value of [7'/|v|| changes only every |Y|
forwarded items. A well-engineered implementation?® of Fil-
ter thus needs to perform consistency maintenance at most
once every |Y| forwarded items.

3.2 Hardware-Conscious Filtering

The complexity of the filtering stage (lines 24 in Fig-
ure 5) lies in the lookup of items z in the bin set X. A
hash table was suggested for this task in Space-Saving, since
it offers (approximate) |X|-independent lookup time. This
asymptotic value becomes irrelevant, however, for the small
bin counts |X| we are considering here.

Thus, we can gain speed by implementing the lookup in
line 2 as a sequential scan over X. Such a scan fits the
pipelined execution model of modern processors, avoids ran-
dom access and pointer chasing as it happens for a hash-
based lookup.

Vectorized Search. Sequential scans can efficiently be im-
plemented with wvectorized instructions. By using the SIMD
instruction sets of modern processors, four to eight® bin con-
tents can be inspected in a single CPU cycle. As our evalu-
ation in Section 6 shows, the use of SIMD dramatically im-
proves the filtering throughput, particularly for real-world
skew values.

The SIMD code that we use in our implementation is il-
lustrated in Figure 6 for |X| = 8 and a SIMD width of
128 bits (i.e., four items per SIMD register). The contents
of X are held in four SIMD registers, two of which hold the
eight item values (itms.vec[0] and itms.vec[1]) and two
of which maintain the associated count values (cnts.vec[0]
and cnts.vec[1]).

To prepare the vectorized search, the input item x is repli-
cated into the four slots of the SIMD register vec_x (line 2).
Comparison with the two item vectors (lines 4-5) yields vec-
tors cmpl and cmp2 that contain a ‘—1’ where the item was
found and ‘0’ elsewhere. This means that count vectors can
be updated by subtracting cmpl and cmp2, as done in lines 7
and 8. Finally, the comparison results are combined into a

2The value of bxmin.count can be cached and used as a lower
bound before actually executing lines 10-16.

3The AVX instruction set of Intel’s Sandy Bridge architec-
ture offers a SIMD width of 256 bits. In previous processor
generations, this number was 128.

1
2

3
4
5
6
7
8

9
10

11
12

// load the input item into vector register
const __m128i vec_x = _mm_setl_epi32(x);

// compare it to the bin contents
__m128i cmpl = _mm_cmpeq_epi32(itms.vec[0],vec_x);

__m128i cmp2 _mm_cmpeq_epi32(itms.vec[1],vec_x);
// update the count values

cnts.vec[0] = _mm_sub_epi32(cnts.vec[0],cmpl);
cnts.vec[1] = _mm_sub_epi32(cnts.vec[1],cmp2);

// compute the overall result of the comparisons
cmpl = _mm_or_si128(cmp2, cmpl);

// bring the result into the scalar part
bool found = _mm_movemask_ps((__m128) cmpl);

Figure 6: Vectorized filtering using x86 intrinsics.

single Boolean value (using a SIMD or and a movemask op-
eration) to decide whether or not the item should be passed
on to Space-Saving.

Observe that this code compares and updates bin contents
eagerly. While this may lead to redundant instruction exe-
cutions without effect (e.g., we will often subtract ‘0’ from
the count registers), the absence of branches makes the code
particularly efficient on actual hardware. We will evaluate
the effectiveness of vectorization in Section 6.

3.3 Filter Characteristics

To understand the runtime characteristics of Filter, its
per-item cost can be broken up into three terms:

lookup cost in X (2)
+ o X cost of Space-Saving on 'Y (3)
+ 0’ X cost of consistency maintenance , (4)

where ¢ and o’ are the probabilities that the code branches
in lines 6-17 and lines 1016 are entered for the input item
(respectively).

Terms (2) and (4) are overhead that is not present in the
plain Space-Saving algorithm. In return, the cost of Space-
Saving is reduced by the factor o. Vectorized execution will
make the lookup cost in X very small. The code in Figure 6,
e.g., requires only seven assembly instructions to perform
the filtering work.

Entry into the consistency maintenance code path might
result in a noticeable cost, since it involves accesses to X
and Y that are not supported by any data structure (e.g.,
line 13 in Algorithm Filter is essentially an insertion step in
a sorted list). But the factor ¢’ is very small in practice. To
illustrate, if all bins in Y contain the same count value (which
is the worst case that defines the bound in (1)), |Y| items
can be forwarded to Space-Saving before the minimum count
value increases. In practice, we find that o’ < o x 1/|v|.

This indicates that the filter selectivity o is the dominant
factor in determining the benefit from filtering.

For Zipf-distributed data, o can be described in closed
form. The probability of finding an item z among the k
most frequent elements of a Zipf distribution is
1 1
Plk,z, A) =Y — X = - (5)

7 Al 1
i=1 Zj:l 7%

That is, we sum up the first k£ probabilities of a Zipf distri-
bution and normalize using the sum of all item probabilities.

T T T T T T

-—- |A| = 1,000
— |A| = 10,000,000

100% r
80% r
60 %
40%
20%
0% — :

0 1 2 3 4 5
skew (Zipf parameter z)

filter selectivity o

Figure 7: Filter selectivity (|X| = 8), depending on
Zipf parameter z and alphabet size |A|.

200 + —— Predicted throughput for Filter 4

—— Space-Saving

)
%
3
o
£ 150 1
£
Z 100]
j=]
o
=
¥ 501 1
8 o690
= 0

0 1 2 3 4 5

skew (Zipf parameter z)

Figure 8: Predicted throughput for Filter assuming
k = 1000, |X| = 8, lookup cost in X = 10 cycles, and
an alphabet size |A| = 5000000.

The probability that an item passes the filter is thus

Assuming a filter stage with eight bins (|X| = 8, as re-
flected also in Figure 6), the resulting filter selectivity is
illustrated in Figure 7. As can be seen in the figure, the ef-
fectiveness of filtering increases sharply as soon as the input
data skew exceeds a Zipf parameter of around 1. For in-
stance, for a skew of z = 1 and an alphabet size |A| = 1000,
filtering already avoids more than 35 % of the Space-Saving
work. Since real-world data sets exhibit Zipf values much
larger than 1 ([14] provides a detailed study), we can expect
a very high effectiveness of filtering.

3.4 Overall Cost

We are now ready to model the overall cost of an exe-
cution of Filter. Figure 6 lists the actual SIMD code that
implements the lookup in X. With a loop body added, this
code will require around 10 cycles to execute for each input
item. Since we know o and the cost of Space-Saving (from
experiments, cf. Table 1), we can compute cost terms (2)
and (3) and predict the throughput of Filter depending on
data skew.

Such a prediction is illustrated in Figure 8. In this fig-
ure, we complemented experimental results for Space-Saving
with a prediction on the throughput of Filter. For real-world
skews (starting from around 1.5), we can expect several fac-
tors of throughput improvement. Filtering causes a slight
cost increase for very low skew values (z < 0.5). We will
verify and evaluate both characteristics in Section 6.

1 foreach stream item x € S do

2 look-up bin b, in X with by.item =z ;
3 if such a bin was found then

4 L by .count < by.count + 1 ;

else

5
6 send x to processor P ;
7 decrement consistency_limit ;
8 increment n’ ;
9 if consistency_limit = 0 then
10 bxmin < bin in X with min. count value ;
11 if bxmin.count < ‘717/ then
// actual violation of consistency limit
12 send bxmin to processor P ;
13 receive bymax from processor P; ;
14 n’ = n' + bxmin.count — by max.count ;
15 bxmin.item <— by max.item ;
16 bxmin-count <— by max.count ;
17 bxmin < bin in X with min. count value ;
18 consistency_limit = bxmin.count — ‘T;,/‘ ;

Figure 9: Algorithm Parallel-Filter for Processor Fy.

The above model does not include the cost of consistency
maintenance (cost term (4)). In practice, it will have only
marginal impact. This is because the operation is necessary
at most once every |Y| forwarded items, i.e., with a proba-
bility of at most o x 1/|y|. If, say, we choose Y to contain
1,000 bins, this means that a consistency maintenance run
would have to be at least a thousand times more expensive
than Space-Saving to have noticeable impact.

4. PARALLELIZATION OF FILTER

The key benefit of Algorithm Filter comes from reducing
the amount of data reaching the Space-Saving routine. On
modern multi-core machines, this effect can be amplified by
dividing the filtering and Space-Saving work over two or
more processor cores. The structure of Filter describes a
data flow system (cf. Figure 1), which can be mapped to
pipeline parallelism on multi-core hardware.

4.1 Parallel-Filter

Intuitively, the task of input filtering is associated with
one (possibly also more; see below) CPU core Py, while a
different core P; runs the Space-Saving part. The two cores
interact through asynchronous message channels installed
between the threads on Py and P;.

The algorithm Parallel-Filter is illustrated in Figure 9 and
10. Essentially, all interaction with the bin set Y (i.e., the
Space-Saving part) is replaced by explicit messaging instruc-
tions, as shown in lines 6, 12, and 13.

The other end of these messages is a modified Space-
Saving instance that runs on P;. We listed its pseudo code
in Figure 10. Input to this code are the messages received
from Py. The message is then dispatched either to run a
regular Space-Saving update or perform bin pushing as dis-
cussed earlier in Section 3.1.

The most apparent advantage of Parallel-Filter is that
operations on X and Y can now be executed in parallel. In
particular, cost terms (2) and (3) in Section 3.3 now arise

1 foreach msg received from processor Py do
2 if msg = bin bxmin then

3 by max <— bin with max. count value ;
4 send by max back to processor Py ;

5 add bxmin to the bin set Y;

6 else if msg = stream item x then
L run regular Space-Saving ;

Figure 10: Alg. Parallel-Filter for Processor P;.

on separate cores, such that only the larger term determines
the overall runtime.

This is particularly valuable if both of the terms are non-
negligible. That is, a pipeline parallel execution could offer
performance advantages especially for mid-range skew val-
ues 1 < z < 2, where both algorithm parts take a consider-
able share of the input data (cf. Figure 7). This skew range
matches what can be found in many real-world use cases.

Parallel-Filter and Modern Hardware. Partitioning
Filter over independent CPU cores also leads to routines
with an extremely small code and data footprint. Most im-
portantly, the filter task is simple enough to keep all bin con-
tents within the (SIMD) registers of Py. Such locality is an
important ingredient to achieve high cycles-per-instruction
(CPI) values on modern hardware.

Message Passing. Observe in Figure 9 that the bulk of the
messages between Py and P; is sent fully asynchronously.
Asynchronous message passing of this type is known to be
a good fit for current hardware. In fact, hardware makers
are developing new hardware architectures entirely based on
message passing [9] and the operating systems community is
working on full OS re-designs built around message passing
primitives [2]. In our implementation, we adopt the message
passing protocol of [2].

More Than Two Cores. Intuitively, the idea of Parallel-
Filter can be extended in a pipelined mode, where multiple
cores are running the filtering (cf. Figure 1). The perfor-
mance advantage of such an approach will heavily depend
on the data distribution, since each core has to take out
enough share of the data to improve the overall throughput.

S. QUERIES

The key challenge in frequent item counting is to achieve
high throughput, yet retain the ability to support on-line
queries (e.g., top-n queries), while the algorithm processes
input. As analyzed in detail by Das et al. [6] and motivated
briefly by us in Section 2.3, the cost of result merging may
easily ruin any throughput advantages gained from paral-
lelism or work distribution. For instance, Das et al. account
more than 90 % of all CPU resources to query processing
and result merging even for low query rates.

This problem does not arise in Filter, because all algo-
rithm state is already partitioned by item values. All it takes
to answer a top-n query is to return the bins in X and as
many of the (count-sorted) bins from Y as needed to answer
the query.

The advantages of Filter in the presence of on-line queries
become even more pronounced when Filter is run in a paral-
lel setting (cf. Section 4). The query can now be forwarded

o 200} =~ Filter with seq. search
3)3); —— Filter with SIMD
> — prediction
g 150 Space-Saving
=
= 100 t
2
&
3 50 |
= o—e—6—6 e 666679
= A e oo oo 6068660900
=
0

0 1 2 3 4 5
skew (Zipf parameter z)

Figure 11: Filter performance, k = 1000, | X| = 8.

within the processing pipeline much like input items. Un-
like in classical parallelization schemes, there is no need to
suspend parallel processing because of an on-line query.

6. EVALUATION
6.1 Experimental Setup

To evaluate the potential of input filtering, we imple-
mented the above algorithms using C (compiled with gcc
version 4.5.2) on an Intel Nehalem CPU with a clock speed of
1.87 GHz (Intel model number L7555) and running Ubuntu
11.04. To ensure deterministic performance, we disabled
the system’s hyper threading and turbo boost features (which
could lead to further throughput improvements in practice).

For evaluating the results, we generated synthetic data
that follows a Zipf distribution. We ran the experiments
on a skew range of 0.0 to 5.0. All the generated data sets
contained 50 million items with an alphabet size of 5 million.

To keep the comparison meaningful, we did not implement
the Space-Saving with linked list ourselves, instead we used
the implementation from [5], which is publicly available. We
recompiled that code using gcc and got similar results as
presented in [5]. Therefore, we treat those results as the
baseline for comparison of the performance.

6.2 Different Implementations of Filter

We implemented two variants of the Filter algorithm. One
that uses a naive sequential search and one based on the
SIMD code shown in Figure 6. The performance of these
two implementations along with the throughput of Space-
Saving are shown in Figure 11. The figure shows the skew
vs. throughput (items/p-second) of the implementations for
k = 1000, | X| = 8. We got similar graphs for k = 100 and
10000.

The results shown in the figure are consistent with the
analytic assessment in Section 3.4 (repeated as a solid line
in Figure 11). For very low skew (up to z < 0.8), Filter
runs slightly slower than the baseline Space-Saving (up to
~ 28 % loss for the sequential implementation, 2-17 % for the
SIMD code). In this low-skew range, the overhead of filtering
and consistency maintenance cannot be compensated by a
reduced workload on Space-Saving.

As soon as the skew goes higher than 0.8, Filter becomes
much faster than Space-Saving, whereby the SIMD imple-
mentation quite closely follows our analytical model. For
very high skew we even see better throughput as predicted,

S 200 | = Parallel-Filter (2 cores) _ 58
8 —— Filter with SIMD _ 5®
< . i
~ -o— Space-Saving
® |
= 150
£
Z 100
o
5!
g 50f
=1 o—o—o—66—e—6—6—6——o66—-
~ 2o o660 €8 o TETTE T
=
0

0 1 2 3 4 5
skew (Zipf parameter z)

Figure 12: Filter vs. Parallel-Filter without query-
ing, k = 1000, | X| = 8.

which indicates that we over-estimated the cycle count needed
per item in the SIMD code.

For mid-range skew values (1.5 < z < 2.5), the measured
throughput stays behind our model. This is mainly because
our model ignored a statistical effect. When filtering takes
away the | X | most frequent items from the input stream, the
remaining data set is actually not Zipf-distributed any more.
Rather, the skew perceived by Space-Saving is appreciably
smaller than the one seen at the input. This leads to the
under-estimation of the Space-Saving cost in our model seen
in Figure 11.

The implementation based on sequential search clearly
does not follow our cost model. This is because we as-
sumed the eager execution model of our SIMD code, which
leads to data-independent runtimes (we had assumed 10
cycles/item). This assumption does not hold for a non-
hardware-optimized search that aborts the sequential search
lazily. Yet, note that also this naive implementation shows
significant throughput advantages over an off-the-shelf Space-
Saving implementation.

6.3 Filter vs. Parallel-Filter

In this section, we explore how Filter and Parallel-Filter
perform with respect to each other. We analyze the perfor-
mance both in the presence and in the absence of queries.
We used the SIMD implementations for comparing perfor-
mance.

6.3.1 Without Querying

In Parallel-Filter, the Filter and Space-Saving processing
overlap. For very low skew values, this reduces the over-
head of filtering. Since item lookups in X are now per-
formed on a separate core, only consistency maintenance
and a small communication overhead add to the cost of the
baseline Space-Saving. More specifically, Parallel-Filter runs
only 5% slower than Space-Saving (cf. Figure 12).

As discussed already in Section 4, parallel execution be-
comes most effective if the contributions of terms (2) and
(3) in our cost model are of comparable size, which is the
case for mid-range skew values. Our throughput results in
Figure 12 confirm this expectation. Skew ranges above 1.0
are most relevant in practice, and we see an improvement of
Parallel-Filter over Filter of up to 80 % in this range (and
a factor of up to six compared to plain Space-Saving).

200 | = Parallel-Filter (2 cores)
—— Filter with SIMD

150 |

100 ¢

ut
o

throughput (items/usec)

0 1 2 3 4 5
skew (Zipf parameter z)

Figure 13: Filter vs. Parallel-Filter with querying,
k =1000, |X| = 8, query rate: 2000 queries/second.

For very high skew values, the advantage of parallel exe-
cution becomes less pronounced. In this range, the Space-
Saving part of Filter is called very infrequently. Parallel ex-
ecution of filtering and Space-Saving thus yields little benefit
over the single-threaded case. Likewise, in additional exper-
iments we found that parallelism beyond two cores will not
significantly increase overall throughput any further.

6.3.2 With Querying

A key benefit that we expect from Filter is a better ro-
bustness against concurrent queries. To verify that property,
we re-ran the experiments of Figure 12, but issued queries
while the input was processed. To illustrate high robustness,
we deliberately chose a very high query rate of 2,000 queries
per second.

As shown in Figure 13, even such high query rates cause
only little performance impact compared to the numbers
we saw for input processing without queries (Figure 12).
Most realistic workloads will use lower query rates, which
means that on-line queries will cause negligible overhead in
practice. This is in sharp contrast to the merging overhead
reported by Das et al. [6], where on-line queries would im-
mediately reduce input processing rates by several factors.

Also observe in Figure 13 how parallel processing is even
more robust to on-line queries than our single-threaded im-
plementation. This is because queries propagate from one
CPU core to another. And while, e.g., the last core in the
pipeline collects bin contents from its Stream-Summary data
structure, all other cores can already proceed with input pro-
cessing.

6.4 Impact of the size of x

To see the impact of different sizes of X, we analyzed the
performance of Parallel-Filter with |X| =4, 8, and 16 (Fig-
ure 14). As expected, for a very low skew, they perform
similarly because the added overhead by 4, 8 or 16 bins is
too small in comparison to the Space-Saving cost. But for
a very high skew, the performance will drop due to the in-
crease in constant-time look up cost of X. As shown in the
figure, the performance with 4 bins supersedes that with 8
and 16 bins, and reaches up to 250 million items per second.
On the contrary, for a skew range of 1.0 to 1.6, |X| = 16
bins perform best, since it reduces the number of items that
get forwarded to Space-Saving. Overall, | X| = 8 is an inter-
mediate value that offers good performance balance for all
skew ranges.

250

200

150

100

ot
o
T

throughput (items/usec)

4 4 4 4
+ t + +

0 1 2 3 4 5

[e=]

skew (Zipf parameter z)

Figure 14: Impact of increasing sizes of X on Parallel
Filter (2 cores), k = 1000.

7. RELATED WORK

To leverage the advances in hardware technology, it has
become unavoidable to re-design software systems such that
they match the strengths of the underlying hardware. As
Kim et al. [10] have shown, the changing hardware char-
acteristics may even shift the balance between algorithmic
approaches. More specifically, they conclude that sort-based
join methods will soon overtake hash-based alternatives be-
cause sorting can better exploit modern instruction sets,
most notably SIMD extensions.

The use of SIMD extensions proved effective also in our
work, but only after we designed an algorithmic structure
that would permit the use of SIMD. The necessity of care-
ful algorithm designs to enable SIMD, but also the benefits
that can be gained, were shown previously for a number
of database tasks, including in-memory decompression [23]
and sorted set intersection [18]. As in our case, the perfor-
mance advantages obtained far exceed what would be ex-
pected from a classical cost analysis alone.

A number of research groups have re-designed database
algorithms to better match the characteristics of caches and
main-memory subsystems in modern hardware. Shatdal et
al. [19] proposed adaptations to database join algorithms as
early as 1994. Later their results were extended to match
the cache characteristics of modern hardware, most notably
in the MonetDB project [13]. More recently, Zukowski et
al. [25] showed how lightweight data compression can better
utilize real-world memory subsystems.

Probably most related to the frequent item counting prob-
lem is a recent paper by Ye et al. [24] that studies the per-
formance of aggregation algorithms on modern hardware.
Technically, the full aggregate of a data set contains all in-
formation needed to determine the most frequent item. But
large memory requirements and necessary post-processing
render the approach impractical for frequent item counting.
Aside from that, Ye et al. achieve comparable throughput
for the alphabet sizes we considered here, but require 8-way
parallelism and much stronger CPUs to do so.

The resulting algorithm structure of our work resembles a
data flow system, and there are numerous examples of how
data flow-oriented designs can be mapped very efficiently to
a given piece of hardware. In fact, most hardware designers
first analyze the data flow of any given problem before they
try to solve it.

A seminal work in stressing the importance of data flow-
driven designs were the systolic arrays of Kung et al. [11,
12]. In the database world, one of the most notable studies
has been done by Teeuw and Blanken [20]. Many of these
results carry over to modern multi-core environments in the
form of pipeline parallelism, as was emphasized recently, e.g.,
by Giacomoni et al. [8].

Data flow-oriented processing proved effective also in some
of our own recent work. In [21], we showed how it helps to
parallelize the processing of sliding-window joins in many-
core systems; similarly, we used a data flow-based design to
solve the frequent item problem in (FPGA) hardware [22].

8. CONCLUSIONS

We have demonstrated the effectiveness of pre-filtering on
modern hardware when applied to the frequent item problem.
Filtering opens the door to using vectorized instructions on
modern processor architectures. Depending on the input
data skew, our proposed algorithm Filter improves perfor-
mance over Space-Saving (the existing state of the art) by
one order of magnitude.

We also show that Filter can easily be parallelized and
thus make use of additional computing resources in multi-
core systems. The proposed Parallel-Filter algorithm im-
proves the performance of Filter significantly on the data
with medium skew—the most common case in real-world
applications. Both algorithms, Filter and Parallel-Filter,
sustain their throughput properties even under high query
load, since they avoid the merging overhead of earlier paral-
lel frequent item solutions.

The improvements due to filtering are orthogonal to possi-
ble advances in the back-end algorithm (Space-Saving in our
case). In fact, since filtering turns data skew into a through-
put advantage, it could also complement other algorithms
where skew often causes major performance problems.

Acknowledgements

This work was supported by the European Commission (FP7,
Marie Curie Actions; project Geocrowd), by the Swiss Na-
tional Science Foundation (Ambizione grant; project Ava-
lanche), and by the Enterprise Computing Center (ECC) of
ETH Zurich.

9m 1?%5%% aIHcFE%rikant. Fast algorithms for mining

association rules in large databases. In Proc. VLDB,
1994.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and
A. Singhania. The Multikernel: A new OS
architecture for scalable multicore systems. In Proc.
ACM SOSP, Big Sky, MT, USA, 2009.

[3] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core cpus. In Proc. ACM SIGMOD, 2011.

[4] M. Cafaro and P. Tempesta. Finding frequent items in
parallel. Concurrency and Computation: Practice and
Ezxperience, 2011. (online preprint).

[5] G. Cormode and M. Hadjieleftheriou. Finding
frequent items in data streams. Proc. VLDB
Endowment (PVLDB), 1(2), 2008.

[6] S. Das, S. Antony, D. Agrawal, and A. E. Abbadi.
Thread cooperation in multicore architectures for
frequency counting over multiple data streams. Proc.
VLDB Endowment (PVLDB), 2(1), 2009.

[7] P. Dubey. Teraflops for the masses: Killer apps of
tomorrow. In Workshop on Edge Computing Using
New Commodity Architectures, 2006.

[8] J. Giacomoni, T. Moseley, and M. Vachharajani.
FastForward for efficient pipeline parallelism: A
cache-optimized concurrent lock-free queue. In Proc.
ACM SIGPLAN, Salt Lake City, UT, USA, 2008.

[9] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,

G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada,

S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries,

T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,

S. Borkar, V. De, R. V. D. Wijngaart, and T. Mattson.
A 48-core TA-32 message-passing processor with DVFS
in 45nm CMOS. In 2010 IEEE Int’l Solid-State
Clircuits Conf., San Francisco, CA, USA, 2010.

[10] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D.
Nguyen, A. D. Blas, V. W. Lee, N. Satish, and
P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. Proc.
VLDB Endowment (PVLDB), 2(2), 2009.

[11] H. T. Kung and C. E. Leiserson. Systolic arrays (for
VLSI). In Sparse Matriz Proceedings, Knoxville, TN,
USA, 1978.

[12] H. T. Kung and P. L. Lohman. Systolic (VLSI) arrays
for relational database operations. In Proc. ACM
SIGMOD, Santa Monica, CA, USA, 1980.

[13] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing main-memory join on modern hardware.
IEEE TKDE, 14(4), 2002.

[14] N. Manerikar and T. Palpanas. Frequent items in
streaming data: An experimental evaluation of the
state-of-the-art. Data & Knowl. Eng., 68(4), 2009.

[15] A. Metwally, D. Agrawal, and A. E. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM TODS,
31(3), 2006.

[16] D. Molka, D. Hackenberg, R. Schéne, and M. S.
Miiller. Memory performance and cache coherency
effects on an Intel Nehalem multiprocessor system. In
Proc. PACT, 2009.

[17] X. Qiu, G. Fox, H. Yuan, S.-H. Bae,

G. Chrysanthakopoulos, and H. Nielsen. Parallel data
mining on multicore clusters. In Proc. GCC,
Bloomington, IN, USA, 2008.

[18] B. Schlegel, T. Willhalm, and W. Lehner. Fast
sorted-set intersection using SIMD instructions. In
ADMS Workshop, Seattle, WA, USA, 2011.

[19] A. Shatdal, C. Kant, and J. F. Naughton. Cache
conscious algorithms for relational query processing.
In Proc. VLDB, 1994.

[20] W. B. Teeuw and H. M. Blanken. Control versus data
flow in parallel database machines. I[EEE TPDS,
4(11), 1993.

[21] J. Teubner and R. Mueller. How soccer players would
do stream joins. In Proc. ACM SIGMOD, Athens,
Greece, 2011.

[22] J. Teubner, R. Mueller, and G. Alonso. FPGA
acceleration for the frequent item problem. In Proc.
ICDE, Long Beach, CA, USA, 2010.

[23] T. Willhalm, N. Popvici, Y. Boshmaf, H. Plattner,

A. Zeier, and J. Schaffner. SIMD-scan: Ultra fast
in-memory table scan using on-chip vector processing
units. Proc. VLDB Endowment (PVLDB), 2(2), 2009.

[24] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable
aggregation on multicore processors. In DaMoN
Workshop, 2011.

[25] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression. In Proc.
ICDE, Atlanta, GA, USA, 2006.

