
1

Frequent Item Computation on a Chip
Jens Teubner, Member, IEEE, Rene Mueller, Member, IEEE, and Gustavo Alonso, Member, IEEE

Abstract—Computing frequent items is an important problem by itself and as a sub-routine in several data mining algorithms. In this
paper we explore how to accelerate the computation of frequent items using field-programmable gate arrays (FPGAs) with a threefold
goal: increase performance over existing solutions, reduce energy consumption over CPU-based systems, and explore the design
space in detail as the constraints on FPGAs are very different from those of traditional software-based systems.
We discuss three design alternatives, each one of them exploiting different FPGA features and each one providing different
performance/scalability trade-offs. An important result of the paper is to demonstrate how the inherent massive parallelism of FPGAs
can improve performance of existing algorithms but only after a fundamental redesign of the algorithms. Our experimental results show
that, e.g., the pipelined solution we introduce can reach more than 100 million tuples per second of sustained throughput (four times
the best available results to date) by making use of techniques that are not available to CPU-based solutions. Moreover, and unlike in
software approaches, the high throughput is independent of the skew of the Zipf distribution of the input and at a far lower energy cost.

Index Terms—Data Mining, Reconfigurable Hardware, Parallelism and Concurrency

F

1 INTRODUCTION

The limitations and problems associated with modern
CPU architectures are well known: high power consump-
tion, heat dissipation, network bottlenecks, and the memory
wall. These problems add up when the CPU is embedded
in a complete computer. For instance, if applications are
not carefully designed, CPUs can spend much of their
time waiting for data from memory or disk. Getting
data in and out of the system often results in high
latency, to the point that any algorithmic advantages may
become irrelevant. In addition, a modern server CPU
consumes over 100 Watts of electrical power, not counting
necessary peripherals such as memory, disks, or cooling
equipment.

In the search for possible solutions, field-programmable
gate arrays (FPGAs) have been proposed as a way to
extend existing computer architectures. They add pro-
cessing elements that help alleviate or eliminate some of
these problems. FPGAs are particularly interesting today
because they can be either added as additional process-
ing cores in heterogeneous multi-core architectures [1],
[2] and/or embedded in critical data paths (network-
CPU, disk-CPU) to reduce the load and amount of data
that hits the CPU [3].

What makes FPGAs interesting for designing data pro-
cessing systems is that they are not bound to the classical
von Neumann architecture. Thus, they can be used to
avoid the memory wall, to implement highly parallel
data processing, and to provide support that would
be very expensive otherwise, e.g., content-addressable
memory. They can also guarantee extremely low laten-
cies and high throughput rates. For instance, they can
process data from the network at wire-speed, without hav-
ing to bring it to memory and the CPU first. In addition,

Authors are with the Systems Group, Department of Computer Science, ETH
Zurich, 8092 Zurich, Switzerland.
E-mail: firstname.lastname@inf.ethz.ch

and increasingly important these days, FPGAs feature a
far lower power consumption than CPUs, making them
ideal complements to general-purpose CPUs in many-
core architectures.

In this work we tackle a basic data mining operation, the
calculation of frequent items in a data collection, and show
how it can be implemented using FPGAs. We achieve
throughput rates of more than 100 million items per
second, a rate four times higher than the best published
results [4] for software-based implementations. The solu-
tion we propose can be used advantageously in business
intelligence queries, high-volume data mining, and even
real-time data processing (e.g., to analyze traffic directly
as it comes from the network).

Our main contribution is a highly efficient frequent
item operator based on FPGAs. The throughput of the
operator is independent of the distribution of the input
data, whereas software-based solutions only work well
if the distribution of the input data is highly skewed
(for Zipf-distributed data, a higher z parameter typically
implies better performance). This makes our results even
more relevant in practical settings, where the actual
distribution of the input data might not be known in
advance.

Our paper discusses three alternatives to solve the
frequent item problem in hardware: SOFTWARE-LIKE,
PARALLEL-LOOKUPS, and PIPELINE. They illustrate
some of the design considerations that many hard-
ware implementations for data mining tasks will face.
Through the three designs, we give guidance on how
to find the right balance between resource availability,
circuit complexity, and performance when designing
FPGA-based solutions.

As part of illustrating the design trade-offs, we com-
plement each of the three alternatives with an in-depth
experimental evaluation, where we discuss resource re-
quirements, scalability, and performance. As a main ref-

2

erence for the performance of existing software solutions,
we use the in-depth study of the frequent item problem
by Cormode and Hadjieleftheriou [4].

The paper is organized as follows. The upcoming Sec-
tion 2 formalizes the problem and briefly reviews the
known solutions in software, before Section 3 gives a
general background in FPGA technology. Sections 4 to
6 describe our three FPGA circuits, gradually moving
from a more classical, software-inspired approach to the
highly parallelizable pipeline-based solution. At the end
of each section, we assess resource and performance
trade-offs. Different methods to issue queries to the
frequent item circuits are presented in Section 7. In
Section 8 we discuss the power aspects of the three
different approaches in a full-system implementation
and compare it with a traditional CPU-based solution.
In Section 9, we relate our work to others’, before we
summarize in Section 10.

2 THE FREQUENT ITEM PROBLEM

The frequent item problem can be defined as follows.
Assume a stream S of items x1, . . . , xN drawn from an
alphabet A. The φ-frequent items are those items in S that
occur more than φN times. φN is called the support that
result items must exceed to be considered frequent items.
The number of occurrences of an item x in S is termed
the frequency fx of x.

It is easy to see that, even for large φ, the exact solution
to this problem requires at least O (min {|N |, |A|}) space.
An algorithm would have to remember all occurrences
of an item x ∈ A in the stream to determine the exact
value of fx, which, in turn, is a prerequisite for an exact
solution.

Since exact solutions are expensive, research has fo-
cused on approximate algorithms that provide sufficient
accuracy at low space and CPU overhead. These al-
gorithms solve a (weaker) version of the problem: ε-
approximate frequent items. The result set for the approx-
imate problem must include all items x with fx > φN ,
but may also include some items for which (φ− ε)N <
fx ≤ φN .

2.1 Frequent Items in Software

The work of Cormode and Hadjieleftheriou has pro-
vided an in-depth comparison of such algorithms [4].
The comparison indicates that the Space-Saving algorithm
by Metwally et al. [5] is the best one among existing
software solutions. In the rest of the paper we use Space-
Saving as our performance baseline and as a starting
point for the FPGA-based designs. We refer the reader
to [4] for details and characteristics of the other frequent
item algorithms, which we will not cover here any
further.

foreach stream item x ∈ S do1

find bin bx with bx.item = x ;2

if such a bin was found then3

bx.count← bx.count+ 1 ;4

else5

bmin ← bin with minimum count value ;6

bmin.count← bmin.count+ 1 ;7

bmin.item← x ;8

Fig. 1. Algorithm Space-Saving. A fixed number of bins
monitors the most frequent items in the stream S [5].

2.2 The Space-Saving Algorithm
Space-Saving tries to monitor frequencies only for those
items that are frequent in the input stream. To this end,
the algorithm keeps a number k of 〈item, count〉 pairs
b1, . . . , bk, which we refer to as bins in the following.

For every arriving item x, the algorithm checks
whether x is already monitored in some bin bx. If yes, the
associated frequency estimate, bx.count, is incremented
by one. Otherwise, the monitored bin with the lowest
count value, bmin, is evicted and replaced by the pair
〈x, bmin.count+1〉 (see Figure 1). Observe how, in the latter
case, item x receives the benefit of doubt: it could have
occurred as often as bmin.count times before. Space-Saving
never under-estimates frequencies and, hence, records
bmin.count+ 1 as the frequency estimate for x.

The number of bins k reserved for monitoring is
a configuration parameter that can be used to trade
accuracy for space. As detailed in [5], d1/εe counters are
required to find frequent items with an accuracy of ε.
As an example, 100 bins are needed to obtain a result
with 1 % accuracy. In practice, frequent item algorithms
are used to identify clear “heavy hitters,” for which task
the accuracy (and hence the number of needed bins) can
often be kept even lower.

As shown by Cormode and Hadjieleftheriou, Space-
Saving exhibits a very good accuracy-to-space ratio. With
explicit knowledge about the expected data distribution
the space requirement can be reduced even further [5].

2.3 Implementation Considerations
Though succinct and elegant, the challenge in realizing
Space-Saving is that the same data—the currently moni-
tored bins—have to be accessed under two independent
criteria:

(i) Line 2 in Algorithm Space-Saving needs to access
the set of bins based on their item values (and the
current input item x).

(ii) If no match was found, bins have to be accessed via
their count values to determine bmin (line 6).

To be able to answer (ii) efficiently, existing implemen-
tations keep their bins physically organized according to
their count values. Metwally et al. [5] propose the use of a
linked list for this purpose. Their data structure, dubbed

3

16 32 64 128 256 512 1024
0

10

20

30

40

50

z =∞
z = 2

z = 1.5

z = 1

z = 0

number of items monitored

th
ro

ug
hp

ut
[m

ill
io

n
it

em
s/

se
c]

Fig. 2. Performance of Space-Saving [4] for different Zipf
distributions z ∈ {0, 1, 1.5, 2,∞}.

Stream-Summary, implements a sorted list that can be re-
organized with only O(1) effort after each bin update.

On the down side, as many as 10 pointer updates are
necessary in Stream-Summary for each re-organization. In
an otherwise very compact algorithm like Space-Saving,
this could have noticeable impact on performance. As
an alternative, Cormode and Hadjieleftheriou discussed
an implementation that uses a min-heap (worst case
complexity O(log k)) to have the minimum count value
accessible at all times. In their experimental assessment,
the heap-based implementation came out only slightly
behind Stream-Summary.

Either implementation has to invest re-organization ef-
fort whenever a counter increment leads to a violation of
the sort or heap property. In effect, both implementations
are sensitive to the distribution of the input data. [5] and
[4] both report that high skewness in the input data can
improve performance by a factor of around two.

Access operation (i) (line 2) suggests the use of a
hash table for item lookups. Its complexity can typi-
cally be approximated as O(1). Since bins are primarily
organized by count values, the hash table provides a
secondary access mechanism that points into the main
data structure.

2.4 Evaluation

We used the publicly available implementation of the
Space-Saving algorithm by Cormode and Hadjielefthe-
riou to obtain a baseline for our work. Here we focus
on the implementation that uses a min-heap as the
primary bin organization (referred to as “SSH” in [4]).
The implementation is going to be the basis for our
first implementation on top of an FPGA, and it showed
very good performance in the study of Cormode and
Hadjieleftheriou.

We repeated the measurements of [4] on comparable
hardware (a Core2 Duo T9550 2.66 GHz system with
6 MB L2 cache and 4 GB main memory) and obtained
similar results (see Figure 2).

TABLE 1
Selected characteristics of FPGAs used in this paper.

XC5VLX110T XC6VLX550T

lookup tables (6-to-1 LUTs) 69,120 343,680
flip-flops (1-bit registers) 69,120 687,360
slices (4 LUTs, 2 flip-flops) 17,280 85,920
block RAM (total kbit) 5,328 22,752
block RAM (# of 36 kbit blocks) 148 632
18-bit multipliers 64 864
release year 2006 2009

The most remarkable characteristic seen in Figure 2
is the dependence of the throughput on the input data
distribution. While we see a throughput of around 5–
10 million items per second for uniformly distributed
data (z = 0), performance increases by a factor of more
than three with increased skewness (i.e., for z & 1.5).
The actual throughput in practice is going to be in the
band between the performances for z = 0 and z = ∞.
The main cause for this are heap maintenance operations
that are more frequent for data with smaller z [6].

3 FPGA BACKGROUND

FPGAs, informally sometimes referred to as “pro-
grammable logic”, are general-purpose hardware chips.
In contrast to ASICs (application-specific integrated cir-
cuits), FPGAs have no pre-determined functionality.
Rather, they can be configured to implement arbitrary
logic by combining gates, flip-flops, and memory banks.

3.1 FPGA Resources
FPGAs provide a variety of resources. Configurable logic is
provided through lookup tables (LUTs), each of which can
implement an arbitrary Boolean function with n inputs
and one output (n = 6 for recent Xilinx Virtex FPGAs
[7]). Lookup tables are backed up by carry logic that can
be used to implement particular functionality directly
in silicon and very efficiently. Flip-flop registers, one-bit
memory entities, are woven into the logic fabric and
thus provide fully distributed storage. Larger quantities
of memory are available in the form of Block RAM (or
BRAM). Virtex chips, for instance, include a number of
BRAM blocks, each of which provides 36 kbit of fast
storage.

Table 1 lists the available resources that typical candi-
dates of the Xilinx Virtex-5 and Virtex-6 series can pro-
vide. Managing and properly balancing these resources
is one of the challenges that an algorithm designer for
FPGAs faces. Thereby, individual resource types are not
independent. For instance, lookup tables and flip-flop
registers are combined into so-called slices, and resource
imbalances can only be traded within each slice.

Assessments in this work are based on two differ-
ent generations of Xilinx Virtex FPGA chips. Model
XC5VLX110T is a popular (though 4-year old) devel-
opment chip, used, e.g., in the Xilinx XUPV5-LX110T

4

university research and teaching platform. We used the
XUPV5 board for testing and for power consumption
measurements in Section 8. XC6VLX550T is a more
advanced model from the current Xilinx Virtex-6 series.
Fabricated on a 40 nm process, it allows apple-to-apple
comparisons with current Intel processor lines. Results in
the main body of this work are based on cycle-accurate
simulations of a XC6VL550T chip.

FPGAs typically operate at clock frequencies that are
significantly lower than those of general-purpose CPUs
(≈ 100 MHz). They are still competitive because tailor-
made circuits can perform more work in less cycles
than software-based systems. A side effect of the low
clock frequency, on the other hand, is the low energy
consumption of FPGAs (few Watts vs. ≈ 100 Watts for a
modern CPU).

3.2 Block RAM: Dual-Ported and Configurable
In this paper we exploit the high configurability of the
available BRAM. In Virtex FPGAs, each BRAM block
provides 36 kbit of on-chip memory. Unlike in commod-
ity systems, the word size of each block can be configured:
the 36 kbit of BRAM can be partitioned into, for instance,
1,024 words of 36 bit, 4,096 words of 9 bit, or 32,768
single-bit words.1 Multiple BRAM blocks can be wired
together to obtain larger memories and/or larger word
sizes.

All BRAM blocks are dual ported. Two independent
ports provide access to the same physical data and as
truly concurrent operations.2 Moreover, the word size of
both ports can be configured independently; data might
be written, e.g., as two 8-bit words on one port, later
accessed as a single 16-bit word using the other port.
We will shortly see how we can use this feature to
implement heap structures in an efficient manner.

4 A SOFTWARE-LIKE SOLUTION FOR FPGAS

Algorithm Space-Saving is very compact and known to be
efficient in software-based systems. We use it as the start-
ing point for implementing frequent items in an FPGA
(our first design will thus be called SOFTWARE-LIKE) and
explore how to best exploit the features available in an
FPGA board.

When designing an FPGA circuit, we prefer a min-
heap-based bin storage over the linked list-based Stream-
Summary of [5], even though the latter showed a small
advantage in Cormode and Hadjieleftheriou’s compar-
ative analysis. The necessary pointer chasing in Stream-
Summary is relatively expensive in FPGA circuits and
should thus be avoided.

4.1 Content-Addressable Memory
The first task in Algorithm Space-Saving, the lookup of
bins based on item values (line 2 in Figure 1), is a

1. In some configurations not all of the 36 kbit are available for use.
2. The semantics for two conflicting write operations is undefined.

good candidate for content-addressable memory (CAM), a
hardware-accelerated key-value store with strong run-
time guarantees. CAMs are a standard device in net-
work processing (e.g., for packet classification) and have
recently been proposed also as a tool for frequent item
computation [8].

For SOFTWARE-LIKE, we build a content-addressable
memory based on dual-ported BRAM. It provides a good
balance between write and read performance and sup-
ports the problem sizes that we are interested in for the
frequent item search (see [9] for CAM implementation
alternatives).

4.2 Min-Heaps in Dual-Ported BRAM

The bin that holds the minimum count value can be
found quickly (line 6 in Algorithm Space-Saving, Fig-
ure 1) if all bins are organized as a min-heap. This had
also been suggested by Cormode and Hadjieleftheriou.
A min-heap is a binary tree where the value stored in a
node is never larger than the value stored in any of its
children. Thus, the bin with the smallest count value is
readily available as the root of the min-heap.

The efficient access of that bin comes at the cost of
a small maintenance overhead, which has to be paid
after every update of the data structure. After each count
increment, the heap property must be validated and
the tree re-organized if necessary. To this end, we must
compare the modified node with both its children and,
if necessary, swap parent and child node and recurse.
(Min-heap inserts, consequently, have a log k worst case
complexity.)

In an FPGA implementation, we can again benefit
from the dual-ported access mechanism to BRAM blocks.
With the proper data layout and BRAM configuration, a
node and both of its children can be read or written at
the same time and within a single FPGA clock cycle.

The idea is illustrated in Figure 3. Port A provides
the expected type of access to all k nodes of the heap.
We store item and count information using 32-bit values
each, suggesting a word size of 64 bit on BRAM Port A.

Our heap is represented as an array in which the
children of a node at array position n can be found at
positions 2n and 2n+1 (left and right child, respectively).
With two siblings always at adjacent locations (and start-
ing at an even location), we can use the configurability
of FPGA BRAM to access both of them simultaneously.
To do so, we configure Port B to a word size of 128 bit,
as illustrated in Figure 3. Since the word size is twice
the logical record size, an access to Port B with address
n will automatically yield both children of node bn.

Heap maintenance is a good example where high
configurability can compensate for the comparably low
clock frequencies of FPGAs. While, in software, separate
instructions are required to access each of the heap
nodes and to compare them one by one, an FPGA can
perform all lookups and comparisons in a single cycle.
If necessary, the modified nodes are again written back

5

· · · itemn−1 countn−1 itemn countn itemn+1 countn+1 · · · item2n count2n item2n+1 count2n+1 · · ·

Port A (k × 64 bit)

Port B (k/2× 128 bit)

· · ·
bin number n

· · ·
bin number n

parent data

left child right child

Fig. 3. Implementation of a min-heap using dual-ported BRAM. Bin number n applied to the address lines of both
ports will yield record bn at Port A and its two children b2n and b2n+1 at Port B.

in just one cycle. In fact, our implementation performs
all comparisons concurrent to counter increments, such
that no cycles are wasted if the heap layout need not be
changed.

4.3 Assembling a Frequent Item Circuit

CAM Lookup

BRAM Read

BRAM Write

Solving the frequent item prob-
lem along the lines of Algo-
rithm Space-Saving naturally leads
to processing each input item
in three stages. Our implementa-
tion SOFTWARE-LIKE executes these
stages as shown on the right. We
implemented them in VHDL using
content-addressable memory and a
BRAM-based min-heap structure as discussed before.
Processing stages are coordinated by a finite state ma-
chine implemented in FPGA logic.

First, our circuit consults the content-addressable
memory to locate the corresponding bin (implicitly cre-
ating a new entry if the item is not currently moni-
tored). Information about the item is then read from
BRAM, updated, and written back. Sometimes, it may
be necessary to re-organize the min-heap, in which case
SOFTWARE-LIKE iterates as indicated with the dashed
line (re-organization also triggers changes to the content-
addressable memory not shown in the figure).

A process of this type is a good candidate to exploit
some of the parallelism offered by FPGAs. Our imple-
mentation SOFTWARE-LIKE will, for instance, overlap the
CAM lookup of an input item with the bin updates
triggered by its predecessor. Likewise, we parallelize
heap re-organizations and their associated updates to the
content-addressable memory. Both optimizations further
increase the amount of work that can be achieved per
FPGA clock cycle.

4.4 Evaluation
We implemented the circuit for SOFTWARE-LIKE for
execution on the XC5VLX110T Virtex-5 FPGA.3 We con-
figured the circuit to monitor between 16 and 1,024 items

3. Support for content-addressable memories in the Xilinx tool chain
is currently restricted to older chip series [10]. This prevented us from
evaluating our circuit on the Virtex-6 chip.

16 32 64 128 256 512 1024
0

10

20

30

40

50

z =∞
z = 2

z = 1.5

z = 1
z = 0

software (z = 1.5)

number of items monitored

th
ro

ug
hp

ut
[m

ill
io

n
it

em
s/

se
c]

Fig. 4. Performance characteristics of SOFTWARE-LIKE
implementation running on Virtex-5 chip. Input data sets
follow a Zipf distribution z ∈ {0, 1, 1.5, 2,∞}. Dashed line:
performance of the software implementation (z = 1.5).

and measured its throughput with data that follows
a Zipf distribution. The throughput we achieved for
each configuration and for different values for the Zipf
parameter z is reported in Figure 4.

Performance Characteristics. Two characteristics are most
apparent in the graph:

(i) The achieved throughput is very sensitive to the
distribution of the input data. Skewed data (large
z) can be processed about three times faster than
uniformly distributed input.

(ii) Throughput decreases when the number of moni-
tored items is scaled up.

We already observed characteristic (i) when we eval-
uated an implementation of Space-Saving in software.
The data dependence is mainly caused by necessary
re-organizations of the data structure used to monitor
items, a min-heap in the implementation we consider
here. Non-uniform data distributions reduce the likeli-
ness that such re-organizations are necessary.

Signal Propagation Delays. Characteristic (ii), the perfor-
mance degradation of SOFTWARE-LIKE with an increas-
ing number of monitored items is an artifact specific to
FPGAs. To build larger content-addressable memories,
an increasing amount of BRAM blocks have to be wired

6

TABLE 2
FPGA chip resource consumption for the

SOFTWARE-LIKE implementation (Virtex-5 chip). BRAM
is the critical resource for this setup.

config. lookup tbls flip-flops BRAMs clock freq.

64 bins 1,236 1 % 609 1 % 13 8 % 115 MHz
128 bins 1,583 2 % 678 1 % 21 14 % 105 MHz
256 bins 2,126 3 % 811 1 % 37 25 % 85 MHz
512 bins 3,007 4 % 1,072 1 % 69 46 % 75 MHz

1,024 bins 4,911 7 % 1,589 2 % 133 89 % 65 MHz

together into a single functional unit. The growing com-
plexity of this unit leads to longer signal paths and, hence,
to longer signal propagation delays.

The longest signal path determines the maximum
frequency at which the overall circuit can operate. While
we were able to clock the smaller circuit instances (16
to 64 bins) at a rate of up to 115 MHz, a clock rate
of 65 MHz was the maximum for the instance with
1,024 bins. This directly results in the observed perfor-
mance degradation. This is a problem specific to FPGAs.
Our experiments using software (Figure 2) do not show
the same performance degradation for large algorithm
configurations.

Chip Resource Requirements. The min-heap to hold mon-
itored items and the content-addressable memory are
the primary chip resource requirements of this solution
to the frequent item problem, and both boil down to
the consumption of BRAM blocks. Only a little amount
of logic is required, on the other hand, to implement
the state machine that drives processing. As shown in
Table 2, BRAM blocks are the main chip resource that
the implementation consumes. The amount of available
BRAM blocks in the chip thus limits the number of bins
that we can instantiate to 1,024.

Larger chips (such as the Virtex-6 chip mentioned in
Table 1) include more BRAM blocks than the hardware
we used for this experiment and could host configura-
tions far beyond 1,024 bins. However, circuit complexity
and the resulting signal propagation delays are only
going to become worse when we increase configuration
sizes further.

Summary. The use of content-addressable memory and
a BRAM-based bin storage may be seen as a straight-
forward translation of the existing software algorithm
into hardware. It is not surprising that SOFTWARE-LIKE
also inherited a critical deficiency that is already known
to exist in software-based implementations. Heap main-
tenance makes the performance of the implementation
data dependent. This may be prohibitive in scenarios that
depend on predictable behavior even when the nature
of the input data is not predictable. SOFTWARE-LIKE
requires between 3 cycles/item (z = ∞) and 35 cy-
cles/item (z = 0 and 1,024 bins).

5 PARALLELIZE, DON’T SORT

We can address these deficiencies by leveraging some of
the FPGA features that do not apply to a straightforward
implementation of an algorithm that was designed for
execution in software. In particular, we can use the
parallelism that is inherent to FPGAs to replace the data-
dependent heap structure by an alternative that is less
sensitive to the input data distribution. We are going to
refer to the resulting circuit as PARALLEL-LOOKUPS.

5.1 Finding the Bin with Minimal count
For locating the identifier min of the bin bmin that holds
the smallest count value we use a parallel circuit. The
search for this bin was the motivation to use a heap
structure in the implementation SOFTWARE-LIKE.

The corresponding circuit can easily be constructed us-
ing a VHDL description. Assuming only two bins ba and
bb (identifiers a and b; count values counta and countb,
respectively) to choose from, a component to implement
the functionality could be coded as (<= denotes signal
assignment in VHDL):

architecture min(a :in integer,
counta :in integer,
b :in integer,
countb :in integer,
min :out integer,
countmin :out integer) is

begin
min <= a when counta < countb else b;
countmin <=

counta when counta < countb else countb;
end;

A VHDL compiler will translate this description into a
comparison of count values, followed by two multiplex-
ers that drive the output ports of the component, min
and countmin (we detailed the inner workings of a similar
operation in [11]).

It is easy to see that component min can be composed
into a tree that performs bin search for an arbitrary
number of input bins. To process an input of k bins,
k− 1 min elements are needed to construct a search tree
of height dlog2 ke (e.g., using VHDL structural modeling):

min

min

min

· · · · · ·
min

· · · · · ·

min

min

· · · · · ·
min

· · · · · ·

tree for k = 8

This search tree is going to be laid out spatially on
the FPGA chip. It may be seen as a direct hardware
implementation of a reduce operation [12], which has
become a standard design pattern for parallel (software)
algorithms.

Thanks to the search tree, it is no longer necessary
to organize bins in a particular way (such as a min-
heap) or to invest time into sorting. Using the tree, we

7

item1
count1

=

& b1

item2
count2

=

& b2

itemk
countk

=

& bk

· · ·

x

or
· · ·

bx

Fig. 5. All bins bi are compared with the input item x in
parallel to determine whether x is currently monitored.

do not require any particular bin order and can exploit
parallelism for efficient bin access.

5.2 Parallel Item Search
The item lookup corresponding to line 2 of Algo-
rithm Space-Saving can be implemented in very much
the same way. The corresponding circuit is sketched in
Figure 5. An array of simple logic components = com-
pares the input item x to all currently monitored items
itemi in parallel. In case of a match, the bit-wise ‘and’
operator & emits the address bi of the matching bin
or zero otherwise. Since an item can be found at most
in one bin, collecting the output of all & using a bit-
wise ‘or’ operation (indicated as the n-ary operator or in
Figure 5) yields the address bx of the bin that currently
monitors x—or zero if the item was not found.

All sub-tasks are particularly efficient to perform on
FPGAs. Bit-wise ‘and’ operations are provided by the
fast carry logic gates. Comparison components as well
as the or operator can use the full six LUT inputs for
fast, resource-efficient processing. We can, for instance,
implement the n-ary or operation by composing 6-to-1
lookup tables into a tree of height dlog6 ne.

Parallel searches for items and count values in
PARALLEL-LOOKUPS can leverage the asynchronous pro-
cessing mechanisms offered by FPGAs. Component min
as well as the building blocks for parallel item search
(= , & , and bit-wise or) all use combinatorial logic
only. The performance of an asynchronous circuit built
from such operators only depends on the low-level signal
propagation delays inside the chip. In earlier work [11], we
demonstrated how this can improve the performance of
an FPGA circuit.

5.3 Evaluation
By using parallelism we avoid the heap maintenance
required in SOFTWARE-LIKE. An immediate consequence
can be seen in the performance chart shown in Figure 6
(based on our Virtex-6 chip). The throughput of the
PARALLEL-LOOKUPS circuit has become independent of
the input data distribution (contrast to the software so-
lution, which we also plotted into Figure 6 for reference).
Data skew no longer affects the performance of the
hardware circuit, a benefit that is particularly valuable

16 32 64 128 256 512 1024
0

20

40

60

80

100

software, z =∞

software, z = 0
software, z = 1.5

PARALLEL-LOOKUPS (z-independent)

number of items monitored

th
ro

ug
hp

ut
[m

ill
io

n
it

em
s/

se
c]

Fig. 6. Throughput of FPGA implementation PARALLEL-
LOOKUPS () on Virtex-6. Performance of software
implementation shown for reference (/).

if the distribution of the input data is not known in
advance.

Performance Characteristics. As mentioned before, the per-
formance of PARALLEL-LOOKUPS is primarily deter-
mined by signal propagation delays inside the chip.
When scaling up the number of bins, two effects result
in increasing propagation delays:

(i) With increasing heights of min and or trees, more
lookup tables have to be traversed. Each lookup
table adds a fixed propagation delay.

(ii) The high overall fan-in of the two trees complicates
on-chip signal routing. The logic synthesizer thus
has to resort to sub-optimal routing strategies with
high routing delays.

Both factors affect the maximum clock frequency at
which we can operate the hardware circuit (growing
content-addressable memories caused the same effect in
the previous circuit). While we could run the 16-bin
configuration at 280 MHz, routing delays forced us to
clock our largest instance (1,024 bins) at no more than
70 MHz.

The finite state machine that controls the operation of
PARALLEL-LOOKUPS requires three cycles for each input
tuple (independent of the data distribution). This yields
a throughput of 93 million items per second for the 16-
bin configuration, but only 23 million items per second
for the configuration with 1,024 bins.

Note that the observable throughput results from a
combination of the achievable clock frequency and the
number of clock cycles spent for each item. In the
SOFTWARE-LIKE implementation, this number was data
dependent, and 3–35 cycles were required per input item
(z = 0; 1,024 bins). In PARALLEL-LOOKUPS, by contrast,
each item always takes 3 cycles to process.

Chip Resource Requirements. The high degree of paral-
lelism directly affects the amount of logic resources
required. As shown in Table 3, lookup tables are the

8

TABLE 3
Virtex-6 chip resource consumption and clock

frequencies of implementation PARALLEL-LOOKUPS.

configur. lookup tables flip-flops BRAMs clock freq.

64 bins 11,899 3 % 4,352 1 % 1 1 % 175 MHz
128 bins 23,696 6 % 8,512 1 % 1 1 % 130 MHz
256 bins 47,744 13 % 16,832 2 % 1 1 % 120 MHz
512 bins 93,850 27 % 33,472 4 % 1 1 % 85 MHz
1024 bins 168,472 49 % 66,752 9 % 1 1 % 70 MHz

critical resource type in PARALLEL-LOOKUPS. The 1,024-
bin design, for instance, consumed almost half of the
available lookup tables in our Virtex-6 chip.

A difference to the SOFTWARE-LIKE design is that we
now have to use flip-flop registers to store bin data. Flip-
flops are tightly woven into the FPGA logic and can
thus be accessed fully in parallel. The contents of BRAM
blocks, by contrast, need to be requested explicitly by
address, and at most one word can be fetched from each
BRAM block per clock cycle and BRAM port.

Summary. The notable improvement over the earlier
SOFTWARE-LIKE implementation is that the throughput
of PARALLEL-LOOKUPS is independent of the input data
distribution. For data with a small skew, this resulted in
a clear improvement of the net throughput.

On the down side, the performance degradation for
large circuit configurations has become worse. Between
16 and 1,024 bins, we see a throughput reduction by
more than a factor of four (because we had to operate
the large configuration at a lower clock speed). The main
cause for this performance degradation is the growing
complexity of the on-chip wiring required to implement
the two search trees.

6 PIPELINING FOR SCALABILITY
The search trees in PARALLEL-LOOKUPS showed a drop
in execution performance with growing sizes of the
hardware circuit. The main cause is that the necessary
on-chip wiring has to interconnect many storage bins
that are far apart on the chip die. This leads to long
signal paths and complex routing. A circuit that keeps
all wirings and computations local has better chances to
show good scalability.

6.1 Algorithm Array
We can obtain such locality when we organize all bins
as an array in which each bin is only connected to its
two immediate neighbors. The algorithm now has only
a restricted view on the currently monitored information
and must implement its functionality by communication
along the array.

An algorithm that implements these restrictions is
shown in Figure 7 as Algorithm Array. The algorithm
passes each new item x linearly along the array, com-
pares x with each bin, and updates the bin’s count value
if a match was found (lines 9–10 and 4–6).

foreach stream item x ∈ S do1

i← 1 ;2

while i < k do3

if bi.item = x then4

bi.count← bi.count+ 1 ;5

continue foreach ;6

else if bi.count < bi+1.count then7

swap contents of bi and bi+1 ;8

else9

i← i+ 1 ;10

/* replace last bin if x was not found */
bk.count← bk.count+ 1 ;11

bk.item← x ;12

Fig. 7. Algorithm Array. Keep all processing and commu-
nication local to ensure scalability.

item
count bi

x

· · · item
count bi+1

item
count bi+2

· · ·

bi.item
?
= x

(lines 4–6)1©

bi.count
?
< bi+1.count (lines 7–8)

2©

i← i+ 1 (line 9)

3©

Fig. 8. The three processing steps of Algorithm Array.

As item x travels along the array, lines 7 and 8 in
Algorithm Array test the local order among adjacent bins
and, if necessary, swap bin contents to bring the bin with
the smaller count value to the right (we assume small
bin indexes to be to the “left” and large indexes to be
to the “right”). A consequence is that the traveling item
pushes the bin with the smallest count value toward the
right end of the array.

Once item x reached the end of the array and no match
was found, we can be certain that the last bin holds
the smallest count value. According to Algorithm Space-
Saving, this is the bin where we place the new item, as
done in lines 11 and 12 in Figure 7.

We illustrate the three processing steps of Algo-
rithm Array in Figure 8. In Step 1© (algorithm lines 4–6),
item x is compared to the local bin and the count value
incremented if necessary. Otherwise, Step 2© (lines 7–8)
compares count values of the current bin and its right-
next neighbor and swaps the two bin contents if need
be. If neither action was performed, item x moves on to
consider the next bin (Step 3©, lines 9–10).

Properties of the Algorithm. Algorithm Array is seman-
tically equivalent to Algorithm Space-Saving. The two
searches by item and count value are implemented within
one sequential read over the monitored data. As such,
the processing time for a single input item is guaranteed

9

x3 x2 x1

· · · · · ·

Fig. 9. Pipeline parallelism. Multiple input items xi follow
one another and are processed in parallel.

to be O(k), independent of the input data distribution.
Moreover, the bin swapping mechanism in lines 7

and 8 provides the functionality of bubble sort inside
Algorithm Array. Traveling items will gradually sort the
monitored bins in descending order of their count values.
This order coincides with the one typically requested by
users or higher-level algorithms (such as a-priori [13]).

6.2 Pipeline Parallelism
If implemented on a regular CPU, Algorithm Array
is obviously inefficient. While the original Space-Saving
algorithm can be implemented withO(1) (approximated;
using a Stream-Summary) or O(log k) (approximated; us-
ing a min-heap) complexity, the time needed to process
an item in Array depends linearly (i.e., O(k)) on the
configuration size k. On the other hand, all sub-tasks
involved are simple and, as we will see in a moment,
Array can be parallelized well, which makes it a good
basis for an implementation in an FPGA.

The bin array can be viewed as a pipeline. Each item
progressively traverses this pipeline and changes state
only locally. Multiple items can follow one another in the
pipeline and will not interfere with each other as long
as they keep sufficient distance. An FPGA can process
all such items in parallel.

Any processing step in Algorithm Array operates on
two adjacent bins at most. Items will thus never interfere
with each other if they are separated by at least one bin;
i.e., up to k/2 items can traverse an array of length k
simultaneously. This is illustrated in Figure 9. The six
bins on the bottom of that figure represent a subset of
the bin array. Items x1 through x3 follow each other with
one bin separation. The three steps in Algorithm Array
(illustrated using arrows as before) can only reach bins
in a way that will not cause interference.

Analysis. Assuming sufficient resources for parallelism
(as it is the case in FPGAs), pipelining makes the
throughput of Algorithm Array independent of the
length of the bin array (i.e., of the number of items mon-
itored). This is an even stronger guarantee than the O(1)
complexity of Space-Saving which assumes constant-time
hash lookups.

Pipeline parallelism could, in theory, also be imple-
mented in software on top of general-purpose CPUs.
But even if CPU resources were available in sufficient
quantity (several tens or hundreds of CPUs), such an im-
plementation would suffer from a significant overhead
to synchronize threads and communicate data between

them. In addition, threads would all compete for the
same cache lines and thus experience high cache miss
rates. None of these problems are an issue in an FPGA-
based implementation.

6.3 Implementation Details
Our actual hardware implementation PIPELINE performs
all steps 1©– 3© as one processing unit, which makes
each item’s progress in the pipeline fully predictable
(hence, avoids expensive synchronization). To ensure the
correctness of the implementation (and not miss a bin
match), we compare x with the contents of bi and bi+1.

When a match is found for an item x, PIPELINE
continues traversing the array (as opposed to aborting
the while loop in line 6), but x is replaced by a special
void item that will never match and will not be put into
the last bin of the pipeline. This increases the regularity
of our circuit, and we benefit from the sort operations
that are also performed during the processing of void
items.

The latter two implementation details also make the
throughput of PIPELINE data independent. The execution
of a processing unit takes the same amount of time, no
matter how skewed the input data. Like the PARALLEL-
LOOKUPS design in the previous section, the implemen-
tation PIPELINE features predictable data throughput.

We constructed our circuit to perform two processing
units within each clock cycle. That is, after each clock
cycle we move each item xj forward by two bins (and
perform up to two swaps). Once more this increases the
regularity of our circuit, which now performs the same
work on the same bins during every clock cycle. As a
result, we can accept one item from the input with every
clock tick.

6.4 Evaluation
We ran our implementation PIPELINE in the Virtex-6-
based testbed for various numbers of bins. As can be
seen in Figure 10, the throughput of this design remains
almost constant for a large range of configurations. The
only significant outlier to a throughput of 110 million
items per second is the configuration with 1,024 bins.
All configurations outperform the software solution by
a factor of four and more.

This favorable scalability is a consequence of the
pipeline-based design of the circuit. All circuit complex-
ity, including longest signal paths, stays within each
instance of the processing unit that we programmed.
Signalling between instances is short, cheap, and inde-
pendent of the length of the pipeline.

Chip Resource Requirements. Resource requirements for
the PIPELINE implementation (listed in Table 4) scale
similarly to what we saw previously for PARALLEL-
LOOKUPS, though the absolute numbers are somewhat
higher.

Again we use flip-flops to keep state (a requirement for
the highly parallel access that we perform). In addition

10

16 32 64 128 256 512 1024
0

25

50

75

100

125

software, z =∞

software, z = 0

software, z = 1.5

PIPELINE (z-independent)

number of items monitored (length of pipeline)

th
ro

ug
hp

ut
[m

ill
io

n
it

em
s/

se
c]

Fig. 10. Performance of hardware circuit PIPELINE on
Virtex-6 chip (). Performance of software implemen-
tation shown for reference (/).

TABLE 4
Virtex-6 resource consumption of PIPELINE.

configuration lookup tables flip-flops clock freq.

64 bins 16,846 4 % 5,377 1 % 110 MHz
128 bins 34,108 9 % 10,529 1 % 115 MHz
256 bins 71,302 20 % 20,804 3 % 105 MHz
512 bins 135,424 39 % 41,441 6 % 110 MHz
1024 bins 269,285 78 % 82,657 12 % 95 MHz

to storage for the bin contents, this time we also need
additional flip-flops to hold all items that concurrently
traverse the pipeline (“the circles in Figures 8 and 9”),
which explains the additional flip-flop consumption.

The pipelined circuit also has to perform more compu-
tational work for each bin. Each processing unit (as men-
tioned before) consists of several comparisons (equality
and inequality) and two counter increments, as well as a
swap logic; and one processing unit has to be processed
per bin and clock cycle. PIPELINE’s consumption of
lookup tables thus is appreciably higher than what we
saw for PARALLEL-LOOKUPS, but also yields a two- to
four-fold throughput improvement.

Resource analysis also reveals why we see a per-
formance drop for the configuration with 1,024 bins.
Since flip-flops and lookup tables have to be combined
into slices on the physical chip, actual chip space us-
age is higher than the dominating resource type alone
(here: lookup tables). In our particular case, the 1,024-
bin design occupied 81 % of all available FPGA slices.
It is known that chip utilization beyond 70–80 % will
likely lead to contention on the on-chip routing intercon-
nect [14]—with negative consequences on the achievable
clock frequency and data throughput.

Scalability. A virtue of the pipeline-style circuit design
is its scalability with circuit sizes. Our design has now
truly become bound by the available amount of chip
resources. With larger chips we would expect to see

PIPELINE scale beyond 1,024 bins.
In an earlier report on this work [6], we were conduct-

ing experiments on a Virtex-5-generation chip and with
an older version of the VHDL synthesis software. With
that combination we had seen a constant maximum clock
frequency of 80 MHz (maximum throughput of 80 mil-
lion items/sec) for all configurations tested. The current
11.4 release of the Xilinx synthesis software uses more
advanced optimization heuristics. They cause the slight
throughput variations that can be seen in Figure 10.

Scalability beyond the available space of a single chip
could be achieved by hardware solutions that daisy-
chain multiple FPGA chips (such as the BEE3 [15] or
Cube [16] systems). We would expect that PIPELINE
would nicely map to such environments, though the
necessary hardware is typically harder to obtain than
single-chip solutions.

Summary. The PIPELINE implementation clearly wins
the throughput race among all frequent item solutions
we are aware of. Our circuit sustains a throughput of
110 million tuples per second over a large range of size
configurations. This corresponds to a processing time of
1 cycle/item at a clock rate of 110 MHz.

What makes PIPELINE most attractive, however, is its
high potential to scale to large bin configurations, where
the only limit is the available chip space.

7 QUERIES

While our main focus so far was the achievable through-
put on the input side, real-world applications will likely
also demand efficient read access—preferably without in-
terference with update processing. Das et al. [17] recently
demonstrated that a concurrent query workload can
severely harm the efficiency of a parallel frequent item
solution.4

Different query mechanisms are conceivable to sup-
port read access in our three FPGA design alternatives.

7.1 SOFTWARE-LIKE Design
In our SOFTWARE-LIKE design, the key information
(items and their associated count value) is kept in a min-
heap implemented using Block RAM. Answering a user
query thus means to read out the Block RAM content.

The min-heap maintenance routine in Section 4.2 takes
advantage of the dual ported feature of BRAM and re-
serves both ports to implement node swapping. Thus,
in order to read out bin content in response to a user
query, the input processing logic must release at least
one of the two BRAM ports (and suspend its own work
for that). In effect, each bin readout will cause a fixed
processing delay and reduce overall update throughput.
In particular, each readout of the full BRAM content will

4. In what Das et al. termed “independent design,” a single query
every 50,000 updates will already eat up almost 100 % of the available
CPU time. No comparisons are given in [17] for their proposed “Coop”
and “Shared” parallelization strategies.

11

bin 1 bin 2 bin 3 · · · bin k

multiplexer
· · ·

bin addr

item/count

update logic

Fig. 11. Bin data storage in flip-flop registers (as done
in designs PARALLEL-LOOKUPS and PIPELINE) allows bin
readouts independent of the update process, e.g., using
a k-to-1 multiplexer.

take at least k FPGA cycles in a k-bin design, plus few
cycles to suspend and resume input processing.

The effective circuit slow-down thus depends on
query frequency and the value of k. Taking the scenario
of Das et al., one query every 50,000 input items will
slow down a 256-bin SOFTWARE-LIKE circuit by ≈ 0.6 %.

From an implementation perspective, support for
readout causes only little overhead. In particular, the
small additional circuitry will not considerably affect
resource consumption, which was dominated by the use
of BRAM. The implementation that we measured in
Section 4 already included readout support.

7.2 Register-Based Designs
Things look differently in the remaining two FPGA
designs. PARALLEL-LOOKUPS and PIPELINE use flip-
flop registers to store bin data. Registers are tightly
woven into the FPGA fabric and can—conceptually—be
accessed by an arbitrary number of concurrent readers.

This property opens up the possibility to perform
readouts fully independent of any update processing,
hence, without impact to update throughput. A basic
implementation is illustrated in Figure 11: a reader states
the index of a bin on the address line bin addr of a k-
way multiplexer and can then read the corresponding
item and count values on the multiplexer output. The
designs we presented in Sections 5 and 6 both contained
exactly this circuitry.

Semantics. Though slim and elegant to implement, the
readout strategy shown in Figure 11 has a severe se-
mantical problem: there are no consistency guarantees
for readouts that occur concurrent to update processing.
Depending on the input data, inconsistencies might in-
clude wrong count values, duplicate or conflicting values
for the same item,5 or even missing bin data.

7.3 Consistent Readouts with PARALLEL-LOOKUPS

Our PARALLEL-LOOKUPS circuits was designed to keep
the internal bin data consistent at any one moment in

5. Duplicate items might occur if an item, say y, forces the eviction
of item x from its current bin bi; some items later, x might again occur
in the input stream and now be placed in some other bin bj .

b1

b′1

b2

b′2

b3

b′3

b4

b′4

bk

b′k

· · ·

· · ·
· · ·

write enable

Fig. 12. Atomic snapshots. Raising the write enable sig-
nal will atomically copy all bi into snapshot registers b′i.

time. Inconsistencies are likely to happen, however, as
soon as the readout spans a number of cycles during
which data might change underneath. Two approaches
are conceivable to prevent inconsistent readouts from
happening:
suspend input processing Much like in the SOFTWARE-

LIKE design, we could suspend the processing of
input during data readouts.

atomic snapshots Take an atomic snapshot of all bin
data, then return it to the user over time.

An implementation that uses the former alternative
will suffer the same performance penalty that we dis-
cussed for the BRAM-based design before (about k cy-
cles for a full readout). Implementation-wise, only little
logic has to be added to stop input processing during
readouts.

7.3.1 Atomic Snapshots
The second alternative, atomic snapshots, is more inter-
esting from an architectural perspective. The gathering
of such snapshots is well supported by FPGA hardware.
Figure 12 illustrates the idea.

Next to each of the active data bins b1, . . . , bk, we place
snapshot registers b′1, . . . , b′k, which can hold a snapshot
copy of the respective bin. The data input lines of the
snapshot registers are wired to the output of the corre-
sponding active bins. This output will be copied into the
snapshot registers at the instant when the write enable
input line is raised. Thus, by connecting all snapshot
registers to a common write enable signal, a complete
snapshot can be taken within a single FPGA clock cycle.

The idea of snapshotting works well in principle and
is straightforward to implement. Unfortunately, its price
in terms of FPGA resource consumption is significant.
Snapshot copies will double the number of flip-flop
registers required. Since snapshots are “unrelated logic”
with respect to the main processing circuit, the required
flip-flops will have to be placed on their own FPGA slices
and thus significantly increase the overall chip space
consumption.

7.4 Readouts with PIPELINE

Implementation strategy PIPELINE once again offers in-
teresting advantages. As an item travels through the
circuit, the state it leaves behind will be a consistent
set of item/count pairs (we exploited this property to
concurrently process multiple items back-to-back in a
single circuit).

12

b j12 b j13 b j15 b j16 b j17b j14

x3 x1x2

· · · · · ·

bj−212 bj−113 b j14

FIFO queue to reader

b j14

Fig. 13. Readout for design PIPELINE. bji denotes data of
bin bi as it was written in clock cycle j.

16 32 64 128 256 512 1024
0

25

50

75

100

125

software, z =∞

software, z = 0

software, z = 1.5

PIPELINE:
with readout
without readout

number of items monitored (length of pipeline)

th
ro

ug
hp

ut
[m

ill
io

n
it

em
s/

se
c]

Fig. 14. Performance of hardware circuit PIPELINE with
and without explicit readout functionality.

This means that, at any moment, we can “attach” to
an item that enters the circuit, follow it while it travels
through the processing pipeline, and emit each left-
behind item to an outside reader.

Figure 13 illustrates this idea. Travelling item x2 was
attached for a data readout. As it passes each bin bi in
clock cycle j, it copies the left-behind bin content bji to
a FIFO queue. This procedure populates the FIFO with
consistent information for all bin contents. All items that
were processed before and including x2 will be reflected
in the data written to the FIFO, but none of those that
are processed after x2.

Scalability and Performance. By design, data readouts
based on item attachment do not affect or slow down
input processing. The necessary circuitry to implement
the functionality could, however, have negative impact
on the on-chip signal routing or lead to high resource
consumption.

Figure 14 illustrates the achievable throughput that
we measured PIPELINE circuits with or without the ad-
ditional readout logic. Overall, the add-on functionality
does not significantly affect data throughput: observable
throughput changes are within the increments in which
we measured throughput (5 million items per second).
In fact, for several circuit instances, the optimizer found
slightly better physical designs with the readout func-
tionality in place.

TABLE 5
Readout functionality and chip resource consumption

(PIPELINE design; 1,024 bins).

without with
resource readout readout change

lookup tables 269,285 266,327 − 1 %
flip-flops 82,657 100,444 + 22 %
slices 69,433 69,482 ± 0 %

Chip Resource Requirements. A look at the consumed re-
sources confirms that variations are mainly an effect due
to different optimizations taken by the physical design
optimizer. Interestingly, as shown in Table 5, the design
requires less lookup tables if readout functionality is
added.

Implementation Aspects. In Table 5, only the amount of
flip-flop registers used by the designs differs signifi-
cantly between the two alternatives. This is a conse-
quence of a particular implementation aspect.

The way to implement attachment is to use a multi-
plexer that consecutively retrieves the contents of each
bin (at the pace of the traveling item it is attached to).
Implementing such a multiplexer naı̈vely as illustrated
in Figure 11 would cause new trouble with signal prop-
agation delays. Essentially, such a multiplexer will lead
to the same high fan-in problems that ruined scalability
in the PARALLEL-LOOKUPS design of Section 5.

This can be avoided by staging the multiplex operation
into a tree of multiplexers of which each only has a
reasonably small fan-in. During readout, all multiplexers
write their output into a local flip-flop registers from
where it is passed on to the next stage in the following
clock cycle. In effect, the content of each bin is pipelined
to the root of the staging tree. Once again the use of
pipeline parallelism helps to guarantee scalability. Once
again the cost of it is some increase in the number of
flip-flop registers consumed.

8 POWER CONSIDERATIONS

FPGAs can also provide advantages over general pur-
pose CPUs in terms of power consumption. In this
section we determine the power consumption of the
FPGA designs and compare it with the power required
by a traditional CPU-based system. We embed the fre-
quent item circuits into a complete FPGA system on
our Xilinx XUPV5-LX110T board (Figure 15). We use a
gigabit Ethernet link to send the stream data into the
circuit. To this end we implement a UDP/IP engine
on the FPGA. The engine receives UDP datagrams and
extracts 32-bit tuples from the datagrams. A dedicated
command datagram is used to trigger the readout of the
bins. The bin data, i.e., item and count, are sent back as
UDP datagrams from our UDP/IP engine. This setup
allows us to (1) verify that indeed data can processed at
full network speed and (2) get a full end-to-end system
from which we can obtain meaningful results for the

13

FPGA chip

MACnetwork
items,
queries,
readout
(UDP)

UDP/IP

Ethernet
frames

Frequent
Item
Logic

items

queries, readout

Fig. 15. Frequent item logic connected to a gigabit
Ethernet network for processing data sent via UDP.

32 25
6

10
24

SOFTWARE-
LIKE

32 25
6

PARALLEL-
LOOKUPS

32 25
6

PIPELINE

bins
0 W

1 W

2 W

3 W

4 W

Po
w

er

total chip power
dynamic power
frequent item logic

Fig. 16. Comparison of chip power consumption of differ-
ent FPGA implementations.

total consumption that can be compared to traditional
computer systems.

For a 1 Gb/sec link the upper bound of the data rate
is 119 MiB/sec or equivalently 31.25 million items/sec.
In order to handle this load using the PIPELINE imple-
mentation it is sufficient to clock the frequent item logic
at 31.25 MHz. The throughput numbers shown earlier in
Table 4 are significantly higher (> 95 million items/sec).
On hardware with additional physical network inter-
faces, this would allow us to process data from up to
three concurrent input streams.

Figure 16 shows the power estimates for the FPGA
chip determined by the Xilinx XPower Analyzer. The
total chip power includes both static power dissipation
(due to quiescent current losses) as well as dynamic
power (caused by signal switching). In Figure 16 we
highlight (shaded) dynamic losses that caused by the
frequent item circuit alone. It can be seen that with the
increasing number of bins the total chip power as well as
the power for the frequent item logic increases due to the
larger circuit size. The large number of RAM blocks used
in the SOFTWARE-LIKE implementations consumes more
power than the register-based PARALLEL-LOOKUPS ver-
sion. The comparatively high power is required for the
PIPELINE implementation can be explained by relatively
large chip utilization and the higher circuit activity. For

256 bins, PIPELINE requires 97 % of the total Virtex-5
chip space compared to 68 % for PARALLEL-LOOKUPS.
For the former several bins can be updated in a single
clock cycle whereas for the later at most one bin is active
in an given cycle. The total power consumption is less
than 4.5 W for all FPGA designs. This power calculation
includes only the FPGA chip. We measure the actual
power consumption of the entire FPGA board using a
power meter attached to the wall plug. For all designs
we measure an overall power consumption of 11 W for
the entire board.

As a reference for the software implementation we
use a mobile Core2 Duo T9550 2.66 GHz processor, as
it provides a good trade-off between performance and
power. For this CPU Intel specifies a thermal design
power (TDP) of 35 W which can serve as an upper bound
for the total power consumption. Compared to the 4.5 W
total power for the FPGA this results in a 7.8-fold power
reduction. We also measure the total power consumption
of 43 W for the Core2 Duo system (Lenovo W500) at
the wall plug when running the software implementata-
tion [4]. This corresponds to an overall power reduction
of 4× and shows that FPGAs can provide a significant
power advantage even over an already power-optimized
mobile platform.

9 RELATED WORK

Cormode and Hadjieleftheriou [4] give an excellent
overview over existing (software-based) techniques to
answer the frequent item problem, including groups
of algorithms that we did not mention here (such as
quantile or sketch-based algorithms). We refer to their
paper for related work on general frequent item tech-
niques. In a more recent work, Das et al. [17] paral-
lelized the calculation of frequent items for multi-core
systems. Their achieved performance (≈ 5 million items
per second) demonstrates that Space-Saving is difficult to
accelerate using commodity multi-core CPUs.

We would like to mention the work of Bandi et al.
[8] explicitly. They too suggested the use of content-
addressable memory to determine frequent items. To
this end, they assume a specialized hardware component
originally designed for network processing. Compared
to the CAM we instantiated inside an FPGA, such a
hardware solution provides higher storage capacities as
well as support for ternary CAM. Ternary CAMs allow
the use of wild cards in the search key. Bandi et al.
use this feature extensively and use content-addressable
memory as their only access mechanism to an otherwise
unordered bin storage (no heap or similar data structure
on the side). In summary, they were able to achieve
throughput rates slightly under 1 million input items
per second. Like software-based implementations or our
SOFTWARE-LIKE circuit, this implementation is sensitive
to value distributions in the input data.

The structure of Algorithm Array has many simi-
larities to systolic arrays, a concept that emerged as

14

0 20 40 60 80 100 120

1024
bins

256
bins

64
bins

16
bins

co
nfi

gu
ra

ti
on

(n
um

be
r

of
bi

ns
)

throughput [million items / sec]

software (worst/best)
SOFTWARE-LIKE (worst/best)

PARALLEL-LOOKUPS

PIPELINE

Fig. 17. Throughput comparison of all approaches dis-
cussed.

a design guide for hardware circuits in the late 70s.
Kung and Leiserson [18] discovered systolic arrays as
a very efficient, yet simple-to-manufacture type of cir-
cuits to perform matrix multiplications. Later, Kung and
Lohman [19] and Hurson et al. [20] used the same
principle to implement basic database functionality.

The idea of systolic arrays was also considered by
Baker and Prasanna [21], who implemented parts of
the a-priori algorithm with a technique they termed
systolic injection. The main use of their circuit is the
calculation of support for candidate item sets. In an
array of processing units, each unit is initialized with one
candidate set. Then, data is streamed through the array
(one transaction after the other), and each unit counts the
number of transactions that contain the candidate set.

10 CONCLUSIONS

In this paper we presented three different FPGA de-
signs that implement the search for frequent items:
SOFTWARE-LIKE, PARALLEL-LOOKUPS, and PIPELINE.
The different designs illustrate the possibilities and
trade-offs inherent in FPGAs, as well as their advantages
over software-based solutions. Figure 17 summarizes the
throughput of each one of the techniques discussed,
including the software implementation of Space-Saving
[5], [4] as a baseline.

Our results show that FPGAs are clearly competitive
as the basis for implementing frequent item search.
PIPELINE, the best design in terms of performance,
provides a throughput of 110 million items per sec-
ond. Moreover, the throughput is independent of the
distribution of the input data, a major difference over
software-based solutions. PIPELINE showed far better
performance than any known software-based solution.

More interesting, however, are the different notions of
parallelism that we studied in this work and how they
behave with with respect to scalability. The frequent

item problem is a known challenge for parallel execu-
tion [17] and straightforward parallelization strategies
like PARALLEL-LOOKUPS do not exhibit the desirable
scalability with problem sizes. The last of our three
designs, circuit PIPELINE, is based on pipelining and
excels in both scalability and performance.

ACKNOWLEDGEMENTS

This work was supported by an Ambizione grant of
the Swiss National Science Foundation under the grant
number 126405 and by the Enterprise Computing Center
(ECC) of ETH Zurich (http://www.ecc.ethz.ch/).

REFERENCES

[1] D. Greaves and S. Singh, “Kiwi: Synthesis of FPGA circuits
from parallel programs,” in IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2008.

[2] Kickfire, http://www.kickfire.com/.
[3] Netezza Corp., http://www.netezza.com/.
[4] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in

data streams,” Proceedings of the VLDB Endowment, vol. 1, no. 2,
pp. 1530–1541, 2008.

[5] A. Metwally, D. Agrawal, and A. E. Abbadi, “An integrated
efficient solution for computing frequent and top-k elements in
data streams,” ACM Transactions on Database Systems (TODS),
vol. 31, no. 3, pp. 1095–1133, Sep. 2006.

[6] J. Teubner, R. Mueller, and G. Alonso, “FPGA acceleration for the
frequent item problem,” in Proc. of the 26th Int’l Conference on Data
Engineering (ICDE), Long Beach, CA, USA, Mar. 2010.

[7] Virtex-5 FPGA User Guide, Xilinx Inc., May 2009.
[8] N. Bandi, A. Metwally, D. Agrawal, and A. E. Abbadi, “Fast data

stream algorithms using associative memories,” in Proc. of the 2007
ACM SIGMOD Int’l Conference on Management of Data, Beijing,
China, Jun. 2007, pp. 247–256.

[9] An Overview of Multiple CAM Designs in Virtex Family Devices.
Application Note 201, Xilinx Inc., Sep. 1999.

[10] Content-Addressable Memory v6.1, Xilinx Inc., Sep. 2008.
[11] R. Mueller, J. Teubner, and G. Alonso, “Data processing on

FPGAs,” Proc. of the VLDB Endowment (PVLDB), vol. 2, no. 1, Aug.
2009.

[12] G. E. Blelloch, “Prefix sums and their applications,” in Synthesis
of Parallel Algorithms, J. H. Reif, Ed. Morgan Kaufmann, 1993.

[13] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules in large databases,” in Proc. of the 20th Int’l Conference
on Very Large Data Bases (VLDB), Sep. 1994, pp. 487–499.

[14] A. DeHon, “Balancing interconnect and computation in a re-
configurable computing array (or, why you don’t really want
100 % LUT utilization),” in Proc. of the Int’l Symposium on Field
Programmable Gate Arrays (FPGA), Feb. 1999, pp. 125–134.

[15] J. Davis, C. Thacker, and C. Chang, “BEE3: Revitalizing computer
architecture research,” Microsoft Research, Tech. Rep. MSR-TR-
2009-45, 2009.

[16] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong,
and P. H. W. Leong, “CUBE: A 512-FPGA cluster,” in Proc. of the
Southern Programmable Logic Conference (SPL), São Carlos, Brazil,
2009.

[17] S. Das, S. Antony, D. Agrawal, and A. E. Abbadi, “Thread co-
operation in multicore architectures for frequency counting over
multiple data streams,” Proc. of the VLDB Endowment (PVLDB),
vol. 2, no. 1, Aug. 2009.

[18] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in
Sparse Matrix Proceedings, Knoxville, TN, USA, Nov. 1978, pp. 256–
282.

[19] H. T. Kung and P. L. Lohman, “Systolic (VLSI) arrays for relational
database operations,” in Proc. of the 1980 ACM SIGMOD Int’l
Conference on Management of Data, Santa Monica, CA, USA, May
1980, pp. 105–116.

[20] A. R. Hurson, C. R. Petrie, and J. B. Cheng, “A VLSI join module,”
in Proc. of the 21st Hawaii Int’l Conference on System Sciences, Kailua-
Kona, HI, USA, 1988, pp. 41–49.

15

[21] Z. K. Baker and V. K. Prasanna, “Efficient hardware data mining
with the apriori algorithm on FPGAs,” in Proc. 13th Symposium
on Field-Programmable Custom Computing Machines (FCCM), Napa,
CA, USA, Apr. 2005, pp. 3–12.

PLACE
PHOTO
HERE

Jens Teubner is a senior researcher in the Sys-
tems Group at ETH Zurich. His main research
area is the use of modern hardware technolo-
gies (including FPGAs, hardware-accelerated
networks, and multi-core platforms) for database
acceleration. He received his PhD in 2006 from
the Technische Universität München in Munich,
Germany for his work on the Pathfinder XQuery
compiler. He was working at the IBM T. J. Wat-
son Research lab from 2007–2008, before he
joined ETH in 2008.

PLACE
PHOTO
HERE

René Müller is a PhD student in the Systems
Group at ETH Zurich. His main interests are
embedded data processing and wireless sen-
sor networks. After an undergraduate degree in
electrical engineering he obtained a MSc in com-
puter science from ETH Zurich in 2005. In his
previous work, he developed SwissQM, a virtual
machine-based stream processing platform for
sensor networks.

PLACE
PHOTO
HERE

Gustavo Alonso is a Professor at the Depart-
ment of Computer Science of ETH Zurich. At
ETH he is a member of the Systems Group
(www.systems.ethz.ch). His areas of interest in-
clude: distributed systems, data management,
enterprise architecture, middleware, and system
design. For more information, see: www.inf.ethz.
ch/∼alonso

