
Real-Time Pattern Matching with FPGAs
Louis Woods, Jens Teubner, Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich
{firstname.lastname}@inf.ethz.ch

Abstract— We demonstrate a hardware implementation of a
complex event processor, built on top of field-programmable gate
arrays (FPGAs). Compared to CPU-based commodity systems,
our solution shows distinctive advantages for stream monitoring
tasks, e.g., wire-speed processing and predictable performance.

The demonstration is based on a query-to-hardware compiler
for complex event patterns that we presented at VLDB 2010 [1].
By example of a click stream monitoring application, we illustrate
the inner workings of our compiler and indicate how FPGAs can
act as efficient and reliable processors for event streams.

I. INTRODUCTION

Today, an increasing need for low latency complex event
processing is seen in various time-critical network stream
monitoring tasks such as real-time risk checking in financial
trading applications, security auditing in web service applica-
tions, or intrusion detection in Internet-based applications. All
of these tasks come with high demands:

(a) A stream monitor must handle any input data at full wire
speed in real time. It must be robust even under malicious
conditions such as network flooding.

(b) The monitor must not interfere with any of the systems
being monitored. Ideally, no existing system needs to be
altered or invaded to perform stream monitoring.

(c) An easy-to-use and yet sufficiently expressive high-level
query language should allow system administrators to
configure the stream monitor to their needs. For instance,
regular expressions are an elegant and familiar way to
describe higher-level complex events over a number of
basic events.

Together, these demands often hit the limits of software-
based stream monitoring. It is known, for example, that
high network packet rates (as they are common in financial
trading applications) can quickly thrash the network stack of
commodity systems [2]. A hard-wired hardware solution, on
the other hand, is too rigid and does not provide the nec-
essary programmability required by most of the applications
mentioned above.

In earlier work [2], we showed that field-programmable gate
arrays (FPGAs), user-programmable hardware chips, can offer
significant advantages in similar problem scenarios, either as
standalone devices or as part of a heterogeneous multi-core
architecture. In this demonstration, we extend our earlier work
and spotlight a fully functional stream monitor that detects
complex event patterns in real time on a Gigabit network link.

Switch

Web Server
FPGA

Client C

Client BClient A

Fig. 1. Demonstration setup.

II. DEMONSTRATION

Our demonstration is based on the compiler that we pre-
sented at VLDB in [1]1. The compiler translates declarative
queries for complex event patterns into executable hardware
circuits that can then be loaded onto the FPGA chip.

The compiler itself is a generic infrastructure for stream
monitoring tasks. For this demonstration, we use it to im-
plement a real-time click stream monitoring system, which
analyzes the request stream of an Internet web server. The
use case includes all necessary ingredients to demonstrate
the inner workings of our compiler while allowing for active
participation of demonstration visitors at the same time.

The demonstration setup is illustrated in Figure 1. We
bring our own web server, installed on a laptop machine,
and few additional laptops that act as clients to the web
server—demonstration visitors can also connect their own
laptops to our switch or access the server through WLAN.
Our FPGA-based stream monitor is connected to the same
network and can eavesdrop on the server traffic.2 The FPGA
device monitors the server traffic and detects multiple user-
defined click stream patterns on a per-user basis concurrently.

A. Application Scenario

To illustrate complex event detection, we assume a multi-
step web form as shown in Figure 2. The form consists of three
sub-forms F1, F2, and F3 and a final confirmation form C.
Form F2 is optional and can be skipped by the user. Once the
user has confirmed his/her transaction, he/she will be directed
to either of the three thank-you pages T1 through T3. Such

1A preprint version is available on the authors’ website at http://
people.inf.ethz.ch/jteubner/publications/cep-fpga/.

2Our network switch is configured to mirror the web server port to the
FPGA for that purpose.



F1 F2

T1

T2

T3

F3 C

Fig. 2. Multi-step web form.

forms are commonly used, e.g., for online shopping, flight
booking, database conference registration, to name but a few
examples.

Here we are interested in detecting specific client behavior.
In particular, we want to be informed whenever a sequence
of basic events (page requests) matches a user-defined event
pattern. If so, we raise a complex event with a higher-level
meaning to the user who formulated the pattern.

B. Complex Event Patterns

As running examples, we consider the following three
complex event patterns:
direct-buy Our ideal customer clicks through the sub-

forms once and in proper order, then commits his/her
transaction and sees any of the three thank-you pages.

indirect-buy Before confirming their order, some cus-
tomers decide to make changes to their form entries and
thus move back and forth between the F and C pages
before finally placing their order. Frequent occurrences of
this pattern may indicate problems in the design of the
web form and its user interaction.

aborted-buy After visiting any of the F and C pages,
some customers navigate away without placing an order
(i.e., they access some outside page O before reaching any
of the thank-you pages). Again, such events may indicate
design weaknesses of the web application.

All three event patterns need to be tracked concurrently on a
per-user basis and without slowing down the web application
itself. In Section III, we will show how these patterns can be
described in a declarative manner.

C. Hardware Circuit Generation

In a nutshell, the main tasks of the FPGA-based stream
monitor boil down to (1) identifying specific page requests,
i.e., basic events, (2) assigning those page requests to the
appropriate sub-streams, and finally (3) detecting complex
event patterns over the respective sub-streams, i.e., on a per-
user basis.

Tasks 1 and 3 rely heavily on regular expression pattern
matching. In [1], we elaborated how regular expressions
can be implemented on FPGAs using finite state automata.
Most notably, non-deterministic automata (NFAs) operate as
efficient as deterministic automata (DFAs) in FPGA hard-
ware. However, the lower chip space requirements of non-
deterministic automata are significant, thus making them the
preferred design choice for FPGA-based implementations.

1 SELECT S.src-ip
2 FROM InputStream S
3 PARTITION BY S.src-ip
4 PATTERN direct-buy (F1 F2? F3 C T)
5 PATTERN indirect-buy (F1 F2? F3 C ([F1-F3]+ C)+ T)
6 PATTERN aborted-buy ([F1-C]+ O)
7 DEFINE
8 F1 AS (S.data=/(GET|POST) \/form1\.html/)
9 F2 AS (S.data=/(GET|POST) \/form2\.html/)

10 F3 AS (S.data=/(GET|POST) \/form3\.html/)
11 C AS (S.data=/(GET|POST) \/confirm\.html/)
12 T AS (S.data=/(GET|POST) \/thanks[1-3]\.html/)
13 O AS (S.data=/(GET|POST) \/[ˆ.]*\.html.*HTTP/)

Listing 1. Complex event pattern query.

We also support important functionality that goes beyond
regular expression matching. The per-user tracking that our
scenario is built on (Task 2) raises new challenges in FPGA
designs whenever hard throughput guarantees have to be met.
In [1], we showed how user tracking (or partitioning in the
generic stream processing sense) can be realized in an FPGA
in a scalable manner by means of a pipelining strategy.

While we refer to [1] for details on both, efficient regular
expression matching and stream partitioning with FPGAs,
our demonstration will illustrate the benefits of the design
choices we have made. To this end, we let conference attendees
compile their own complex event pattern queries into FPGA
circuits. Our compiler is equipped with various hooks to
inspect its inner workings. Demonstration visitors can also
follow the full design flow to generate a hardware circuit,
including gate-level views or FPGA chip space occupation.

III. DECLARATIVE COMPLEX EVENT QUERIES

A major advancement of our work is that users can specify
their event patterns of interest in a high-level, declarative
language, yet can benefit from the speed and performance
guarantees of query execution directly in hardware.

A. Query Language

The complex event query language of our system is inspired
by an ongoing effort to extend SQL with pattern matching
capabilities [3].3 Listing 1 depicts the code necessary to detect
all three event patterns that we motivated in Section II-B.

In this listing, lines 7–13 use a PCRE4-style regular expres-
sion syntax to detect basic events from the low-level network
packet payload (S.data). The regular expressions will match
HTTP requests (using either the GET or POST methods) for
the three form pages F1–F3, the confirmation form C, or any
of the three thank-you pages. Notice that we generate a single
basic event T for requests to all three thank-you pages since
their distinction is of no importance for the complex event
patterns specified. The last basic event O (line 13) will catch
any other request for an HTML file that is not covered by

3We intend to integrate our current work with our Glacier SQL-to-hardware
compiler [2], allowing users to combine SQL- and CEP-style queries within
a single query.

4Perl Compatible Regular Expressions



network stream
monitor web server

event reaction

Fig. 3. High-level stream monitoring architecture.

the five preceding regular expressions—and thus indicates a
navigation to an outside page as needed to answer the complex
event pattern aborted-buy.

Based on these six basic events, three high-level, complex
events can be expressed as shown in lines 4–6. Again, we use
familiar regular expression syntax, this time operating over the
defined basic events rather than on raw packet payloads.

The PARTITION BY clause on line 3 requests user track-
ing based on source IP addresses, i.e., the complex event must
consist of basic events that were generated from the same
source IP address.

Finally, the SELECT clause on line 1 specifies what we
want to report when any of the three complex event patterns
match—in this case, the source IP address of the user that
caused the complex event (along with an implicit identifier of
the corresponding pattern that matched).

B. Query Compilation

For the query in Listing 1, our compiler generates three
different hardware components. First, the basic event detection
specified by the DEFINE part of the query corresponds to the
predicate decoder unit of [1], which explicitly materializes
basic events for downstream processing. For each regular
expression an individual finite state machine operates in par-
allel on the input data. Secondly, PATTERN clauses will be
compiled into state automata as well, but they operate on basic
events rather than on raw bytes. Finally, the PARTITION
BY clause produces a stream partitioner component detailed
in [1]. In brief, this component finds the current complex event
pattern matching state of a given sub-stream based on the
attributes defined in the PARTITION BY clause.

IV. HARDWARE ARCHITECTURE

On a high level, a general architecture for non-invasive, real-
time stream monitoring is illustrated in Figure 3. The monitor
intercepts all traffic sent to/from the web server and reacts
whenever a specified event is detected.

Since the FPGA device that we can bring to the conference
site is equipped only with a single network port, we mimic
network interception with help of a hardware switch and use
a physical network setup as shown earlier in Figure 1.

For ease of demonstration, our system reacts to detected
complex events simply by showing a message on a built-in
LCD display on the FPGA board. Applied to a real-world
scenario, our system could just as well send notifications to
an outside system, alter network packets as they pass through
the monitor (ensuring compliance with predefined rules), or
drop packets from the network stream.

Network Packet Decoder

Hard Ethernet MAC Core

N
e
tw

o
rk

} Ethernet frames

Headers

Payload
Source 
IP Address

N
o
tify

Stream Partitioner Predicate Decoder

Complex Event Detection Engine

FPGA

Compiler-generated circuits

Basic events vectorSub-stream state vector

001000101001111010011000

Fig. 4. FPGA-based pattern matching over network streams.

A. Inner Hardware Design

Figure 4 illustrates how complex event detection is per-
formed inside the FPGA chip. Our custom-made logic is
directly connected to the hard Ethernet MAC core of the
physical network interface so that we can achieve full wire-
speed throughput performance.

Once network packets enter our logic (top of Figure 4),
they are routed into a network packet decoding component
that takes care of processing the raw Ethernet frames. Its main
task is to properly identify TCP packets and extract the source
IP address and the payload from them. Packet decoding is
implemented using a hard-coded state automaton.

The extracted payload is then forwarded to a predicate
decoding unit. This unit contains a hardware implementation
for each regular expression listed in the DEFINE part of
the user query. They will all be run in parallel over the
payload stream and a basic event will be generated for the first
matching regular expression. In the web application scenario,
a basic event corresponds to a “click” event by the web user.

The stream partitioner component is only instantiated if
the query requests per-user tracking (via the PARTITION
BY clause). The component is executed concurrently with
the predicate decoder and separates the individual web user
streams. For each web user a state vector is maintained to keep
track of his/her click history. The stream partitioner selects the
appropriate state vector (or allocates a new one if necessary)
and forwards it to the final complex event detection stage.

A complex event detection unit (an NFA) is generated for
every complex event defined by a PATTERN clause in the



0 10 20 30 40 50 60 70 80 90
basic events per packet

0

2

4

6

8

10

12
m

ill
io

n
pa

ck
et

s/
ev

en
ts

pe
r

se
c.

0

20

40

60

80

100

120

%
pa

ck
et

s
pr

oc
es

se
d

basic events

input packets

% processed

Fig. 5. Performance of FPGA stream monitor. We saturate the link with
packets of varying size. Independent of the packet size, the FPGA will process
100 % of the input stream and never drop packets.

user query. Again, our system exploits the available hardware
parallelism and evaluates all state automata concurrently. Upon
a match, a complex event is raised—the event that is of actual
interest to the user. In our particular demonstration setup, we
react to these complex events by showing a notification on the
built-in LCD display indicating the pattern that was matched
and listing the IP address of the user who caused the match.

B. Performance

Our earlier work [1] contains a detailed study on hardware-
based complex event detection. Here we emphasize the advan-
tages in the context of network-attached stream monitoring.

The hardware circuits generated by our compiler are de-
signed to consume arbitrary input data at full wire speed.
To verify this capability, we generated event streams where
a varying number of basic events occur in each packet.5 We
saturated our 1 Gb/s network link with the generated stream
and measured how much of it we could monitor with our
FPGA device.

As can be seen in Figure 5, our device could monitor all
input data at full wire speed, without any packet drops that in
software can be caused by overload situations. This is partic-
ularly remarkable on the left end of the scale. Workloads that
use many small-sized packets (as common, e.g., in financial
trading applications) are known to cause very high CPU load
and often substantial latencies in software-based systems [4],
[2], even though less payload data is actually sent over the wire
(due to the increasing IP protocol overhead). Our system, by
contrast, is fully robust to such workloads and is guaranteed
to always run at full wire speed.

C. Related Work

Our system has obvious similarities to hardware-accelerated
intrusion detection systems, such as [5], [6], [7]. But while
these existing systems perform single packet inspection only,
our design operates on logical streams and features explicit
user tracking.

5For these experiments UDP packets were used.

Software-based complex event processors (e.g., [8], [9]) do
support such functionality, but lack the integration (in-network
processing) and performance (full wire-speed throughput) ad-
vantages of our hardware-accelerated device. For very complex
analysis tasks (where a direct hardware implementation is no
longer feasible) we could envision a hybrid setup where the
FPGA acts as a pre-processor and filter to a back-end stream
processor in software (in the spirit of [2]).

V. SUMMARY

In this demonstration we show a complete implementation
of an FPGA-based complex event processing system. Our
system monitors network streams in a non-invasive manner,
allowing reliable stream analysis where speed is a concern,
e.g., in online trading, security auditing, or intrusion detec-
tion applications. On the usability side, our system features
an expressive pattern description language allowing users to
declaratively state high-level complex events of interest.

For illustration purposes, we showcase a scenario where
demonstration visitors can actively participate: we monitor
page requests sent to a web server that we provide and react to
user-defined complex event patterns. Our expression compiler
and the FPGA tool chain is equipped with numerous hooks
to inspect the inner workings of our system, all the way from
complex event pattern compilation down to the circuit-level
design.

REFERENCES

[1] L. Woods, J. Teubner, and G. Alonso, “Complex Event Detection at Wire
Speed with FPGAs,” Proc. of the VLDB Endowment (PVLDB), vol. 3,
no. 1, Sept. 2010.

[2] R. Mueller, J. Teubner, and G. Alonso, “Streams on Wires—A Query
Compiler for FPGAs,” Proc. of the VLDB Endowment (PVLDB), vol. 2,
no. 1, Aug. 2009.

[3] J. Melton, “SQL/RPR—Row Pattern Recognition with Application to
Streaming Data Queries,” INCITS Project Proposal H2-2008-027, http:
//www.softwareworkshop.com/h2/SQL-RPR-review-paper.pdf (retrieved
July 2010).

[4] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Nies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Paral-
lelism to Scale Software Routers,” in Proc. of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), Big Sky, MT, USA, Oct. 2009.

[5] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling PCRE to FPGA for
Accelerating SNORT IDS,” in Proc. of the ACM/IEEE Symposium on
Architecture for Networking and Communication Systems (ANCS), New
York, NY, USA, Dec. 2007.

[6] R. Sidhu and V. Prasanna, “Fast Regular Expression Matching Using
FPGAs,” in IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), Rohnert Park, CA, USA, 2001.

[7] Y.-H. Yang, W. Jiang, and V. Prasanna, “Compact Architecture for High-
Throughput Regular Expression Matching on FPGA,” in Proc. of the
ACM/IEEE Symposium on Architecture for Networking and Communica-
tion Systems (ANCS), San Jose, CA, USA, Nov. 2008.

[8] N. Dindar, B. Güç, P. Lau, A. Ozal, M. Soner, and N. Tatbul, “DejaVu:
Declarative Pattern Matching over Live and Archived Streams of Events,”
in Proc. of the ACM SIGMOD Conference on Management of Data,
Providence, RI, USA, 2009.

[9] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and G. Anderson,
“SASE: Complex Event Processing over Streams,” in 3rd Conference
on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, Jan.
2007.


