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Heterogeneous Multi-Core Architectures

Computer architectures are undergoing major changes.

single-core multi-core
heterogeneous

multi-core

We see an increasing diversification of compute resources:

I floating point units,

I graphics processors,

I Cell’s synergistic processing units,

I field-programmable gate arrays (FPGAs).
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Field-Programmable Gate Arrays

Field-programmable gate arrays
I are configurable logic chips (“programmable hardware”),
I can be used to build hardware tailored for your application,
I provide parallelism, low latency, high throughput, and
I excel with power efficiency.

Today:
I FPGAs to assist database processing.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 3



Outline

1. FPGA Basics
I Technical Background

2. FPGA Design Techniques
I Exploiting the Parallelism in FPGAs
I Some More FPGA Features

3. FPGAs in Database Management Systems
I System Integration

We’ve also prepared some live demos for you.

slides: http://people.inf.ethz.ch/muellren
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Who we are

René Müller
I ETH Zurich, Systems Group
I Avalanche: database processing on FPGAs
I background: sensor networks, electrical engineering

Jens Teubner
I ETH Zurich, Systems Group
I Avalanche: database processing on FPGAs
I (Data Cyclotron: distributed databases on high-speed networks)
I background: databases, XQuery processing
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FPGA Basics

What is an FPGA?
FPGA Architecture



FPGA — Field Programmable Gate Array

FPGAs
I are semiconductor devices
I can be configured to

implement any digital circuit
I can be reconfigured in the field

(vs. in the factory)
I are sold by two major vendors:

Altera and Xilinx
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FPGA—Custom Integrated Circuits

I FPGA intended to prototype
Application-specifc Integrated
Circuits (ASICs).

I Today, used in Reconfigurable
Computing.

I First FPGA XC2064
introduced by Xilinx Corp. in
1985.

I FPGA market $2.75 billion
expected in 2010

FPGAs vs. ASICs
I FPGAs are more cost-effective
I Lower speed in FPGAs
I FPGAs are less power efficient
I FPGA circuits can be modified

(at start time or even at
runtime)
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Reconfigurable Hardware

Configuration Layer

Logic Layer

FPGA can be thought as
two-layered devices:

I Logic Layer
I consists of configurable

logic blocks
I Configuration Layer

I Memory that holds
“programming” of the
FPGA

I Controls the function
computed on the logic
layer

I Allows partial
reconfiguration at runtime
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Basic FPGA Architecture

FPGA chip

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

DCM

DCM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

I 2D chip layout
I Components

I CLB: Configurable Logic
Block implements logic
function

I IOB: Input/Output Block
I DCM: Digital Clock

Manager
I Interconnect Network

I Short distance lines
I Long distance lines
I Clock lines
I Switch boxes:

programmable switches
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Routing signals in an FPGA
programmable

Switch Box and
bundle of lines

programmable
intersection

point

SRAM
cell

programmable
switch with
memory cell
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Routing in a Xilinx Virtex-5 FPGA

Hot Chips,  2006   slide 11

Virtex-4 Routing

Fast 
Connect
1 Hop
2 Hops
3 Hops

Virtex-5 Routing
More symmetric 
pattern, 
connecting
CLBs

More logic 
reached per hop

Same pattern 
for all outputs

source: Steve Douglass et. al: Virtex-5, the Next Generation 65 nm FPGA. In HotChips 18. 2006.
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Configurable Logic Block (CLB)

in0
in1
in2
in3

SRAM
cell

4-LUT

D

Flip
Flop

clock

SRAM
cell

Multiplexer

out

implements
{0,1}4 → {0,1}

function
stores a
single bit
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Example—A simple 1-bit Counter

bool accum_mod2(bool x) {

static bool z = false;

z = z ^ x;

return z;

}

I 1-bit aggregate sum over a
stream

I XOR implemented in LUT
I Two inputs remain

unconnected
I z stored in flip flop
I Output feed back to input

through interconnect

x

4-LUT

⊕ D

Flip
Flop

clock

z
Multiplexer

y
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Structure of the Xilinx Virtex-6 FPGA
Modern FPGA are more complex (partial diagram of a CLB):

Virtex-6 FPGA CLB User Guide www.xilinx.com 9
UG364 (v1.1) September 16, 2009

CLB Overview

X-Ref Target - Figure 3

Figure 3: Diagram of SLICEM
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source: Xilinx. Virtex-6 FPGA CLB User Guide. UG364. page 9. 2009
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Additional High-level Primitives in Discrete Silicon

CPU 0 CPU 1

I Simplified Virtex-5
XC5VFXxxxT floor plan

I Frequently used high-level
components are provided in
discrete silicon

I BlockRAM (BRAM): set of
blocks that each store up
36 kbits of data

I DSP48 slices: 25x18 bit
multipliers followed by a 48 bit
accumulator

I CPU: two full embedded
PowerPC 440 cores
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Virtex-5 Chip Used in Demo Setup
Simplified Virtex-5 floor plan
(without embedded CPU cores):

Selected Characteristics

Virtex-5
XC5VLX110T

Lookup Tables (LUTs) 69,120
Block RAM (kbit) 5,328
DSP48 Slices 64
PowerPC Cores 0
max. clock speed ≈ 450 MHz
release year 2006

Total on-chip memory = 1,120 kbit
in LUTs + 5,328 kbit in BRAM =
6,448 kbit = 806 kB
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Development Board Used in Demo Setup

source: Xilinx Inc., ML50x Evaluation Platform. User Guide 347.

I FPGA: Virtex-5 XCV5LX110T
I 256 MB DDR2 memory
I PCI Express (1x lane)
I 1 Gb Ethernet port
I DVI port
I RS232 serial port
I LCD display
I Price: $1999
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FPGA Basics

Programming & Design Tools



Programming FPGAs

I Circuits are specified in
Hardware Description
Language (HDL) or using
Design Schematics

I Schematic designs are easier
to visualize

I HDL designs easier for large
hierarchical designs

I HDL: Formal description
digital logic circuits

I VHDL
I Verilog

VHDL:
I VHDL = VHSIC Hardware

Description Language
I VHSIC = Very High Speed

Integrated Circuits
I VHSIC was a U.S. DoD

program launched 1980
I Strongly typed (based on Ada)

Verilog:
I Developed by a company,

1995 IEEE standard
I C-like syntax
I Data types wire and reg

I Gate level modelling possible
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FPGA Design Flow

Design Entry

Synthesis

Mapping

Place and Route

Device Programming

To
ol

C
ha

in

I Design Entry: circuit design input of
HDL Code (Verilog, VHDL) or
schematics

I Synthesis: compilation of HDL code
into device independent primitives

I Mapping to device specific elements
(LUTs, DSP48, BRAM, etc.)

I Placement of components on chip
I Routing signals on chip
I Device Programming: Download of

bitstream to FPGA
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Adding Design Constraints

Design Entry

Synthesis

Mapping

Place and Route

Device Programming

User Constraints

Pin Locations on Chip

Timing and Latency Constraints
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Signals on a Chip

Example: 1-bit Counter

x
XOR

= 1 z D

Flip
Flopclock

y

VHDL Code:

process(clock,x) is

begin

if rising_edge(clock) then

y <= x xor y;

end if;

end process;

I Signals do not change
immediately

I Delays must be considered in
design

I Propagation Delay from input
to outputs

I Setup Time: Signals must be
stable before clock beat.

t
clock

x
y

z
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Long Signal Paths in Combinatorial Circuits

fclk <
1
L

in
pu

t

ou
tp

utlogic

stages: 1

latency: L

throughput: 1
L
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Reducing Path Delays by Inserting Registers

1
L < fclk <

1
L′ , L′ < L

in
pu

t

ou
tp

ut

lo
gi

c

lo
gi

c lo
gi

c

stages: 3

latency: 3
fclk

> L

throughput: 1
2 fclk
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Fully Pipelined Signal Path

1
L < fclk <

1
L′ , L′ < L

in
pu

t

ou
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ut
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c
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stages: 3
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throughput: fclk
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Demo 1

“Hello World” Circuit in VHDL — A simple “0 to 9” Counter
Illustration of Design Flow



Demo: “0 to 9” Counter

button

1

Reset

Clk

Enable

Rst

count

Counter

4

Write

Data

to text & serialization

TX to serial
port of PC

RS 232

I Development board connected to notebook through serial port
I Button clicks are fed to counter
I Counter values are displayed in text form on terminal
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VHDL Example: Counter
-- entity specification

entity counter is

port (

clk : in STD_LOGIC;

enable : in STD_LOGIC;

reset : in STD_LOGIC;

count : out STD_LOGIC_VECTOR(

3 downto 0));

end counter;

-- behavioral implementation

architecture Behavioral of counter is

begin

process(clk, reset, enable) is

variable counter : integer

range 0 to 9 := 0;

begin

if reset=’1’ then

counter := 0;

elsif clk’event and clk=’1’

and enable=’1’ then

if counter = 9 then

counter := 0;

else

counter := counter+1;

end if;

end if;

count <= std_logic_vector(

to_unsigned(counter, 4));

end process;

end Behavioral;
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Programming FPGAs using high-level languages
(HLL)

I Writing circuits in VDHL or
Verilog more difficult than
writing programs for a CPU in
a HLL

I Different level of abstraction
I In hardware time is a

functional property
I ⇒ Automatic generation of

HDL code

Examples that extend HLL:
I Handel-C (Oxford): C-like,

sequential w/ parallel blocks,
channels between parallel
blocks

I Bluespec: Based on Haskell.
Examples that use libraries in HLL:

I SystemC: Macro/Libs in C++
I JHDL: Based on Java
I ImpulseC: C Library

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 30



FPGA Design Techniques

Exploiting the Parallelism in FPGAs



Parallelism

I FPGAs essentially provide configurable chip space.
I This enables true parallelism in a natural way.

Task 3

Task 2

Task 1
data

I Sub-circuits can operate fully independently.
I Example: evaluate multiple WHERE predicates in parallel.
I We look into data parallelism and pipeline parallelism now.
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Data Parallelism

I A particular use is data parallelism.

Task 1

Task 1

Task 1
data1

data2

data3

I Same operation on multiple input data
I Often referred to as SIMD (Single Instruction Multiple Data)
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SIMD-Aware Algorithms
The availability of SIMD in mainstream systems made it attractive to
design SIMD-aware algorithms.

I Database Tasks:
I Zhou et al. Implementing Database Operations Using SIMD

Instructions. SIGMOD 2002.
I Johnson et al. Row-Wise Parallel Predicate Evaluation.

VLDB 2008.
I Gedik et al. CellJoin: A Parallel Stream Join Operator for the

Cell Processor. VLDB Journal 18(2), 2009.
I XML Processing, Pattern Matching:

I Cameron et al. High Performance XML Parsing Using Parallel
Bit Stream Technology. CASCON 2008.

I Van Lunteren et al. XML Accelerator Engine. 1st Workshop
on High Performance XML Processing 2004.
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SIMD-Aware Algorithms (cont.)

I Sorting:
I Govindaraju et al. GPUTeraSort: High Performance Graphics

Co-Processor Sorting for Large Database Management.
SIGMOD 2006.

I Gedik et al. CellSort: High Performance Sorting on the Cell
Processor. VLDB 2007.

I Chhugani et al. Efficient Implementation of Sorting on
Multi-Core SIMD CPU Architecture. VLDB 2008.

SIMD-Aware algorithms can often guide FPGA designs.
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SIMD Algorithms on FPGAs

I Example: Parallelized sort kernel

b1

a1

max(a1, b1)

min(a1, b1)

M
U

X
M

U
X

>
sel

sel

in1

in0

in1

in0

a1

b1

min

max

b4

a4

b3

a3

b2

a2

b1

a1

max(a4, b4)

min(a4, b4)

max(a3, b3)

min(a3, b3)

max(a2, b2)

min(a2, b2)

max(a1, b1)

min(a1, b1)

I Sort pairs of numbers in parallel.
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SIMD Algorithms on FPGAs (cont.)

I Sort (slightly) larger input sets using sort networks.
in

pu
t(

un
so

rt
ed

)

2
6
5
4
8
1
3
7

2

6

4

5

1

8

3

7

2

5

4

6

1

7

3

8

2

4

5

6

1

3

7

8

1

3

5

6

2

4

7

8

1

3

2

4

5

6

7

8

1

2

3

4

5

6

7

8

1
2
3
4
5
6
7
8

ou
tp

ut
(s

or
te

d)

I Here: even-odd merging network [Batcher 1968]
I 2–4 parallel operations at every stage; sort 8 items in 6 stages
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Pipeline Parallelism

I But we can also do pipeline parallelism.

FPGA

Task 1 Task 2 Task 3
data

I All tasks run truly in parallel.
I Simple and efficient communication between tasks

I Contrast to CPU-based setups, where communication
overhead dominates when tasks are simple.
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Pipeline Parallelism—Example
I Example: sorting network (again)
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buffer registers

I All comparators operate concurrently.
I Throughput: one 8-set per clock cycle
I Latency: 6 clock cycles
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Pipeline Parallelism / Systolic Arrays

Another way of looking at such circuits is to see them as systolic
arrays or wavefront arrays.

I Very successful VLSI design technique, established in the 80s.
I Processing is driven by data that travels through the array.
I Very successful for matrix multiplication.

I Kung et al. Systolic Arrays (for VLSI). Sparse Matrix
Proceedings 1978.

I Kung et al. Systolic (VLSI) Arrays for Relational Database
Operations. SIGMOD 1980.
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Example: Apriori Algorithm [Baker et al. 2005]

Here: support calculation

1. Load processing units with candidate sets.
2. Stream data through array and count support.

{beer, chips, diapers}

count

{butter, milk, apples}

count
processing unit 1 processing unit 2

data

Baker and Prasanna. Efficient Hardware Data Mining with the Apriori
Algorithm on FPGAs. FCCM 2005.
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Which Type of Parallelism When?

Rather than organizing apriori calculation as a systolic array,

unit 1 unit 2 unit 3 unit 4 unit 5
data

Baker et al. could as well have parallelized processing for each item:

unit 1 unit 2 unit 3 unit 4 unit 5

data

Why did they favor the systolic array?
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Which Type of Parallelism When?
Systolic array:

unit 1 unit 2 unit 3 unit 4 unit 5
data

MISD:

unit 1 unit 2 unit 3 unit 4 unit 5

data

I The latter approach leads to significantly longer signal paths.
I Systolic arrays, by contrast, have good scalability properties.
→ Even across chips; Baker et al.: 64 FPGAs

I Systolic arrays also have a simple structure which makes them
easier to route (by tool chain).
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Example: Frequent Item Problem [ICDE 2010]
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Database Queries

I Database queries are
naturally pipelineable.

I Contrast to CPU-based
systems, operators execute
truly in parallel.

Example:
SELECT Price, Volume

FROM Trades

WHERE Symbol = "UBSN"

AND Volume > 100000 Trades

=

"UBSN" Symbol
Volume

Price
=©

<

100,000a
>©

&
b

∧©

&
c

σ

π

data valid flag registers payload
(parallel wires)

logic gates

input stream

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 45



Synchronous Circuits

The circuit on the right executes the
query step-by-step.

I Each sub-task stores its result
in registers (where the next
sub-task picks it up).

I One sub-task per clock cycle.
I Fully pipelineable
I throughput: 1 per cycle,

latency: 5 cycles.
This is a fully synchronous circuit.

Trades

=

"UBSN" Symbol
Volume

Price
=©

<

100,000a
>©

&
b

∧©

&
c

σ

π

data valid flag registers payload
(parallel wires)

logic gates

input stream
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Asynchronous Circuits

Trades

=
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Synchronous or Asynchronous?

In general,

synchronous designs
I are easier to implement,
I may be able to reuse logic for multiple tasks,

asynchronous designs
I can achieve lower latency,
I need less flip-flop registers (no intermediate buffers).

Usually what you want is a hybrid design:
I pack a few operations into one clock cycle.

Note that the clock frequency is a variable, too.
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FPGA Design Techniques

Some More FPGA Features



Dual-Ported BRAMs

On-chip memory is provided by so-called block RAM (or BRAM):
I numerous independent blocks (XC5VLX110T: 148× 36 kbit),
I configurable word size (36 kbit as 4096× 9 bit, 2048× 18 bit, . . . ).

All BRAM blocks are dual-ported:
I Two independent ports to access same physical data:1

physical data
Port A

Port B

I The two ports can be configured to different word sizes.
I Example: binary trees: access parent and both children together.

1Effect of concurrent writes to same location is undefined.
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Content-Addressable Memory

Independent word sizes can be used to build content-addressable
memory (CAM):

I hardware-implemented key-value store,
I guaranteed constant lookup time (unlike hash tables in software),
I standard device in networking (routing, packet classification).

Idea:
I single-bit writes (address: key ++value)
I multi-bit reads (address: key )
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Finite State Machines

Finite state machines naturally translate into FPGA circuits.
I States are flip-flops, transitions are logic.
I Available parallelism→ non-deterministic automata.

Example: XPath evaluation
I Mitra et al. Boosting XML Filtering Through a Scalable

FPGA-based Architecture. CIDR 2009.

Likewise: pattern detection, etc.
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Clock Regions

Like (almost) everything else, the clock frequency can be configured.

I The longest signal path determines the maximum frequency.
→ Tune size of asynchronous units vs. frequency.

I Different chip regions can be clocked at different rates.
→ Choose optimal clock rate for individual units of a design.

I Use FIFOs to decouple units with different clock rates.

I The clock frequency also influences power consumption.
I Or turn the clock off for regions to save power (clock gating).
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FPGA in Database Management Systems

Integration Aspects



System Architectures — Overview

I On-Chip co-processor to the Embedded CPU
I Xilinx MicroBlaze CPU
I PowerPC Embedded Core

I Co-processor in traditional systems
I PCI Express attachment
I HyperTransport attachment: FPGA in a CPU socket

I FPGA in I/O data path

CPU
network

disk
...

 data FPGA
data


CPU

network
...
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Co-processor to Embedded CPU Core

FPGA Chip

On-chip
Memory
(BRAM)

Embedded
CPU Core

Custom HW
Circuit

input data

result data

External
Memory
(DDR2)
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Designing an On-chip Co-processor
I On-chip components

connected by several bus
systems

I Local Memory Bus:
dedicated memory bus

I Processor Local Bus:
wide bus for fast
components (Memory)

I On-chip Peripheral Bus:
narrow bus for slow
components (Peripherals)

I Buses implemented in
configurable HW

I Buses require arbitrated
access→ overhead, latency

I Better: Point-to-Point Links→
no arbitration needed

I Simplex Links: Unidirectional
connections

I Fast Simplex Link: 32-bit
wide, essentially a 16
element FIFO

I Some CPUs have dedicated
Co-processor interface→
Auxiliary Processing Unit
(APU) Interface
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Xilinx MicroBlaze CPU

I Soft Intellectual Property
(Soft-IP) core: implementation
in configurable logic

I 32-bit MIPS Architecture
I Closed source, only compiled

form (netlist)
I Supported features chosen at

configuration time
I Trade-off: functionality vs. chip

space
I Max. Clock Speed: 235 MHz

on Virtex-5 (=280 Dhrystone
MIPS)

Features:
I Floating Point Unit
I Hardware Divider
I Memory Management Unit
I Exception Support
I Fast Simplex Link Interfaces
I Local Memory Bus to on-chip

memory
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Fast Simplex Link to MicroBlaze Execution Pipeline

Instruction
Buffer

Registers

ALUInstr.

Fetch
Instruction

Frequent Item
Component

CPU Core
WritebackDecode Execute

Decode

FSL FSL

FPGA Chip

I Fast Simplex Link
(FSL) to Pipeline

I Up to 16 FSL
I Put/Get

instructions:
Register↔ FSL

I put %regA, rfslX

I get %regA, rfslX

I Also blocking and
non-blocking
versions
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PowerPC Hard-IP Core

PPC440
Core 0

PPC440
Core 1

I Virtex-5 XC5VFXxxxT contains two
PowerPC 440 cores

I hard-IP core: implemented in silicon,
not configurable

I PPC440 core also used in BlueGene
Supercomputer

I 32-bit CPU
I Up to 400 MHz clock
I 32 kB Data and 32 kB Instruction

Cache
I Memory Management Unit
I Auxiliary Processor Unit Interface for

connecting co-processors (e.g., FPU)
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PowerPC APU

I Auxiliary Processing Unit
(APU) Interface allows
extension of the PowerPC
instruction

I Most common use: integration
of an FPU

I APU controller decodes PPC
FPU and VMX (Altivec) vector
instructions

I Plus up to 16 User-defined
Instructions

I Load/Store instructions

190 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-2: Data Flow between APU Controller and FCM

APU Controller Fabric Coprocessor
Module (FCM)

UG200_c12_02_040907

Instruction 0 Instruction 1

Decode Instr0 Decode Instr1

Decode
Control and

Decode
Registers

Optional FCM
Decode

FCM Execution Unit

FCM Internal Registers

Central Scrutinizer
(Determines When FCM
Instruction Completes)

DISS3

DISS2

DISS1

DISS0

Wait Instruction
Information

FCM Instruction
Information

FCM Instruction
Information

Ra Source Data [0:31]

Rb Source Data [0:31]

Can/Cannot Update
Internal Registers

Result Data [0:31]

W

Result Data/CR Data 0 12

Store FCM Buffer  0 12

Load Wait Byte Address

Load FCM Byte Address

Load Wait Byte Address

Store Data [0:127]

Load Data [0:127]

Load Byte Address

Ra Wait Instruction
Ra Wait Instruction

Ra FCM Instruction

Rb Wait Instruction
Rb Wait Instruction

Rb FCM Instruction

Load Wait Buffer

Load FCM Buffer

Load Wait Buffer
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PCI Express Bus

I PCIe: Packet-based,
point-to-point serial interface

I Multiple Lanes: x1 – x32
Raw Bw effective Bw

Link per dir. per dir.
x1 2.5 Gb/s 2 Gb/s
x2 5 Gb/s 4 Gb/s
x4 10 Gb/s 8 Gb/s
x8 20 Gb/s 16 Gb/s

I PCIe available in commodity
hardware

I Demo Board has PCIe x1
connector

I PCIe defines roles:
I PCIe Root Complex

(Southbridge)
I PCIe Switch
I PCIe Endpoint, e.g., NIC

I FPGA takes role of Endpoint
I Endpoint must be

implemented on FPGA
I Virtex-5 hard-IP core plus

soft-core wrapper
I Freely available

Implementation of PCIe
Endpoint (R. Bittner, MSR
Redmond)
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FPGA Co-processor on a PCI Express Card

FPGA Chip

On-chip
Memory
(BRAM)

Embedded
CPU Core

Custom HW
Circuit

External
Memory
(DDR2)

PCIe
Endpoint

PCI Express link to host system
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FPGA Co-processor on HyperTransport Bus

I FPGA directly connected to
CPU HyperTransport

I Tight coupling to Server CPUs

I FPGA in CPU Socket→
RPRU Module (DRC
Computer Corp.)

I FPGA in HTX Socket→ HTX
Board (U. Mannheim)

RPU Module (RPC Computer Inc.

HTX-Board (U. Mannheim)
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FPGAs in the Data Path
I FPGA in Data Path to CPU

I From Network→ Streams
on Wires—A Query
Compiler for FPGAs
(Müller, Teubner, and
Alonso) in VLDB09

I From Disk→ Netezza
Data Warehouse
Applicance

I Off-loading to FPGA for Data
Reduction

I Selection/Projection
I Aggregation

I Reduces traffic to the CPU

notification

Main
Memory

CPU

stream
data

NIC

notification

Main
Memory

CPU

stream
data

SATA
disk

network

data processing

data processing

FPGA

FPGA
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Processing Packets at Wire Speed (ongoing work)

I Stream Processing Application
I Filtering Tuples in UDP

datagrams
I IP/UDP Engine implemented

in hardware
I Connected to 1 Gb Ethernet

MAC
I PC System drops packets

(high interrupt rate)
I FPGA Solution allows

processing packets at wire
speed w/o loss.

100 % 100 %

FPGA

60 %

36 %

software (Linux 2.6)

0 %

20 %

40 %

60 %

80 %

100 %

300,000 pkt/s1,000,000 pkt/s
pa

ck
et

s
pr

oc
es

se
d

data input rate
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Demo 2

Data Stream Aggregation on FPGA
Processing of UDP Network Traffic



Demo 2: Data Stream Aggregation

I Stock Ticker Stream
I Symbol: CHAR(4)
I Price: Price in Cents
I Volume: # shares

Seqnr Symbol Price Volume
2245 BAER 3551 75
2246 UBSN 622 47
2247 NOVN 4637 403
2248 NESN 2842 166
2249 UBSN 608 13
2250 NOVN 4736 118
2251 ABBN 2505 27

Aggregation Query:
SELECT Symbol, avg (Price)

FROM Trades [ SIZE 15

ADVANCE 5 TIME ]

GROUP BY Symbol

In Demo max. 32 groups
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System Setup

Ethernet
(input stream)

NIC FPGA

serial port

serial line
(output)
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Power Consumption

One of the virtues of FPGAs is their low power consumption.

This circuit:

total FPGA power consumption 6.4 W
part spent to drive I/O pins (network, serial) 4.5 W
part spent in co-processor 0.04 W

For comparison: Intel Core 2 Q6700 (desktop CPU): up to 95 W.
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Wrap-Up

Summary and Lessons Learned



Summary

FPGA Basics:
I re-configurable logic
I low latency, high throughput, power-efficient

FPGA Design Techniques:
I flexible types of parallelism: data and pipeline parallelism
I addl. tricks: on-chip BRAM, CAM, flexible clock frequency

System Integration
I co-processor to general-purpose CPU
I FPGA in the system’s data path
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Lessons and Guidelines

I Resource consumption is an important design factor.

I Pipeline parallelism eases scalability and performance.

I Trade-off: synchronous designs↔ asynchronous designs.

I System integration can be decisive.

I Designs can be tuned for power efficiency.
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A New Point in the Design Space
FPGAs work well for streaming-style, high-throughput processing.

I Good fit for many database tasks.

Put the FPGA into a system’s data path:

CPU
network

disk
memory...


data FPGA

data
CPU

network
disk

memory...



last example

Netezza

Kickfire

Roles of the FPGA can also include decoding, compression, etc.

Benefits include performance, but also power efficiency.
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