
FPGAs: A New Point in Database Design Space

Rene Mueller Jens Teubner
{firstname.lastname}@inf.ethz.ch

Systems Group
Department of Computer Science, ETH Zurich, Switzerland

c© René Müller, Jens Teubner · ETH Zurich · Systems Group March 25, 2010

Heterogeneous Multi-Core Architectures

Computer architectures are undergoing major changes.

single-core multi-core
heterogeneous

multi-core

We see an increasing diversification of compute resources:

I floating point units,

I graphics processors,

I Cell’s synergistic processing units,

I field-programmable gate arrays (FPGAs).

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 2

Field-Programmable Gate Arrays

Field-programmable gate arrays
I are configurable logic chips (“programmable hardware”),
I can be used to build hardware tailored for your application,
I provide parallelism, low latency, high throughput, and
I excel with power efficiency.

Today:
I FPGAs to assist database processing.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 3

Outline

1. FPGA Basics
I Technical Background

2. FPGA Design Techniques
I Exploiting the Parallelism in FPGAs
I Some More FPGA Features

3. FPGAs in Database Management Systems
I System Integration

We’ve also prepared some live demos for you.

slides: http://people.inf.ethz.ch/muellren

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 4

Who we are

René Müller
I ETH Zurich, Systems Group
I Avalanche: database processing on FPGAs
I background: sensor networks, electrical engineering

Jens Teubner
I ETH Zurich, Systems Group
I Avalanche: database processing on FPGAs
I (Data Cyclotron: distributed databases on high-speed networks)
I background: databases, XQuery processing

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 5

FPGA Basics

What is an FPGA?
FPGA Architecture

FPGA — Field Programmable Gate Array

FPGAs
I are semiconductor devices
I can be configured to

implement any digital circuit
I can be reconfigured in the field

(vs. in the factory)
I are sold by two major vendors:

Altera and Xilinx

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 7

FPGA—Custom Integrated Circuits

I FPGA intended to prototype
Application-specifc Integrated
Circuits (ASICs).

I Today, used in Reconfigurable
Computing.

I First FPGA XC2064
introduced by Xilinx Corp. in
1985.

I FPGA market $2.75 billion
expected in 2010

FPGAs vs. ASICs
I FPGAs are more cost-effective
I Lower speed in FPGAs
I FPGAs are less power efficient
I FPGA circuits can be modified

(at start time or even at
runtime)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 8

Reconfigurable Hardware

Configuration Layer

Logic Layer

FPGA can be thought as
two-layered devices:

I Logic Layer
I consists of configurable

logic blocks
I Configuration Layer

I Memory that holds
“programming” of the
FPGA

I Controls the function
computed on the logic
layer

I Allows partial
reconfiguration at runtime

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 9

Basic FPGA Architecture

FPGA chip

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

DCM

DCM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

I 2D chip layout
I Components

I CLB: Configurable Logic
Block implements logic
function

I IOB: Input/Output Block
I DCM: Digital Clock

Manager
I Interconnect Network

I Short distance lines
I Long distance lines
I Clock lines
I Switch boxes:

programmable switches

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 10

Routing signals in an FPGA
programmable

Switch Box and
bundle of lines

programmable
intersection

point

SRAM
cell

programmable
switch with
memory cell

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 11

Routing in a Xilinx Virtex-5 FPGA

Hot Chips, 2006 slide 11

Virtex-4 Routing

Fast
Connect
1 Hop
2 Hops
3 Hops

Virtex-5 Routing
More symmetric
pattern,
connecting
CLBs

More logic
reached per hop

Same pattern
for all outputs

source: Steve Douglass et. al: Virtex-5, the Next Generation 65 nm FPGA. In HotChips 18. 2006.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 12

Configurable Logic Block (CLB)

in0
in1
in2
in3

SRAM
cell

4-LUT

D

Flip
Flop

clock

SRAM
cell

Multiplexer

out

implements
{0,1}4 → {0,1}

function
stores a
single bit

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 13

Example—A simple 1-bit Counter

bool accum_mod2(bool x) {

static bool z = false;

z = z ^ x;

return z;

}

I 1-bit aggregate sum over a
stream

I XOR implemented in LUT
I Two inputs remain

unconnected
I z stored in flip flop
I Output feed back to input

through interconnect

x

4-LUT

⊕ D

Flip
Flop

clock

z
Multiplexer

y

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 14

Structure of the Xilinx Virtex-6 FPGA
Modern FPGA are more complex (partial diagram of a CLB):

Virtex-6 FPGA CLB User Guide www.xilinx.com 9
UG364 (v1.1) September 16, 2009

CLB Overview

X-Ref Target - Figure 3

Figure 3: Diagram of SLICEM

A6:A1

D

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI2

O5

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

DI1

MC31WEN

CK

ug364_03_040209

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

WEN

CK

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

DI

A6:A1

O6
O5

B6:1

BX

A6:A1
W6:W1

W6:W1

W6:W1

W6:W1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q

CK SR

SRHI
SRLO
INIT1
INIT0

DI2

DI2

DI2

CI

BI

AI

source: Xilinx. Virtex-6 FPGA CLB User Guide. UG364. page 9. 2009

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 15

Additional High-level Primitives in Discrete Silicon

CPU 0 CPU 1

I Simplified Virtex-5
XC5VFXxxxT floor plan

I Frequently used high-level
components are provided in
discrete silicon

I BlockRAM (BRAM): set of
blocks that each store up
36 kbits of data

I DSP48 slices: 25x18 bit
multipliers followed by a 48 bit
accumulator

I CPU: two full embedded
PowerPC 440 cores

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 16

Virtex-5 Chip Used in Demo Setup
Simplified Virtex-5 floor plan
(without embedded CPU cores):

Selected Characteristics

Virtex-5
XC5VLX110T

Lookup Tables (LUTs) 69,120
Block RAM (kbit) 5,328
DSP48 Slices 64
PowerPC Cores 0
max. clock speed ≈ 450 MHz
release year 2006

Total on-chip memory = 1,120 kbit
in LUTs + 5,328 kbit in BRAM =
6,448 kbit = 806 kB

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 17

Development Board Used in Demo Setup

source: Xilinx Inc., ML50x Evaluation Platform. User Guide 347.

I FPGA: Virtex-5 XCV5LX110T
I 256 MB DDR2 memory
I PCI Express (1x lane)
I 1 Gb Ethernet port
I DVI port
I RS232 serial port
I LCD display
I Price: $1999

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 18

FPGA Basics

Programming & Design Tools

Programming FPGAs

I Circuits are specified in
Hardware Description
Language (HDL) or using
Design Schematics

I Schematic designs are easier
to visualize

I HDL designs easier for large
hierarchical designs

I HDL: Formal description
digital logic circuits

I VHDL
I Verilog

VHDL:
I VHDL = VHSIC Hardware

Description Language
I VHSIC = Very High Speed

Integrated Circuits
I VHSIC was a U.S. DoD

program launched 1980
I Strongly typed (based on Ada)

Verilog:
I Developed by a company,

1995 IEEE standard
I C-like syntax
I Data types wire and reg

I Gate level modelling possible
March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 20

FPGA Design Flow

Design Entry

Synthesis

Mapping

Place and Route

Device Programming

To
ol

C
ha

in

I Design Entry: circuit design input of
HDL Code (Verilog, VHDL) or
schematics

I Synthesis: compilation of HDL code
into device independent primitives

I Mapping to device specific elements
(LUTs, DSP48, BRAM, etc.)

I Placement of components on chip
I Routing signals on chip
I Device Programming: Download of

bitstream to FPGA

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 21

Adding Design Constraints

Design Entry

Synthesis

Mapping

Place and Route

Device Programming

User Constraints

Pin Locations on Chip

Timing and Latency Constraints

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 22

Signals on a Chip

Example: 1-bit Counter

x
XOR

= 1 z D

Flip
Flopclock

y

VHDL Code:

process(clock,x) is

begin

if rising_edge(clock) then

y <= x xor y;

end if;

end process;

I Signals do not change
immediately

I Delays must be considered in
design

I Propagation Delay from input
to outputs

I Setup Time: Signals must be
stable before clock beat.

t
clock

x
y

z

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 23

Long Signal Paths in Combinatorial Circuits

fclk <
1
L

in
pu

t

ou
tp

utlogic

stages: 1

latency: L

throughput: 1
L

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 24

Reducing Path Delays by Inserting Registers

1
L < fclk <

1
L′ , L′ < L

in
pu

t

ou
tp

ut

lo
gi

c

lo
gi

c lo
gi

c

stages: 3

latency: 3
fclk

> L

throughput: 1
2 fclk

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 25

Fully Pipelined Signal Path

1
L < fclk <

1
L′ , L′ < L

in
pu

t

ou
tp

ut

lo
gi

c

lo
gi

c lo
gi

c

stages: 3

latency: 3
fclk

> L

throughput: fclk

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 26

Demo 1

“Hello World” Circuit in VHDL — A simple “0 to 9” Counter
Illustration of Design Flow

Demo: “0 to 9” Counter

button

1

Reset

Clk

Enable

Rst

count

Counter

4

Write

Data

to text & serialization

TX to serial
port of PC

RS 232

I Development board connected to notebook through serial port
I Button clicks are fed to counter
I Counter values are displayed in text form on terminal

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 28

VHDL Example: Counter
-- entity specification

entity counter is

port (

clk : in STD_LOGIC;

enable : in STD_LOGIC;

reset : in STD_LOGIC;

count : out STD_LOGIC_VECTOR(

3 downto 0));

end counter;

-- behavioral implementation

architecture Behavioral of counter is

begin

process(clk, reset, enable) is

variable counter : integer

range 0 to 9 := 0;

begin

if reset=’1’ then

counter := 0;

elsif clk’event and clk=’1’

and enable=’1’ then

if counter = 9 then

counter := 0;

else

counter := counter+1;

end if;

end if;

count <= std_logic_vector(

to_unsigned(counter, 4));

end process;

end Behavioral;

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 29

Programming FPGAs using high-level languages
(HLL)

I Writing circuits in VDHL or
Verilog more difficult than
writing programs for a CPU in
a HLL

I Different level of abstraction
I In hardware time is a

functional property
I ⇒ Automatic generation of

HDL code

Examples that extend HLL:
I Handel-C (Oxford): C-like,

sequential w/ parallel blocks,
channels between parallel
blocks

I Bluespec: Based on Haskell.
Examples that use libraries in HLL:

I SystemC: Macro/Libs in C++
I JHDL: Based on Java
I ImpulseC: C Library

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 30

FPGA Design Techniques

Exploiting the Parallelism in FPGAs

Parallelism

I FPGAs essentially provide configurable chip space.
I This enables true parallelism in a natural way.

Task 3

Task 2

Task 1
data

I Sub-circuits can operate fully independently.
I Example: evaluate multiple WHERE predicates in parallel.
I We look into data parallelism and pipeline parallelism now.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 32

Data Parallelism

I A particular use is data parallelism.

Task 1

Task 1

Task 1
data1

data2

data3

I Same operation on multiple input data
I Often referred to as SIMD (Single Instruction Multiple Data)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 33

SIMD-Aware Algorithms
The availability of SIMD in mainstream systems made it attractive to
design SIMD-aware algorithms.

I Database Tasks:
I Zhou et al. Implementing Database Operations Using SIMD

Instructions. SIGMOD 2002.
I Johnson et al. Row-Wise Parallel Predicate Evaluation.

VLDB 2008.
I Gedik et al. CellJoin: A Parallel Stream Join Operator for the

Cell Processor. VLDB Journal 18(2), 2009.
I XML Processing, Pattern Matching:

I Cameron et al. High Performance XML Parsing Using Parallel
Bit Stream Technology. CASCON 2008.

I Van Lunteren et al. XML Accelerator Engine. 1st Workshop
on High Performance XML Processing 2004.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 34

SIMD-Aware Algorithms (cont.)

I Sorting:
I Govindaraju et al. GPUTeraSort: High Performance Graphics

Co-Processor Sorting for Large Database Management.
SIGMOD 2006.

I Gedik et al. CellSort: High Performance Sorting on the Cell
Processor. VLDB 2007.

I Chhugani et al. Efficient Implementation of Sorting on
Multi-Core SIMD CPU Architecture. VLDB 2008.

SIMD-Aware algorithms can often guide FPGA designs.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 35

SIMD Algorithms on FPGAs

I Example: Parallelized sort kernel

b1

a1

max(a1, b1)

min(a1, b1)

M
U

X
M

U
X

>
sel

sel

in1

in0

in1

in0

a1

b1

min

max

b4

a4

b3

a3

b2

a2

b1

a1

max(a4, b4)

min(a4, b4)

max(a3, b3)

min(a3, b3)

max(a2, b2)

min(a2, b2)

max(a1, b1)

min(a1, b1)

I Sort pairs of numbers in parallel.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 36

SIMD Algorithms on FPGAs (cont.)

I Sort (slightly) larger input sets using sort networks.
in

pu
t(

un
so

rt
ed

)

2
6
5
4
8
1
3
7

2

6

4

5

1

8

3

7

2

5

4

6

1

7

3

8

2

4

5

6

1

3

7

8

1

3

5

6

2

4

7

8

1

3

2

4

5

6

7

8

1

2

3

4

5

6

7

8

1
2
3
4
5
6
7
8

ou
tp

ut
(s

or
te

d)

I Here: even-odd merging network [Batcher 1968]
I 2–4 parallel operations at every stage; sort 8 items in 6 stages

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 37

Pipeline Parallelism

I But we can also do pipeline parallelism.

FPGA

Task 1 Task 2 Task 3
data

I All tasks run truly in parallel.
I Simple and efficient communication between tasks

I Contrast to CPU-based setups, where communication
overhead dominates when tasks are simple.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 38

Pipeline Parallelism—Example
I Example: sorting network (again)

in
pu

t(
un

so
rt

ed
)

2
6
5
4
8
1
3
7

2

6

4

5

1

8

3

7

2

5

4

6

1

7

3

8

2

4

5

6

1

3

7

8

1

3

5

6

2

4

7

8

1

3

2

4

5

6

7

8

1

2

3

4

5

6

7

8

1
2
3
4
5
6
7
8

ou
tp

ut
(s

or
te

d)

buffer registers

I All comparators operate concurrently.
I Throughput: one 8-set per clock cycle
I Latency: 6 clock cycles

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 39

Pipeline Parallelism / Systolic Arrays

Another way of looking at such circuits is to see them as systolic
arrays or wavefront arrays.

I Very successful VLSI design technique, established in the 80s.
I Processing is driven by data that travels through the array.
I Very successful for matrix multiplication.

I Kung et al. Systolic Arrays (for VLSI). Sparse Matrix
Proceedings 1978.

I Kung et al. Systolic (VLSI) Arrays for Relational Database
Operations. SIGMOD 1980.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 40

Example: Apriori Algorithm [Baker et al. 2005]

Here: support calculation

1. Load processing units with candidate sets.
2. Stream data through array and count support.

{beer, chips, diapers}

count

{butter, milk, apples}

count
processing unit 1 processing unit 2

data

Baker and Prasanna. Efficient Hardware Data Mining with the Apriori
Algorithm on FPGAs. FCCM 2005.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 41

Which Type of Parallelism When?

Rather than organizing apriori calculation as a systolic array,

unit 1 unit 2 unit 3 unit 4 unit 5
data

Baker et al. could as well have parallelized processing for each item:

unit 1 unit 2 unit 3 unit 4 unit 5

data

Why did they favor the systolic array?

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 42

Which Type of Parallelism When?
Systolic array:

unit 1 unit 2 unit 3 unit 4 unit 5
data

MISD:

unit 1 unit 2 unit 3 unit 4 unit 5

data

I The latter approach leads to significantly longer signal paths.
I Systolic arrays, by contrast, have good scalability properties.
→ Even across chips; Baker et al.: 64 FPGAs

I Systolic arrays also have a simple structure which makes them
easier to route (by tool chain).

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 43

Example: Frequent Item Problem [ICDE 2010]

16 32 64 128 256 512 1024
0

20

40

60

80

100

systolic array

parallel unit access

number of items monitored / length of array

th
ro

ug
hp

ut
[m

ill
io

n
ite

m
s

/s
ec

]

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 44

Database Queries

I Database queries are
naturally pipelineable.

I Contrast to CPU-based
systems, operators execute
truly in parallel.

Example:
SELECT Price, Volume

FROM Trades

WHERE Symbol = "UBSN"

AND Volume > 100000 Trades

=

"UBSN" Symbol
Volume

Price
=©

<

100,000a
>©

&
b

∧©

&
c

σ

π

data valid flag registers payload
(parallel wires)

logic gates

input stream

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 45

Synchronous Circuits

The circuit on the right executes the
query step-by-step.

I Each sub-task stores its result
in registers (where the next
sub-task picks it up).

I One sub-task per clock cycle.
I Fully pipelineable
I throughput: 1 per cycle,

latency: 5 cycles.
This is a fully synchronous circuit.

Trades

=

"UBSN" Symbol
Volume

Price
=©

<

100,000a
>©

&
b

∧©

&
c

σ

π

data valid flag registers payload
(parallel wires)

logic gates

input stream

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 46

Asynchronous Circuits

Trades

=

"UBSN" Symbol
Volume

Price

<
100,000a

&
b

& c

clock0 1 2 3 4 5 6

=© <© ∧© σ π

Trades

=
a

"UBSN"

Symbol Volume Price

<
b

100,000

&
c

&

clock
0 1 2

=©
<© ∧©

σ

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 47

Synchronous or Asynchronous?

In general,

synchronous designs
I are easier to implement,
I may be able to reuse logic for multiple tasks,

asynchronous designs
I can achieve lower latency,
I need less flip-flop registers (no intermediate buffers).

Usually what you want is a hybrid design:
I pack a few operations into one clock cycle.

Note that the clock frequency is a variable, too.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 48

FPGA Design Techniques

Some More FPGA Features

Dual-Ported BRAMs

On-chip memory is provided by so-called block RAM (or BRAM):
I numerous independent blocks (XC5VLX110T: 148× 36 kbit),
I configurable word size (36 kbit as 4096× 9 bit, 2048× 18 bit, . . .).

All BRAM blocks are dual-ported:
I Two independent ports to access same physical data:1

physical data
Port A

Port B

I The two ports can be configured to different word sizes.
I Example: binary trees: access parent and both children together.

1Effect of concurrent writes to same location is undefined.
March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 50

Content-Addressable Memory

Independent word sizes can be used to build content-addressable
memory (CAM):

I hardware-implemented key-value store,
I guaranteed constant lookup time (unlike hash tables in software),
I standard device in networking (routing, packet classification).

Idea:
I single-bit writes (address: key ++value)
I multi-bit reads (address: key)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 51

Finite State Machines

Finite state machines naturally translate into FPGA circuits.
I States are flip-flops, transitions are logic.
I Available parallelism→ non-deterministic automata.

Example: XPath evaluation
I Mitra et al. Boosting XML Filtering Through a Scalable

FPGA-based Architecture. CIDR 2009.

Likewise: pattern detection, etc.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 52

Clock Regions

Like (almost) everything else, the clock frequency can be configured.

I The longest signal path determines the maximum frequency.
→ Tune size of asynchronous units vs. frequency.

I Different chip regions can be clocked at different rates.
→ Choose optimal clock rate for individual units of a design.

I Use FIFOs to decouple units with different clock rates.

I The clock frequency also influences power consumption.
I Or turn the clock off for regions to save power (clock gating).

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 53

FPGA in Database Management Systems

Integration Aspects

System Architectures — Overview

I On-Chip co-processor to the Embedded CPU
I Xilinx MicroBlaze CPU
I PowerPC Embedded Core

I Co-processor in traditional systems
I PCI Express attachment
I HyperTransport attachment: FPGA in a CPU socket

I FPGA in I/O data path

CPU
network

disk
...

 data FPGA
data

CPU

network
...

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 55

Co-processor to Embedded CPU Core

FPGA Chip

On-chip
Memory
(BRAM)

Embedded
CPU Core

Custom HW
Circuit

input data

result data

External
Memory
(DDR2)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 56

Designing an On-chip Co-processor
I On-chip components

connected by several bus
systems

I Local Memory Bus:
dedicated memory bus

I Processor Local Bus:
wide bus for fast
components (Memory)

I On-chip Peripheral Bus:
narrow bus for slow
components (Peripherals)

I Buses implemented in
configurable HW

I Buses require arbitrated
access→ overhead, latency

I Better: Point-to-Point Links→
no arbitration needed

I Simplex Links: Unidirectional
connections

I Fast Simplex Link: 32-bit
wide, essentially a 16
element FIFO

I Some CPUs have dedicated
Co-processor interface→
Auxiliary Processing Unit
(APU) Interface

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 57

Xilinx MicroBlaze CPU

I Soft Intellectual Property
(Soft-IP) core: implementation
in configurable logic

I 32-bit MIPS Architecture
I Closed source, only compiled

form (netlist)
I Supported features chosen at

configuration time
I Trade-off: functionality vs. chip

space
I Max. Clock Speed: 235 MHz

on Virtex-5 (=280 Dhrystone
MIPS)

Features:
I Floating Point Unit
I Hardware Divider
I Memory Management Unit
I Exception Support
I Fast Simplex Link Interfaces
I Local Memory Bus to on-chip

memory

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 58

Fast Simplex Link to MicroBlaze Execution Pipeline

Instruction
Buffer

Registers

ALUInstr.

Fetch
Instruction

Frequent Item
Component

CPU Core
WritebackDecode Execute

Decode

FSL FSL

FPGA Chip

I Fast Simplex Link
(FSL) to Pipeline

I Up to 16 FSL
I Put/Get

instructions:
Register↔ FSL

I put %regA, rfslX

I get %regA, rfslX

I Also blocking and
non-blocking
versions

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 59

PowerPC Hard-IP Core

PPC440
Core 0

PPC440
Core 1

I Virtex-5 XC5VFXxxxT contains two
PowerPC 440 cores

I hard-IP core: implemented in silicon,
not configurable

I PPC440 core also used in BlueGene
Supercomputer

I 32-bit CPU
I Up to 400 MHz clock
I 32 kB Data and 32 kB Instruction

Cache
I Memory Management Unit
I Auxiliary Processor Unit Interface for

connecting co-processors (e.g., FPU)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 60

PowerPC APU

I Auxiliary Processing Unit
(APU) Interface allows
extension of the PowerPC
instruction

I Most common use: integration
of an FPU

I APU controller decodes PPC
FPU and VMX (Altivec) vector
instructions

I Plus up to 16 User-defined
Instructions

I Load/Store instructions

190 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-2: Data Flow between APU Controller and FCM

APU Controller Fabric Coprocessor
Module (FCM)

UG200_c12_02_040907

Instruction 0 Instruction 1

Decode Instr0 Decode Instr1

Decode
Control and

Decode
Registers

Optional FCM
Decode

FCM Execution Unit

FCM Internal Registers

Central Scrutinizer
(Determines When FCM
Instruction Completes)

DISS3

DISS2

DISS1

DISS0

Wait Instruction
Information

FCM Instruction
Information

FCM Instruction
Information

Ra Source Data [0:31]

Rb Source Data [0:31]

Can/Cannot Update
Internal Registers

Result Data [0:31]

W

Result Data/CR Data 0 12

Store FCM Buffer 0 12

Load Wait Byte Address

Load FCM Byte Address

Load Wait Byte Address

Store Data [0:127]

Load Data [0:127]

Load Byte Address

Ra Wait Instruction
Ra Wait Instruction

Ra FCM Instruction

Rb Wait Instruction
Rb Wait Instruction

Rb FCM Instruction

Load Wait Buffer

Load FCM Buffer

Load Wait Buffer

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 61

PCI Express Bus

I PCIe: Packet-based,
point-to-point serial interface

I Multiple Lanes: x1 – x32
Raw Bw effective Bw

Link per dir. per dir.
x1 2.5 Gb/s 2 Gb/s
x2 5 Gb/s 4 Gb/s
x4 10 Gb/s 8 Gb/s
x8 20 Gb/s 16 Gb/s

I PCIe available in commodity
hardware

I Demo Board has PCIe x1
connector

I PCIe defines roles:
I PCIe Root Complex

(Southbridge)
I PCIe Switch
I PCIe Endpoint, e.g., NIC

I FPGA takes role of Endpoint
I Endpoint must be

implemented on FPGA
I Virtex-5 hard-IP core plus

soft-core wrapper
I Freely available

Implementation of PCIe
Endpoint (R. Bittner, MSR
Redmond)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 62

FPGA Co-processor on a PCI Express Card

FPGA Chip

On-chip
Memory
(BRAM)

Embedded
CPU Core

Custom HW
Circuit

External
Memory
(DDR2)

PCIe
Endpoint

PCI Express link to host system

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 63

FPGA Co-processor on HyperTransport Bus

I FPGA directly connected to
CPU HyperTransport

I Tight coupling to Server CPUs

I FPGA in CPU Socket→
RPRU Module (DRC
Computer Corp.)

I FPGA in HTX Socket→ HTX
Board (U. Mannheim)

RPU Module (RPC Computer Inc.

HTX-Board (U. Mannheim)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 64

FPGAs in the Data Path
I FPGA in Data Path to CPU

I From Network→ Streams
on Wires—A Query
Compiler for FPGAs
(Müller, Teubner, and
Alonso) in VLDB09

I From Disk→ Netezza
Data Warehouse
Applicance

I Off-loading to FPGA for Data
Reduction

I Selection/Projection
I Aggregation

I Reduces traffic to the CPU

notification

Main
Memory

CPU

stream
data

NIC

notification

Main
Memory

CPU

stream
data

SATA
disk

network

data processing

data processing

FPGA

FPGA

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 65

Processing Packets at Wire Speed (ongoing work)

I Stream Processing Application
I Filtering Tuples in UDP

datagrams
I IP/UDP Engine implemented

in hardware
I Connected to 1 Gb Ethernet

MAC
I PC System drops packets

(high interrupt rate)
I FPGA Solution allows

processing packets at wire
speed w/o loss.

100 % 100 %

FPGA

60 %

36 %

software (Linux 2.6)

0 %

20 %

40 %

60 %

80 %

100 %

300,000 pkt/s1,000,000 pkt/s
pa

ck
et

s
pr

oc
es

se
d

data input rate

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 66

Demo 2

Data Stream Aggregation on FPGA
Processing of UDP Network Traffic

Demo 2: Data Stream Aggregation

I Stock Ticker Stream
I Symbol: CHAR(4)
I Price: Price in Cents
I Volume: # shares

Seqnr Symbol Price Volume
2245 BAER 3551 75
2246 UBSN 622 47
2247 NOVN 4637 403
2248 NESN 2842 166
2249 UBSN 608 13
2250 NOVN 4736 118
2251 ABBN 2505 27

Aggregation Query:
SELECT Symbol, avg (Price)

FROM Trades [SIZE 15

ADVANCE 5 TIME]

GROUP BY Symbol

In Demo max. 32 groups

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 68

System Setup

Ethernet
(input stream)

NIC FPGA

serial port

serial line
(output)

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 69

Power Consumption

One of the virtues of FPGAs is their low power consumption.

This circuit:

total FPGA power consumption 6.4 W
part spent to drive I/O pins (network, serial) 4.5 W
part spent in co-processor 0.04 W

For comparison: Intel Core 2 Q6700 (desktop CPU): up to 95 W.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 70

Wrap-Up

Summary and Lessons Learned

Summary

FPGA Basics:
I re-configurable logic
I low latency, high throughput, power-efficient

FPGA Design Techniques:
I flexible types of parallelism: data and pipeline parallelism
I addl. tricks: on-chip BRAM, CAM, flexible clock frequency

System Integration
I co-processor to general-purpose CPU
I FPGA in the system’s data path

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 72

Lessons and Guidelines

I Resource consumption is an important design factor.

I Pipeline parallelism eases scalability and performance.

I Trade-off: synchronous designs↔ asynchronous designs.

I System integration can be decisive.

I Designs can be tuned for power efficiency.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 73

A New Point in the Design Space
FPGAs work well for streaming-style, high-throughput processing.

I Good fit for many database tasks.

Put the FPGA into a system’s data path:

CPU
network

disk
memory...

data FPGA

data
CPU

network
disk

memory...

last example

Netezza

Kickfire

Roles of the FPGA can also include decoding, compression, etc.

Benefits include performance, but also power efficiency.

March 25, 2010 René Müller, Jens Teubner · ETH Zurich · Systems Group 74

	Introduction
	Tutorial Outline
	Who we are

	FPGA Basics
	FPGA Introduction
	FPGA Architecture
	Programming FPGAs
	Demo 1: '0 to 9' Counter

	Programming FPGAs using high-level Languages

	Using FPGAs
	Parallelism
	Data Parallelism
	Pipeline Parallelism
	Database Queries

	Some More FPGA Features
	Dual-Ported BRAMs
	Content-Addressable Memory
	Finite State Machines
	Clock Regions

	FPGA in Databases
	System Architectures
	Co-processor to Embedded CPU Core
	MicroBlaze CPU
	PowerPC PC
	PCI Express Bus
	FPGA Co-processor on HyperTransport Bus

	FPGA in the Data Path
	Demo 2: Data Stream Aggregation

	Summary
	Summary

