
A Spinning Join that does not get Dizzy

Philip W. Frey Romulo Goncalves Martin Kersten Jens Teubner
Systems Group

Department of Computer Science
ETH Zurich

firstname.lastname@inf.ethz.ch

Database Architectures and
Information Access Group

CWI Amsterdam
goncalve|mk@cwi.nl

ABSTRACT
Almost unnoticed by the database community, advances in
network technology have turned a fundamental assumption
in distributed data processing—network communication is
slow and expensive—upside-down. With the help of Re-
mote Direct Memory Access (RDMA), modern networks can
transfer data at rates beyond 10 Gb/s, yet cause only negli-
gible overhead in terms of CPU power.

We study the opportunities offered by these hardware
trends from the perspective of the core database algorithms
using a simple topological network structure. As starting
point we propose the Data Roundabout, a ring-shaped net-
work consisting of several machines. Each of them stores
a portion of a complete data set. Rather than trying to
avoid network communication at all cost, we leverage the
available bandwidth and (continuously) pump data through
a high-speed network.

In this work we report on cyclo-join which exploits the
cycling flow of data in the Data Roundabout to execute
distributed joins. The study uses different join algorithms
(hash join and sort-merge join) to expose the pitfalls and
the advantages of each algorithm in this data cycling arena.
The experiments show the potential of a large distributed
main-memory cache glued together with RDMA into a novel
DBMS architecture.

1. INTRODUCTION
With great distributed compute power at everyone’s fin-

gertips—either in terms of real hardware or provided by
a cloud infrastructure—user expectations have grown high:
users expect even complex ad-hoc queries to be answered in
interactive time, automatically distributed to exploit avail-
able resources as necessary.

In this work, we look at a particular part of the chal-
lenge to meet these expectations. We present cyclo-join, a
mechanism that uses networked resources to perform dis-
tributed joins. In particular, we use Remote Direct Memory
Access (RDMA) with its high-speed characteristics to pro-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

cess joins entirely in distributed main memory, in order to
reach throughput rates that are far beyond what commodity
disks or conventional networks can provide.

The purpose of this report is two-fold:

Cyclo-Join Mechanism. With cyclo-join, we describe a slim
layer that orchestrates the execution of any traditional (single-
host) join algorithm in a distributed setup, relying on a fast
interconnect to transfer data. In an in-depth evaluation per-
formed on actual hardware, we analyze and illustrate the
implications of cyclo-join depending on the problem type
and compare it with local join algorithms.

High-Speed Networks and RDMA. Available since long in In-
finiBand, and now also for Ethernet systems, RDMA prom-
ises significant network performance advantages (≥ 10 Gb/s)
and bears interesting potential for distributed data process-
ing. Unleashing this potential, however, requires careful
algorithmic (re-)design and a basic understanding of how
RDMA operates internally. Our work provides such under-
standing and discusses trade-offs incurred with RDMA.

The broader context of our work is the Data Cyclotron
project, a joint effort between CWI Amsterdam and ETH
Zurich to explore non-traditional architectures to cope with
the ever-increasing requirements from large-scale business
intelligence and eScience applications. Given the wide avail-
ability of RDMA, our approach is to re-think distributed
database processing and consider the network as our friend,
not as an enemy to be evaded at all cost [15].

This report proceeds as follows. The upcoming Section 2
provides the necessary context and reviews work on dis-
tributed join processing. Hardware-accelerated network pro-
cessing (RDMA) and its application to the Data Roundabout
approach are on our agenda for Section 3. The architecture
and algorithms used for distributed join processing on the
cyclo-join are presented in Section 4. The evaluation of
cyclo-join for uniform and non-uniform workloads is pre-
sented in Section 5 and the additional related work is pre-
sented in Section 6. Section 7 summarizes our work.

2. STATE OF THE ART
AND THE DATA ROUNDABOUT

The technology behind most distributed database systems
today dates back to early prototypes such as the SDD-1 [22],
Distributed INGRES [8], or System R* [19] systems. The
underlying assumptions and the approaches taken to address
them are largely a consequence of the network environments
at that time. A short recap of history is provided.

2.1 Traditional Distributed Query Processing
Most importantly, in the early days network communica-

tion was fairly slow (3 Mb/s were considered a “high-speed”
network) and thus treated as a major cost factor in dis-
tributed query processing, if not the only one considered at
all [3]. In a distributed setting, the primary goal of join
processing techniques, such as the use of semi-joins [4], the
shipping of pre-filtered tables [20], or System R*’s “fetch
matches” technique [20], was to avoid network communica-
tion, often at the expense of additional CPU work.

Another consequence is the generic architecture that has
become pervasive in distributed query processing. All data
is partitioned over available network hosts (often only few
of them) and remains there mostly static. A notable ex-
ception are the scalable distributed data structures [18],
which adapt to the arrival of data. Queries, by contrast,
are shipped between hosts during query processing, usually
along with state information or intermediate query results.
This processing model is a good fit for classical workloads,
where most queries are known in advance (and data can be
partitioned accordingly) and involve only few, simple join
predicates.

2.2 Distributed Query Processing Today
Today, roughly three decades later, the hardware land-

scape and application demands have changed significantly.
Commodity networks provide extremely high throughput
and low latency and, thanks to hardware acceleration, incur
only negligible communication cost. Real-time data mining
or business intelligence applications have shifted the chal-
lenges in distributed large-volume data processing towards
complex queries [7] and reflect an increasing importance of
ad-hoc queries. Particularly the former class of queries of-
ten depends on functionality beyond the classical foreign-key
joins, including band or similarity joins.

Another shift is driven by economic forces. In the spirit
of cloud computing, large installations of commodity off-the-
shelf systems are becoming preferred over few high-perfor-
mance machines. Cost effectiveness, fault tolerance, and
scalability are achieved by adding and removing machines
“as you go”. Cloud-style operational models defeat the ded-
ication of machines for keeping specific data or performing
specific tasks. Instead, they demand trivial replacement, ad-
dition, or removal of network hosts as well as a low overall
system complexity.

2.3 The Data Roundabout Approach
As a starting point to explore novel architectures for their

potential to meet these requirements, we propose the Data
Roundabout which consists of a (potentially large) number of
commodity systems. All participating nodes are connected
to form a logical storage ring structure. Each node commu-
nicates only with its immediate neighbors via a high-speed
RDMA connection, as illustrated in Figure 1 for a Data
Roundabout of size six (i.e., one that consists of six hosts).
We assume the combined main memory of all participating
hosts to be large enough to hold the hot set of the database
in a distributed fashion; other data may be kept in slow,
distributed disk space.

A fundamental difference to classical distributed systems
is that we keep queries and their state static and move base
data over the network instead. In fact, we keep (the hot set
of the) data circulating in the ring continuously. Queries

Host H2

Host H1

Host H6

Host H5

Host H4

Host H3

R
D
M

A

RDMA

R
D

M
A

R
D
M

A

RDMA

R
D

M
A

datadat
a

da
ta data

Figure 1: The Data Roundabout. Hosts Hi are orga-
nized as ring, connected by high-speed RDMA links.

remain local to one or more nodes and pick necessary pieces
of data as they flow by in the ring.

The Data Roundabout satisfies the requirements sketched
before. The ring is built from commodity systems and its
design and data flow pattern are deliberately kept simple,
in order to ease maintenance and scalability. Hence, a Data
Roundabout system can trivially be extended or shrunken,
depending on CPU and/or main memory demand. Further-
more, we do not partition data based on a priori workload
knowledge, which lets us seamlessly handle ad-hoc queries.

Taking full advantage of modern networking hardware and
the idea of rotating data, however, requires certain care in
the algorithm design. In this work we focus on RDMA trans-
port facilities (see upcoming section) and on the processing
of joins in cyclo-join.

3. REMOTE DIRECT MEMORY ACCESS
Network communication is known to be compute- and

memory I/O-intensive [9]. High-volume data transfers thus
depend on dedicated hardware assistance, which modern
network cards provide in terms of Remote Direct Memory
Access (RDMA).1

To make efficient use of RDMA, however, applications
have to respect some of the characteristics of the hardware-
accelerated transport mechanism. This section summarizes
the most relevant characteristics and provides a motivation
for the design of cyclo-join.

3.1 RDMA Basics
The basic idea of RDMA is illustrated in Figure 2. (i) The

network card of the sending host fetches the data directly
out of local main-memory using intra-host DMA. (ii) It
then transmits the data across the network to the remote
host where (iii) a receiving RNIC places the data straight in
its destination memory location. On both hosts, the CPUs
only need to perform control functionality, if at all.

RDMA offers the following benefits relevant for this work:

Asynchronous I/O. In contrast to the synchronous socket

interface offered by TCP, RDMA uses an asynchronous com-
munication model between the application and the hard-

1Network interface cards (NICs) that provide this function-
ality are also called RDMA-enabled NICs or RNICs.

System 1

CPU

RAM RNIC

System 2

CPU

RAMRNIC

fully utilized
network

Figure 2: Network transfer using RDMA. RNICs
handle data transfer autonomously; data has to
cross each memory bus only once.

100%

50%

0%
Everything

on CPU

Network Stack

on NIC
RDMA

I/
O
 O
v
e
r
h
e
a
d

context
switches

driver
network
stack

data
copying

context
switches

reduced

Figure 3: Only RDMA is able to significantly reduce
the local communication overhead induced at high-
speed data transfers.

ware. The available operations are described by the appli-
cation in terms of work requests. Work requests are posted
to queues on the network adapter where they are processed
in hardware. This enables the overlap of communication
with data processing such that the network delay can be
mostly hidden.

Zero-Copy and Direct Data Placement. Traditional network
interfaces (e.g., sockets), require intermediate copy steps by
the operating system when moving data between the net-
work and the application memory of a host (in order to
guarantee proper isolation between different applications).
This consumes a substantial amount of CPU power. A rule
of thumb in network processing states that about 1 GHz
in CPU performance is necessary for every 1 Gb/s network
throughput [9].

As shown in Figure 3 (left-most chart), data copying is
the dominant share of the CPU load required to process
network data. Thus, simply offloading the network stack
processing to the network card does not change the picture
much (middle chart in Figure 3).

With RDMA on the other hand, the data is moved di-
rectly between the network and the application memory
without intermediate copying—this is known as zero-copy.
The key concept that enables zero-copy is RDMA’s direct
data placement, a mechanism whereby data is enriched with
local placement information such that the RNICs are able
to directly access the data in local main-memory using their
DMA engines.

As the data transfer is handled entirely by the network
cards, RDMA offers high-speed communication between two
hosts with minimal involvement of either CPU. The whole
network stack processing is also performed by the network
cards, resulting in a further CPU load reduction and also in
fewer context switches, thereby causing less cache pollution
(right-most chart in Figure 3).

System 1

CPU

RAM NIC

System 2

CPU

RAMNIC

underutilized
network

Figure 4: Kernel TCP/IP. Data copying goes
through CPU; several memory bus crossings.

A second effect is less obvious: RDMA also significantly
reduces the memory bus load as the data is directly trans-
ferred to/from its location in main-memory using intra-host
DMA. Therefore, the data crosses the memory bus only
once per transfer. The kernel TCP/IP stack on the other
hand requires several such crossings (see Figure 4). This
may lead to noticeable contention on the memory bus un-
der high network I/O. Adding additional CPU cores to the
system is thus not a replacement for RDMA (we further
substantiate this claim in Appendix B).

For the motivation of this work it is important to realize
that RDMA allows us to transfer large amounts of data at
a high speed without causing any significant overhead. We
thus have almost all of the CPU cycles available for the join
processing.

3.2 Applying RDMA
As we showed in earlier work [10], not every application

can take full advantage of RDMA. Rather, applications have
to respect the characteristics of RDMA to take full advan-
tage of the hardware-accelerated transport.

First, all buffers (for receiving and for sending data) have
to be sized and registered with the network card before start-
ing an RDMA-based data exchange. This enables the net-
work interface card to access the application memory through
its DMA engine without any involvement of the operat-
ing system. The registration process is rather CPU inten-
sive [10] as it involves several address translations and be-
cause the memory must be pinned and protected from being
swapped out to disk. Whenever speed is a major concern,
the cost of registration renders on-demand allocation and
registration of memory buffers infeasible.

Second, each data transfer is initiated by posting work
requests to the RNIC, a control task that still has to be
performed by the CPU. To keep the resulting CPU over-
head limited, it is desirable to transfer the data in large
chunks which requires fewer work requests to be posted.
Also the RNIC itself is able to handle large data transfers
more efficiently than small ones. Figure 5 shows raw net-
work throughput achievable with RDMA when using trans-
fer units of different sizes. RDMA is only able to saturate the
link once transfer units reach a size that is & 4 kB. In prac-
tice, we found that additional application overhead slightly
shifts this figure, such that we can expect maximum network
throughput for units of size 1 MB and larger.

3.3 Data Roundabout Design on RDMA
The Data Roundabout strives for a decentralized mode of

operation. Each node only communicates with its immedi-
ate two neighbors and all data is forwarded in one direction,
say clockwise.

Considering the aforementioned requirements, we designed

0.0

2.5

5.0

7.5

10.0

1B 1KB 1MB 1GB

chunk size

th
ro

u
g

h
p

u
t

[G
b

/s
]

Figure 5: RDMA requires a minimum chunk size to
saturate the link.

each node in Data Roundabout to be equipped with a stati-
cally allocated ring of memory buffers to hold the data ro-
tating in the roundabout:

transmit

receive

join

We size and register all of the ring buffer elements in the
beginning and reuse them at join execution time to minimize
the memory registration cost. As RDMA works best on large
buffers, we always transfer a whole ring buffer element and
not a single tuple, for instance.

The data propagation within the hosts has been designed
in an asynchronous way involving the following three enti-
ties: a join thread, a receive thread and a transmit thread.

The join thread is responsible for computing the joins and
operates on one ring buffer element at a time. When it is
has finished processing the current buffer, it asks for that
buffer to be forwarded by the transmit thread and continues
with the next buffer while the transmit thread is forwarding
the processed data. If the next buffer has already been filled
by the receive thread, the join thread can start processing it
immediately.

Overlapping communication and computation is a key
part of the Data Roundabout architecture because it hides
the data propagation delay of the network. Furthermore,
since the CPU and memory bus overhead caused by RDMA
communication is low, the join thread is not hindered by the
concurrent data transfers.

4. CYCLO-JOIN: DISTRIBUTED JOIN PRO-
CESSING ON THE DATA ROUNDABOUT

To effectively exploit the throughput opportunities offered
by the Data Roundabout architecture, algorithms on top of
the transport layer have to adhere to a rather stringent data
flow pattern. Cyclo-join is a distributed join strategy that
provides this data flow pattern and enables us to compute
arbitrary database joins in distributed main memory over
input data of arbitrary size.

In this section, we describe and motivate the inner work-
ings of cyclo-join.

Host H2

Host H1

Host H6

Host H5

Host H4

Host H3

R
D
M

A

RDMA

R
D

M
A

R
D
M

A

RDMA

R
D

M
A

S2

S1
S6

S5

S4

S3

R2

R1

R6

R5

R4

R3

Figure 6: Cyclo-join: Network hosts are organized
in a logical ring. Relation R circulates in the ring
while S remains stationary.

4.1 Problem Scenario
Our focus is on the evaluation of a binary join R 1p S,

where both input relations are assumed to be large (too large
to fit into the local memory of a single machine, in particu-
lar). R and S together fit conveniently into the distributed
memory, the ring storage, of a Data Roundabout network,
however.

We do not pose restrictions on the join predicate p. Al-
though our experiments focus on equi-joins—thus demon-
strate how cyclo-join can be combined with efficient in-
memory algorithms such as hash or sort-merge joins—cyclo-
join is not bound to equality predicates. Modern application
classes could use this flexibility of cyclo-join to accelerate,
for instance, band joins or similarity joins.

We assume that, prior to join processing, both input ta-
bles are distributed over all network hosts Hi. We do not
care how the data is distributed, but we assume that the dis-
tribution of at least S is reasonably even. This assumption is
readily provided, for instance, in recent database prototypes
for cloud infrastructures such as HadoopDB [1].

The join R 1 S is computed in a fully distributed fashion
and its result is again available as a distributed table. As
such, the join output could naturally be used as input to
subsequent processing in a larger query plan. The ternary
join (R 1 S) 1 T could, for example, be evaluated using
two runs of cyclo-join.

4.2 Cyclo-Join Operation
The idea of cyclo-join is illustrated in Figure 6: one of

the two relations, say S, is kept stationary during processing
(partitioned into sub-relations Si) while the fragments of the
other relation, say R, are rotating in the Data Roundabout.

All ring members (Hosts Hi), join each fragment Rj flow-
ing by against their local piece of S (Si) locally using a
commodity in-memory join algorithm. The result of each
Rj 1 Si is a part of the overall join result. Cyclo-join ac-
cumulates all Rj 1 Si at Hi. After one revolution of R, all
hosts Hi have seen the full relation R and have thus com-
puted the partial join results R 1 Si. Since the Si are a
partitioning of S, the full join result R 1 S is now available
as a distributed table spread across all Hi (ready, e.g., for

further processing, as mentioned above).
The task of the Data Roundabout transport layer is to ef-

ficiently move the rotating relation around the network. As
illustrated earlier in Section 3.3, transmit thread and receive
thread asynchronously move pieces of R in and out, attempt-
ing to keep the join thread busy at all times. Depending on
the shape of the input data, this may be easier to achieve if
the smaller of the two input relations is chosen as the one
that is kept rotating.

4.3 A Selection of Join Algorithms
Within a full revolution of input relation R, all possible

combinations of fragments Rj and Si of R and S, respec-
tively, are co-located on some host once and then combined
to produce Rj 1 Si (as such, cyclo-join operates similar to
a block nested loops join [11]). Cyclo-join can thus play
together with arbitrary implementations of 1 and support
arbitrary join predicates.

Since we strive for fully distributed in-memory processing,
we focus on join algorithms that are known to perform well
in main memory-based setups. We ported the MonetDB im-
plementations of partitioned hash join and sort-merge join
to our cyclo-join setup. The former inherently provides sup-
port only for equi-joins, while our implementation of the lat-
ter can also handle band joins. For all other join predicates,
our system falls back to an implementation of nested loops
join (not further discussed in this report).

4.3.1 Hash-Based Equi-Join
Our implementation of partitioned hash join is derived

from the radix join algorithm [21] as found in the most re-
cent distribution of the MonetDB system2. The implemen-
tation is carefully tuned to exploit the cache characteristics
of modern CPU hardware, including the size of the on-chip
L2 cache and the size of an L2 cache line.

Radix join operates in two phases. During a setup phase
we partition all input data and create hash tables on the
partitions of the stationary in-memory join argument Si. A
subsequent join phase then scans partitions of Rj and probes
into hash tables of the Si partitions.

We obtain a partitioning of the two input fragments Rj

and Si into sub-fragments rj,k and si,k using the same hash
function on their join keys. The goal is to achieve a parti-
tioning where each piece si,k of the stationary fragment Si

and an associated hash table fit into the L2 CPU cache. Such
a partitioning makes the subsequent join phase (that uses a
standard hash join to scan rj,k and probe into a hash table
on si,k) particularly cache-efficient, since all hash probes can
be handled fully by the L2 cache.

As detailed in [21], establishing the necessary partition-
ing in a single pass would often lead to a high number of
conflicts in the TLB and/or data caches. Hence, we employ
a multi-pass partitioning phase, where each pass produces
a refinement of its predecessor in a cache-efficient manner.
For details refer to [21].

The join phase of our partitioned hash join can straight-
forwardly exploit the parallelism provided by modern multi-
core systems by computing the disjoint rj,k 1 si,k and rj,l 1

si,l on separate CPU cores. Our implementation uses all
four cores on our quad-core systems to run the join phase in
parallel.

2Available since release Nov_2009

4.3.2 Sort-Merge Join
Sort-merge join operates in two phases as well. The setup

phase here involves sorting both input fragments by their
join keys. During the join phase, the sorted fragments are
scanned in parallel and “merged” by aligning matches or
skipping forward on misses. Though sorting incurs an addi-
tional cost over the simpler partitioning in partitioned hash
join, the join phase of sort-merge join favors an even more
cache-efficient (strictly sequential) access pattern and can
be implemented to readily support band joins or inequality
predicates.

Much like in MonetDB, our implementation relies on an
efficient implementation of qsort in the C library, and we
leverage available parallelism by sorting both input frag-
ments (Ri and Si) in parallel. We note that our imple-
mentation bears some potential for improvement here, such
as the use of a SIMD-optimized sorting algorithm [6]. The
join phase also runs multi-threaded: We split the Rj into
a number of non-overlapping sub-partitions (rj,k) equal to
the number of cores in the system. Individual threads then
join the stationary Si with one piece of Rj .

4.4 Interacting with Cyclo-Join
Our descriptions of partitioned hash join and sort-merge

join assumed that only a single join Rj 1 Si had to be
evaluated. Such an evaluation involves the execution of both
join phases, hashing/sorting and joining.

In practice, our join implementations sees the same input
data over and over again. It thus makes sense to invoke the
setup phase of either join implementation only once, then re-
use its output during the full execution of cyclo-join. The
effort spent in the setup phase is then amortized over mul-
tiple executions of the join phase. We can do so by sending
access structures (such as hash tables) or re-organized data
(sorted or partitioned) over the Data Roundabout transport
layer.

This is an instance where we can exploit the bandwidth
provided by our RDMA transport mechanism. Rather than
investing CPU cycles to reduce network traffic—the com-
mon strategy in existing systems—we spend some network
capacity to save CPU work. Sometimes, cyclo-join may thus
suggest a different balance between the efforts spent on pre-
processing and join computation. We will assess and dis-
cuss such trade-offs in more detail based on experimental
evidence in Section A.

5. EXPERIMENTAL EVALUATION
This section shows cyclo-join in action and provides an

analysis of its characteristic features.

5.1 Test Environment
Our experiments use Data Roundabout instances of up to

six network hosts (IBM HS21 BladeServers), which is the
maximum number of RDMA-equipped machines we cur-
rently have available. Each of them has a quad core In-
tel Xeon CPU running at 2.33 GHz, 32 KB L1 data cache
and 32 KB L1 instruction cache, 4 MB unified L2 cache and
6 GB of main memory. The BladeServers are running Fedora
Core 9 with a vanilla 2.6.27 Linux kernel.

RDMA hardware support is provided by Chelsio T3 RNICs
(S320EM-BCH) which offer full TCP/IP offloading (TOE)
and iWARP RDMA support. The RNICs are interconnected
through a Nortel 10 Gb Ethernet Switch Module.

0

4

8

12

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

0

10

20

30

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a

ll
-c

lo
c

k
 t

im
e

[s

]

join

setup

single host performance

88

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

Figure 7: Joining a fixed data set on an increasing
number of nodes.

5.2 Local Join versus Cyclo-Join
First, we investigate how well cyclo-join is able to lever-

age the available resources. We generated input relations
R and S that are just about large enough to fit into the
main memory of a single machine (140 million rows per ta-
ble with 12 bytes per tuple; this resulted in a total data
volume of 2 × 1.6 GB). The 4-byte join key was populated
with uniformly distributed integer numbers.

Figure 7 shows the execution times we observed when
computing the join R 1 S on a single host and when the
evaluation was distributed over up to six network hosts us-
ing cyclo-join. In all cases we used the partitioned hash join
to perform local joins. In the distributed case, we spread all
data evenly across all network hosts before join processing.

The most apparent observation is that the distribution
of the join considerably reduced the total join processing
time, which we separated into the time spent in the setup
phase (shown in dark gray) and in the join phase (white
bars) of the partitioned hash join. A particular observation
is the non-existence of synchronization time, i.e., the Data
Roundabout overhead imposed by the RDMA.

Data Roundabout Overhead. A design goal of Data
Roundabout was to leverage RDMA such that network com-
munication can be fully overlapped with data processing.
Our measurements confirmed that, indeed, Data Round-
about was able to fully hide network cost and perform all
communication asynchronously to the actual join process-
ing.3

Network processing will only cause an effect on the ob-
servable execution speed if the in-memory join thread can
finish its task significantly faster than RDMA can bring in
new data. As we show in Appendix A this effect can be
observed in our implementation of sort-merge join.

Setup Cost. The separation into the two processing phases
shows where the runtime improvement comes from. Dis-
tributing the generation of a hash table over the stationary
relation S cut down the time spent in the setup phase ac-
cording to the number of participating nodes. Distribution
over six Data Roundabout hosts, for instance, reduced the

3In an earlier report on cyclo-join [11] we had used a differ-
ent hash join implementation with a higher memory band-
width demand. This had led to a situation where our system
was contended on the local memory buses even when using
RDMA, such that join threads frequently had to wait for
the arrival of new data.

0

4

8

12

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

0

10

20

30

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a

ll
-c

lo
c

k
 t

im
e

[s

]

join

setup

single host performance

88

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

Figure 8: Each node adds 3.2 GB to the data set.

setup cost by a factor of six (16.2 s for single-host execution
vs. 2.7 s on six hosts).

Join Cost. The total amount of time spent in the join
phase, by contrast, is not affected by the distribution through
cyclo-join, a behavior that might seem surprising at first.
The reason why cyclo-join does not benefit the join phase
in this configuration are the particular characteristics of a
hash join. During the join phase, the local hash joins scan
their current piece of the outer join relation (i.e., Rj) and
perform a hash lookup for each tuple in Rj . Assuming a
reasonably “friendly” configuration (a proper hash function
and rare hash collisions), the cost of a hash lookup is in-
dependent of the size of the (local part of the) inner join
relation Si.

During a full run of cyclo-join, each participating host
will scan all pieces Rj of R—hence, the entire relation R—
exactly once. The total cost of the join phase is thus inde-
pendent of the number of network hosts:

cost (Si 1 R) ∼= |R| · cost per hash lookup . (?)

Highly skewed data invalidates the assumption of rare
hash collisions. In Section 5.4, we illustrate how this affects
the performance of the join phase in the cyclo-join setting.

5.3 Large In-Memory Join
The primary purpose of cyclo-join is to distribute the pro-

cessing of large join instances that could not be evaluated on
a single host. We verified this capability by scaling up the
problem size, while simultaneously distributing the problem
over more network hosts (we keep the per-host data volume
constant). Figure 8 illustrates the resulting processing times
for data volumes up to 19.2 GB.

Distribution of the hash generation phase now leads to a
size-independent setup cost. This is because we distributed
join processing such that the per-host data volume remains
constant. The time spent in the join phase now scales lin-
early with the size of the input data (or, more precisely, the
size of the rotating relation R). This confirms our assess-
ment of the join phase cost for the hash join, as given by
Equation (?).

The important outcome of the experiment is that with
cyclo-join we were able to process large problem sizes purely
in distributed memory. A single machine with a large enough
memory might have achieved comparable throughput in its
join phase (though with higher setup costs). However, while
the amount of memory addressable by a single host is severely

0.1

1

10

100

1000

10000

0.00

(uniform)

0.30 0.50 0.60 0.70 0.80 0.90

zipf factor

jo
in

 p
h

a
s
e
 (

lo
g

)
 [

s
]

cyclo-join local

Figure 9: Join phase on skewed data.

limited (even the modern Intel i7/Nehalem CPUs are lim-
ited to 64 GB of physical memory [14]), cyclo-join can be
trivially scaled up to large configurations. Cyclo-join makes
distributed memory available to process joins of arbitrary
size.

5.4 Skewed Input
The previous experiments were all based on hash-friendly

uniform key distributions. Real-world use cases rarely follow
perfect uniformity, but exhibit various flavors of skew. We
explore the effect of skewed input data on the cyclo-join
mechanism by generating input tables according to a Zipf
distribution with varying Zipf factors z.

For various z values we generated input data of size |R| =
|S| = 412 MB (36 million 12-byte tuples). For each gener-
ated instance we ran the join R 1 S once on a single host
and once on a cyclo-join ring that consists of six hosts. Fig-
ure 9 reports the execution times that we measured for the
join phase of our partitioned hash join. We omitted the
setup phase in this graph since it is unaffected by the data
skew.

For Zipf factors of z = 0.6 and greater, the exponential
increase of the number of duplicates in the data sets be-
gins to have a noticeable effect on the execution time of our
in-memory hash join. This is not a surprise: the increas-
ing number of hash collisions lets hash join slowly degrade
toward a nested loops-style evaluation.

The distributed join (white bars) can handle the increas-
ing skew appreciably better. While, in line with our pre-
vious experiments, the processing of uniformly distributed
data cannot benefit from a cyclo-join-based execution, Fig-
ure 9 shows a five-fold advantage of cyclo-join for input data
with a skew of z = 0.9.

The benefit comes from two sources. First, the ring buffer
mechanism of Data Roundabout balances differences in the
execution speeds of the participating hosts. Thus, a host
that is stuck in a chunk of data with a high number of du-
plicates will not immediately slow down the remainder of
the ring. A follower in the Data Roundabout will only have
to start waiting once it has fully consumed all data in its
ring buffer.

Secondly, distribution will lead to a better use of CPU
caches. Cyclo-join will chop all input data (in particular
the inner join relation S) into pieces. Thus, even in the
presence of skew, individual partitions within our hash join
are less likely to exceed the size of our CPU caches and the
join phase can perform more work from within caches.

6. A LOOK INTO THE NEIGHBORHOOD
We kept the design of cyclo-join and its transport layer

Data Roundabout deliberately simple. As such we think
many of the ideas presented in this paper would blend well
with existing research work and with some of the recent de-
velopments in hardware technology.

The availability of a fast transport mechanism eliminates
much of the urgency to reduce network transfer volumes as it
was the primary goal of earlier work [4, 20, 23]. Yet, network
traffic might still become a concern, for instance in scenarios
with highly concurrent or memory-intensive workloads, and
much of the existing work could become relevant to address
such scenarios.

Our spinning join setup resembles the DataCycle system
[5] or the Broadcast Disks of [2], systems that put significant
effort into properly scheduling data on the transport stream.
Integrating the ideas of this work into our system is part
of our ongoing work [12] and inspired a number of design
decisions in our evolving system prototype.

More recent work in the research neighborhood are new
systems designed for cloud environments. While systems
built on MapReduce-style architectures (such as the recently
proposed HadoopDB [1]) can achieve excellent scale-out for
certain types of queries, they still lack a convincing means
to perform arbitrary joins across the pre-assigned data par-
titions. Cyclo-join could fill this gap and enable the vision
of distributed true-SQL system.

On the technology side, cyclo-join could be a very interest-
ing application for Intel’s emerging I/O Acceleration Tech-
nology (I/OAT) [13]. With help of the Direct Cache Access
(DCA) feature of I/OAT, capable network controllers can
place data directly into CPU caches. As we showed in Sec-
tion 3.2, Data Roundabout works well already with RDMA
transfer units under a megabyte, small enough to be loaded
straight into caches. This might not only help to cut down
transport latencies, but also yield an even further reduction
of main memory bus contention.

Finally, we would like to relate our work to the systolic
systems developed in the 1980s. Systolic systems are com-
posed of a network of processors with a simple rhythmical
(hence the term “systolic”) data flow in-between. Although
Kung and Leiserson [17] had small-scale, on-chip processing
units in mind when they presented the first “systolic algo-
rithms,” some of the observations made at the time may still
be applicable to a cyclo-join ring.

7. SUMMARY
Modern advances in networking technology may shift the

priorities in distributed data processing. We demonstrated
how the bandwidth offered by modern networks (10 Gb/s
and beyond) can be exploited with help of Remote Direct
Memory Access (RDMA), a network transfer protocol with
widely available hardware support. To this end we devel-
oped cyclo-join, a mechanism that can distribute the evalu-
ation of relational database joins. Cyclo-join is built on top
of the ring-shaped Data Roundabout transport layer, which
has promising characteristics also in other settings [12, 15].

With cyclo-join, large database joins can be processed
as in-memory joins by taking advantage of the distributed
main memory in a cluster system. The system becomes
CPU-limited instead of bound by disk or network I/O. Other
than in a centralized system, the capacity of a Data Round-

about storage ring can be scaled up trivially, making it pos-
sible to process input data of arbitrary size. In line with
the idea of cloud computing, such scaling may even be per-
formed at runtime and as application workloads demand.

The effect of distributing CPU load depends on the par-
ticular join problem and on the algorithm chosen to perform
intra-host joins. We showed that critical and CPU-intensive
sub-tasks, such as hash generation or joins over skewed data,
can benefit best from the cyclo-join mechanism.

Our current research effort goes into the integration of
cyclo-join into the prototype Data Cyclotron system. This
involves the establishment of a complete SQL-enabled sys-
tem and a complete cost model for cyclo-join.

Acknowledgment
Jens Teubner is supported by a Swiss National Science Foun-
dation Ambizione grant (no. PZ00P2 126405).

8. REFERENCES
[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel

Abadi, Alexander Rasin, and Avi Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads.
Proceedings of the VLDB Endowment, pages 922–933,
2009.

[2] Swarup Acharya, Rafael Alonso, Michael Franklin,
and Stanley Zdonik. Broadcast Disks: Data
Management for Asymmetric Communication
Environments. In Proceedings of the ACM SIGMOD,
pages 199–210, 1995.

[3] Philip Bernstein, Nathan Goodman, Eugene Wong,
Christopher Reeve, and James Rothnie. Query
Processing in a System for Distributed Databases
(SDD-1). ACM Transactions on Database Systems,
pages 602–625, 1981.

[4] Philip Bernstein and Dah ming Chiu. Using
Semi-Joins to Solve Relational Queries. Journal of the
ACM, pages 25–40, 1981.

[5] Thomas Bowen, Gita Gopal, Gary Herman, Takako
Hickey, Kuo Lee, William Mansfield, John Raitz, and
Abel Weinrib. The Datacycle Architecture.
Communications of the ACM, pages 71–81, 1992.

[6] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee,
William Macy, Mostafa Hagog, Yen-Kuang Chen,
Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.
Efficient Implementation of Sorting on Multi-Core
SIMD CPU Architecture. Proceedings of the VLDB
Endowment, pages 1313–1324, 2008.

[7] Nicolas Dieu, Adrian Dragusanu, Françoise Fabret,
François Llirbat, and Eric Simon. 1000 Tables Inside
the From. Proceedings of the VLDB Endowment
(PVLDB), pages 1450–1461, 2009.

[8] Robert Epstein, Michael Stonebraker, and Eugene
Wong. Distributed Query Processing in a Relational
Data Base System. In Proceedings of the ACM
SIGMOD, pages 169–180, 1978.

[9] Annie Foong, Thomas Huff, Herbert Hum, Jaidev
Patwardhan, and Greg Regnier. TCP Performance
Re-Visited, Analysis of Systems and Software. In
Proceedings of the IEEE ISPASS, pages 70–79, 2003.

[10] Philip Frey and Gustavo Alonso. Minimizing the
Hidden Cost of RDMA. In Proceedings of the ICDCS,

pages 553–560, 2009.

[11] Philip Frey, Romulo Goncalves, Martin Kersten, and
Jens Teubner. Spinning Relations: High-Speed
Networks for Distributed Join Processing on New
Hardware. In Proceedings of the DaMon, pages 27–33,
2009.

[12] Romulo Goncalves and Martin Kersten. The Data
Cyclotron Query Processing Scheme. (under
submission).

[13] Intel Corp. Accelerating High-Speed Networking with
Intel I/O Acceleration Technology, 2006.

[14] Intel Corp. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, 2009.

[15] Martin Kersten. The Database Architecture Jigsaw
Puzzle. In Proceeding of the IEEE ICDE, pages 3–4,
2008.

[16] Changkyu Kim, Eric Sedlar, and Jatin Chhugani. Sort
vs. Hash Revisited: Fast Join Implementation on
Modern Multi-Core CPUs. Proceedings of the VLDB
Endowment, pages 1378–1389, 2009.

[17] Hsiang Kung and Charles Leiserson. Systolic Arrays
(for VLSI). In Sparse Matrix Proceedings, pages
256–282, 1978.

[18] Witold Litwin, Marie Neimat, and Donovan Schneider.
LH* - A Scalable, Distributed Data Structure.
Proceedings of the ACM TODS, pages 480–525, 1996.

[19] Guy Lohman, C. Mohan, Laura Haas, Dean Daniels,
Bruce Lindsay, Patricia Selinger, and Paul Wilms.
Query Processing in R*. Query Processing in Database
Systems, pages 31–47, 1985.

[20] Lothar Mackert and Guy Lohman. R* Optimizer
Validation and Performance Evaluation for
Distributed Queries. In Proceedings of the VLDB
Endowment, pages 149–159, 1986.

[21] Stefan Manegold, Peter Boncz, and Martin Kersten.
Optimizing Main-Memory Join on Modern Hardware.
Proceedings of the IEEE TKDE, pages 709–730, 2002.

[22] James Rothnie, Philip Bernstein, Stephen Fox,
Nathan Goodman, Michael Hammer, Terry Landers,
Christopher Reeve, David Shipman, and Eugene
Wong. Introduction to a System for Distributed
Databases (SDD-1). Proceedings of the ACM TODS,
pages 1–17, 1980.

[23] Patrick Valduriez and Georges Gardarin. Join and
Semijoin Algorithms for a Multiprocessor Database
Machine. Proceedings of the ACM TODS, pages
133–161, 1984.

APPENDIX
A. SORT-MERGE JOIN

In this section, we present the experimental results ob-
tained by applying the sort-merge join rather than the par-
titioned hash join. Figures 10 and 11 correspond to Figures 7
and 8, respectively.

A.1 Setup Cost vs. Join Cost
The runtime characteristics of sort-merge join resemble

the behavior of the partitioned hash join as shown earlier.
Sorting, however, incurs a significantly higher cost than the
generation of hash tables, which is why we see considerably
higher setup costs. As can be seen in Figure 10, this leads to
significantly longer execution times for small Data Round-
about configurations.

The high setup cost slightly pays off during the join phase
(shown again as white bars; we will discuss the light-gray
“sync” part in a moment). Merging two sorted tables yields
a cache-friendly, strictly sequential data access pattern. In
the case of our largest join configuration (19.2 GB distributed
over 6 hosts), this cut down the time spent in the join phase
from 16.2 s to 6.4 s seconds, a more than two-fold advan-
tage.4

In cyclo-join, the setup cost is a one-time investment which—
in contrast to a single-host execution—the in-memory join
steps can benefit from several times. How often a join exe-
cution takes advantage of the up-front investment depends
on the size of the Data Roundabout ring. High setup costs
will better amortize if cyclo-join operates on larger rings.

Thus, the use of cyclo-join may suggest a different bal-
ance between the effort spent into a join’s setup phase and
its resulting performance in the join phase. For the two par-
ticular implementations that we have at hand, MonetDB’s
partitioned hash join and a qsort-based sort-merge join, we
expect that the latter implementation would overpass the
former in Data Roundabout configurations of ≈ 30 nodes up-
ward (i.e., for data volumes & 100 GB).

Kim et al. [16] recently studied the trade-off between hash
and sort-merge joins recently with highly tuned implementa-
tions of both algorithms and concluded almost comparable
performance already on single hosts. Sort-merge join would
then likely be the better choice already for cyclo-join con-
figurations running on only few nodes.

A.2 “Synchronization” Cost
Contrast to our observations in Section 5.2 when running

the partitioned hash join, Figure 11 also shows that the join
phase has now become too fast to fully hide the cost of
network communication. The time shown in light gray is
the time that the join threads now spent waiting for new
data to arrive via the Data Roundabout transport layer (we
say they synchronize with the Data Roundabout layer).

The performance that we observe indicates that we are
hitting the limits of the physical 10 Gb/s transport layer.
For a full cyclo-join run, the entire relation R has to be
pumped once through each participating host. For the 6-
host configuration in Figure 11, this means that |R| = 9.6 GB
of data crossed each Data Roundabout link in 6.4 s + 2.3 s =
8.7 s, which corresponds to a network throughput of 1.1 GB/s,
very close to the theoretical maximum of 10 Gb/s.

4Even with the new “sync” time considered (2.3 s), the ad-
vantage is still a factor of 1.8.

70

75

80

85

90

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

sync

setup

0

25

50

75

100

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

single host performance

Figure 10: Sort-Merge Join: Joining a fixed data set
on an increasing number of nodes.

70

75

80

85

90

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

sync

setup

0

25

50

75

100

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

single host performance

Figure 11: Sort-Merge Join: Each node adds 3.2 GB
to the data set.

B. RDMA VERSUS TCP SOCKETS
We presented the cyclo-join/Data Roundabout pair run-

ning on top of a hardware-accelerated RDMA transport
layer. Here we analyze what would happen if we used a
traditional, TCP sockets-based transport in our system.

To this end, we generated data instances of sizes |R| =
|S| = 160 million tuples (corresponding to a data volume
of 2 · 6.7 GB) and distributed the evaluation of R 1 S over
a Data Roundabout installation of size six (as before). We
ran the join with RDMA support, but also with the stan-
dard mechanisms provided by the Linux kernel. That is, we
changed the transmit and receive threads of Data Round-
about to use send and recv calls instead of their RDMA
counterparts.

Since this obviously causes additional load on the avail-
able CPU cores, we configured cyclo-join to allocate a vary-
ing number of cores for join processing, in order to have
the remaining cores available for network communication.
When using only two join threads, for instance, two CPU
cores should always remain fully available for the two com-
munication threads (transmit and receive).

Figure 12 shows the execution times we observed for the
join phase of our partitioned hash join. Since the setup
phase is independent of the transport mechanism, we omit-
ted it in the comparison.

The RDMA-based cyclo-join outperforms the TCP-based
one in all configurations. RDMA is even better in the case
where only 1 core is computing the join and three cores
should be available for the data propagation. This is due to
the fact that RDMA not only saves CPU cycles by avoiding

0

20

40

60

1 2 3 4

number of threads

w
a

ll
-c

lo
c

k
 t

im
e

[s

]
TCP join

TCP sync

RDMA join

RDMA sync

Figure 12: Hash join on RDMA versus TCP with
varying number of join threads.

cpu load TCP cpu load RDMA

1 thread 31 % 25 %
2 threads 59 % 50 %
3 threads 84 % 76 %
4 threads 86 % 100 %

Table 1: CPU load during the join phase of the hash
join. 100 % refers to all four cores being completely
busy.

the immediate buffer copies. It also reduces the context
switch rate, since the communication with the network is
based on queues. This results in less disturbance of data
processing operations and a lower cache pollution.

In the case of RDMA, the two transport threads only post
the work requests to the adapter and wait for new data to
arrive. Due to the direct data placement of RDMA, the no-

tification to the forwarding threads is delayed. The receive
thread, the more expensive end of the communication, is
only notified once the whole data chunk has been placed in
main memory. The transmit thread is never notified of the
transmit completion since the Data Roundabout performs
the flow control at application level.

With TCP sockets, on the other hand, the receive thread
must copy the data from the socket buffer into the applica-
tion memory which costs CPU cycles. Therefore, the receive
thread is notified constantly and not only once the whole
chunk is locally available. Also, the incoming data might
not fit completely into the socket buffer, causing the trans-
port to stall until the receive thread has copied the data
from the socket buffer into the application memory area.

The largest performance difference between RDMA and
TCP results when using all four cores for the join processing.
Join threads and communication threads now all compete
for the available CPU cycles, pollute each others caches,
and cause a large number of context switches. The benefits
of the cache-efficient join algorithm are mostly annihilated.

Adding more CPUs is not an alternative to RDMA. In
the case where all cores are processing the join, total CPU
utilization reaches only about 86 % (Table 1) which indi-
cates that adding further CPUs would not yield an improve-
ment. RDMA, on the other hand, incurs a CPU load which
matches the number of cores that are computing the join
and is able to fully utilize the available compute resources.
The join processing is never interrupted by the network.

We further observe that even though the transport is
multi-threaded, the TCP approach (in contrast to RDMA)
is not able to fully hide the synchronization time.

