
A Spinning Join That Does Not Get Dizzy
Philip W. Frey Romulo Goncalves Martin Kersten Jens Teubner

Systems Group
Department of Computer Science

ETH Zurich
firstname.lastname@inf.ethz.ch

Database Architectures and
Information Access Group

CWI Amsterdam
goncalve|mk@cwi.nl

Abstract— As network infrastructures with 10 Gb/s bandwidth
and beyond have become pervasive and as cost advantages of
large commodity-machine clusters continue to increase, research
and industry strive to exploit the available processing perfor-
mance for large-scale database processing tasks.

In this work we look at the use of high-speed networks for
distributed join processing. We propose Data Roundabout as a
lightweight transport layer that uses Remote Direct Memory
Access (RDMA) to gain access to the throughput opportunities in
modern networks. The essence of Data Roundabout is a ring-
shaped network in which each host stores one portion of a
large database instance. We leverage the available bandwidth
to (continuously) pump data through the high-speed network.

Based on Data Roundabout, we demonstrate cyclo-join, which
exploits the cycling flow of data to execute distributed joins. The
study uses different join algorithms (hash join and sort-merge
join) to expose the pitfalls and the advantages of each algorithm
in the data cycling arena. The experiments show the potential
of a large distributed main-memory cache glued together with
RDMA into a novel distributed database architecture.

I. INTRODUCTION

Modern data warehouse installations maintain gigantic
amounts of business, user, or customer information. It is
natural that users expect to be able to query these data flexibly
and efficiently, preferably with interactive query processing
times.

Processing power—in terms of raw compute power, but also
in terms of the necessary main memory resources—is rarely
the problem in satisfying these demands. Data centers with
real hardware or cloud infrastructures with virtual machines
provide an abundance of compute power, at ever-decreasing
costs. On the down side, these processing capabilities are only
available as distributed network resources and communication
overhead often limits the amount of processing power that can
be used in practice.

Paradoxically, the communication infrastructure is not the
bottleneck either: today’s high-speed networks—InfiniBand
or 10 Gb/s Ethernet to name just two—provide ample of
bandwidth, but remain limited by processing speeds on the
hosts.

The dilemma is a consequence of the mismatch between
the communication schemes of existing distributed systems
and the data access patterns that would be required to achieve
high network throughput. As we elaborated in [11], high-speed
transport mechanisms like Remote Direct Memory Access

(RDMA) can only operate efficiently if the application adheres
to particular communication patterns.

With the Data Roundabout, we propose a transport mecha-
nism for distributed databases. Data Roundabout ensures a
communication pattern that fits the RDMA communication
model, while at the same time providing a transport layer that
is well suited to implement critical database functionality.

We demonstrate the effectiveness of Data Roundabout with
cyclo-join, a distributed join algorithm that leverages RDMA
and known CPU-efficient join evaluation techniques to com-
pute very large database joins entirely in (distributed) main
memory. This way, cyclo-join can reach join throughput rates
that are far beyond what conventional networks or commodity
hard disks could provide.

In this report we focus on two aspects of our design:

Data Roundabout and RDMA. The performance advantages
of RDMA can only be leveraged with a careful algorithmic
design that respects the characteristics of hardware-accelerated
network communication. We discuss the relevant aspects of
RDMA and their implications on the design of our transport
layer Data Roundabout.

Cyclo-Join Mechanism. Cyclo-join orchestrates the execution
of any traditional (single-host) join algorithm in a distributed
setup, relying on a fast interconnect to transfer data. In an in-
depth evaluation performed on RDMA hardware, we analyze
and illustrate the implications of cyclo-join depending on the
problem type and compare it with local join algorithms.

The broader context of our work is the Data Cyclotron
project, a joint effort between CWI Amsterdam and ETH
Zurich to explore non-traditional architectures to cope with the
ever-increasing requirements from large-scale business intelli-
gence and eScience applications. Given the wide availability
of RDMA, our approach is to re-think distributed database
processing and consider the network as our friend, not as an
enemy to be evaded at all cost [16].

This report proceeds as follows. The upcoming Section II
provides the necessary context and reviews work on dis-
tributed join processing. Hardware-accelerated network pro-
cessing (RDMA) and its application to the Data Roundabout
approach are on our agenda for Section III. The architecture
and algorithms used for distributed join processing on our
cyclo-join mechanism are presented in Section IV. We evaluate

cyclo-join in-depth in Section V, before we look at further re-
lated work (Section VI) and summarize our own (Section VII).

II. STATE OF THE ART
AND THE Data Roundabout

The technology behind most distributed database systems
today dates back to early prototypes such as the SDD-1 [24],
Distributed INGRES [9], or System R* [20] systems. The
underlying assumptions and the approaches taken are largely
a consequence of the network environments at that time. A
short recap of history is provided.

A. Traditional Distributed Query Processing

Most importantly, in the early days, network communica-
tion was fairly slow (3 Mb/s were considered a “high-speed”
network) and thus treated as a major cost factor in distributed
query processing, if not the only one considered at all [3].
In a distributed setting, the primary goal of join processing
techniques, such as the use of semi-joins [4], the shipping
of pre-filtered tables [21], or System R*’s “fetch matches”
technique [21], was to avoid network communication, often at
the expense of additional CPU work.

Another consequence is the basic architecture that has
become pervasive in distributed query processing. All data is
partitioned over available network hosts (often only few of
them) and remains there mostly static. Queries, by contrast,
are shipped between hosts during query processing, usually
along with state information or intermediate query results. This
processing model is a good fit for classical workloads, where
most queries are known in advance (and data can be partitioned
accordingly) and involve only few, simple join predicates.

Only few systems break out of this basic architecture, most
notably the scalable distributed data structures proposed by
Litwin et al. [19], which adapt to the arrival of data.

B. Distributed Query Processing Today

Today, roughly three decades later, the hardware land-
scape and application demands have changed significantly.
Commodity networks provide extremely high throughput and
low latency and, thanks to hardware acceleration, incur only
negligible communication cost. Real-time data mining or
business intelligence applications have shifted the challenges
in distributed large-volume data processing toward complex
queries [8] and reflect an increasing importance of ad-hoc
queries.

Another shift is driven by economic forces. In the spirit
of cloud computing, large installations of commodity off-
the-shelf systems are becoming preferred over few high-
performance machines. Cost effectiveness, fault tolerance, and
scalability are achieved by adding and removing machines “as
you go”. Cloud-style operational models defeat the dedication
of machines for keeping specific data or performing specific
tasks. Instead, they demand trivial replacement, addition, or
removal of network hosts as well as a low overall system
complexity.

Host H2

Host H1

Host H6

Host H5

Host H4

Host H3

RDM
A

RDMA

R
D

M
A

RDM
A

RDMA

R
D

M
A

datadata

da
ta data

Fig. 1. The Data Roundabout. Hosts Hi are organized as ring, connected
by high-speed RDMA links.

C. The Data Roundabout Approach

As a starting point to explore novel architectures for their
potential to meet the above requirements, we propose the Data
Roundabout which consists of a (potentially large) number of
commodity systems. All participating nodes are connected to
form a logical storage ring structure (currently implemented
using a star-shaped physical network).

Each node communicates only with its immediate neighbors
via a bidirectional high-speed RDMA connection, as illustrated
in Figure 1 for a Data Roundabout of size six (i.e., one that
consists of six hosts). We assume the combined main memory
of all participating hosts to be large enough to hold the hot
set of the database in a distributed fashion; other data may be
kept in slower, distributed disk space. As we have shown in
our earlier work [12], it is preferable to keep the hot set in
distributed main memory rather than on disk since state-of-
the-art interconnects not only provide a higher throughput but
also a significantly lower latency than hard disks. 1

A fundamental difference to the classical distributed
database design is that we keep queries and their state static
and move base data over the network instead. We keep (the hot
set of the) data continuously circulating in the ring. Queries
remain local to one or more nodes and pick necessary pieces
of data as they flow by in the ring.

The Data Roundabout satisfies the requirements sketched
before: the ring is built from commodity systems and its design
and data flow pattern are deliberately kept simple, in order to
ease maintenance and scalability. Hence, a Data Roundabout
system can trivially be extended or shrunken, depending on
CPU and/or main memory demand. Any failing node can
easily be replaced by another machine (or its role can be taken
over by some other node in the ring). Furthermore, we do not
partition the data based on any a priori workload knowledge
which lets us naturally handle ad-hoc queries.

1The latest Seagate Barracuda drive offers up to 120 MB/s at a latency of
a few milliseconds. A 10 Gigabit Ethernet, on the other hand, provides about
1200 MB/s with a latency in the order of a few microseconds.

System 1

CPU

RAM NIC

System 2

CPU

RAMNIC

underutilized
network

Fig. 2. Kernel TCP/IP. Data copying goes through CPU; several memory
bus crossings.

Taking full advantage of modern networking hardware and
the idea of rotating data, however, requires certain care in the
design of a distributed algorithm. In this work we focus on
RDMA transport facilities (see upcoming section) and on the
processing of joins in cyclo-join.

III. REMOTE DIRECT MEMORY ACCESS

Network communication is known to be compute- and
memory I/O-intensive [10]. High-volume data transfers thus
depend on dedicated hardware assistance, which modern net-
work cards provide in terms of Remote Direct Memory Access
(RDMA). Network interface cards (NICs) that provide RDMA
functionality are also called RDMA-enabled NICs or RNICs.

To make efficient use of RDMA, however, applications
have to respect some of the characteristics of the hardware-
accelerated transport mechanism. This section summarizes
the most relevant characteristics, built on our earlier RDMA
evaluation [11]. They motivate the design of Data Roundabout,
which is discussed toward the end of this section.

A. Traditional TCP Communication

In traditional TCP network communication, typically imple-
mented using the Berkeley socket API, the operating system
kernel is in charge of processing the network stack, which
includes executing the respective protocols and moving the
payload data. Strongly simplified, this leads to a data flow
as shown in Figure 2 for a data transfer from System 1 to
System 2. Data is fetched from the main memory of the source
host, processed by the source host CPU, then fed into the
sending network interface card, which sends the data over the
network. At the receiver side, data is again processed by the
CPU, then placed in main memory.

The intensive involvement of the kernel on both sides causes
a substantial amount of CPU load. A rule of thumb in network
processing states that about 1 GHz in CPU performance is
necessary for every 1 Gb/s network throughput [10].

Interestingly, the major CPU cost factor in traditional TCP
handling is not network stack processing. In Figure 3, we
separated the different CPU cost factors that arise in TCP
processing (see leftmost bar). As can be seen, protocol pro-
cessing (cf. “network stack”) plays only a minor role in the
high CPU load. Thus, off-loading the protocol processing to
a TCP offload engine on a modern NIC usually yields only
little advantage over a fully software-based setup (as can be
seen in the middle of Figure 3).

Instead, CPU cost is dominated by the movement of payload
data. As indicated in Figure 2, the data to be transferred

100%

50%

0%
Everything

on CPU

Network Stack

on NIC
RDMA

I/
O
 O
v
e
r
h
e
a
d

context
switches

driver
network
stack

data
copying

context
switches

reduced

Fig. 3. Only RDMA is able to significantly reduce the local communication
overhead induced at high-speed data transfers.

crosses the system’s memory bus at least two times on its
way from the host memory to the network card (the same
happens symmetrically on the receiver side2). In reality, the
enforcement of process isolation mechanisms by the operating
system kernel usually even requires three or more crossings
of the memory bus.

As can be seen in Figure 3, data movement causes roughly
50 % of the total CPU cost. In addition, the resulting memory
bus traffic can cause significant bus contention (assuming three
bus crossings, 10 Gb/s full-duplex communication leads to
� 7.5 GB/s of bus traffic!).

B. RDMA Benefits

The high resource consumption of traditional TCP process-
ing has inspired the design of RDMA, which uses dedicated
hardware assistance to speed up network processing. RDMA
is based on three main concepts:
Zero-Copy and Data Placement. Memory bus bandwidth and
CPU resource consumption can be reduced by reducing the
number of intermediate data copies. The concept of zero
copy has become pervasive in modern networking: rather than
bothering the CPU with memory transfers, the network card
features its own DMA controller that can directly transmit/re-
ceive data from/into the main memory of the host.

Although this concept works well for kernel-space function-
ality, zero copy alone cannot fully avoid intra-host copies. For
proper process isolation, application data must still be moved
from/to user-space memory buffers by the kernel before/after
data transmission/reception.

RDMA avoids this necessity with its direct data placement
functionality. By tagging all transfer units with placement in-
formation, RDMA can directly operate on user-space memory
and, e.g., identify the right target memory buffer autonomously
upon package reception. This enables true zero copy process-
ing, where no data has to be touched by either host CPU.
Observe in Figure 4 that this not only reduces the load on the
host CPU. In practice often more significant is the resulting bus
traffic reduction, which we found to be a potential bottleneck

2In classical network transport protocols, the receiving side faces an even
larger processing cost than the sender since the data reception is triggered by
(asynchronous) interrupts whereas on the sending side it is (synchronously)
driven by the kernel.

System 1

CPU

RAM RNIC

System 2

CPU

RAMRNIC

fully utilized
network

Fig. 4. Network transfer using RDMA. RNICs handle data transfer
autonomously; data has to cross each memory bus only once.

in high-speed distributed database processing in our earlier
work [12].

Asynchronous I/O. In contrast to the synchronous Berkeley
socket API, RDMA uses a fully asynchronous communica-
tion model. All operations are described by the application
in terms of work requests. They are posted to queues on the
network adapter from where they are picked up and processed
by the hardware (i.e., the RNIC). This allows for overlapping
communication with data processing such that the network
delay can be mostly hidden.

TCP Offloading. Direct data placement and the asynchronous
programming model together enable full data transfer off-
loading. Protocol processing in hardware not only removes
the network stack overhead from the CPU, but also reduces
the context switch rate and thus results in a lower CPU
cache pollution. This results in efficient network bandwidth
utilization at negligible interference with the CPU (see also
right-most part in Figure 3).

C. Applying RDMA

Not every application can take full advantage of
RDMA [11]. Rather, applications have to respect the char-
acteristics of RDMA to take full advantage of the hardware-
accelerated zero copy transport.

First, all buffers (for receiving and for sending data) have to
be sized and registered with the network card before starting
an RDMA-based data exchange. Only this allows the network
interface card to access the application memory through its
DMA engine without any involvement of the operating system
(and thus enables direct data placement). The registration pro-
cess is rather CPU intensive [11] as it involves several address
translations and because the memory must be pinned and
protected from being swapped out to disk. Whenever speed
is a major concern, the cost of registration renders on-demand
allocation and registration of memory buffers infeasible.

Second, each data transfer is initiated by posting work re-
quests to the RNIC, a control task that still has to be performed
by the CPU. To keep the resulting CPU overhead limited, it
is desirable to transfer the data in large chunks which requires
fewer work requests to be posted. Also the RNIC itself is
able to handle large data transfers more efficiently than small
ones. Figure 5 shows raw network throughput achievable with
RDMA over 10 Gbps Ethernet when using transfer units of
different sizes. RDMA is only able to saturate the link once
transfer units reach a size that is & 4 kB. In practice, we found
that additional application overhead slightly shifts this figure,

0.0

2.5

5.0

7.5

10.0

1B 1KB 1MB 1GB

chunk size

th
ro

u
g

h
p

u
t

[G
b

/s
]

Fig. 5. RDMA requires a minimum chunk size to saturate the link.

such that we can expect maximum network throughput for
units of size 1 MB and larger.

D. Data Roundabout Design on RDMA

The Data Roundabout strives for a decentralized mode
of operation. Each node thus only communicates with its
two direct neighbors and all data is forwarded in the same
direction, say clockwise.

Considering the aforementioned requirements, we have de-
signed each node in Data Roundabout to be equipped with
a statically allocated ring of memory buffers to hold the data
rotating in the roundabout:

transmit

receive

join

We size and register all of the ring buffer elements in the
beginning and reuse them at join execution time to minimize
the memory registration cost. As RDMA works best on large
buffers, we always transfer a whole ring buffer element and
not a single tuple, for instance.

The data propagation within the hosts has been designed in
an asynchronous way involving the following three entities: a
join entity, a receiver and a transmitter.

The join entity is responsible for computing the joins and
operates on one ring buffer element at a time. When it has
finished processing the current buffer, it asks for that buffer to
be forwarded by the transmitter and continues with the next
buffer while the transmitter is forwarding the processed data.
If the next buffer has already been filled by the receiver, the
join entity can start processing it immediately.

Overlapping communication and computation is a key part
of the Data Roundabout architecture because it hides the data
propagation delay of the network. Furthermore, since the CPU
and memory bus overhead caused by RDMA communication
is low, the join entity is not hindered by the concurrent data
transfers.

IV. Cyclo-Join: DISTRIBUTED JOIN PROCESSING ON THE
Data Roundabout

To effectively exploit the throughput opportunities offered
by the Data Roundabout architecture, algorithms on top of the
transport layer have to adhere to a rather stringent data flow
pattern. Cyclo-join is a distributed join strategy that provides
this data flow pattern and enables us to compute arbitrary
database joins in distributed main memory over input data of
arbitrary size.

In this section, we describe and motivate the inner workings
of cyclo-join.

A. Problem Scenario

Our focus is on the evaluation of a binary join R onp S,
where both input relations (tables) are assumed to be large
(too large to fit into the local memory of a single machine,
in particular). R and S together fit conveniently into the
distributed memory, the ring storage, of a Data Roundabout
network, however.

We do not pose restrictions on the join predicate p. Although
our experiments focus on equi-joins—thus demonstrate how
cyclo-join can be combined with efficient in-memory algo-
rithms such as hash or sort-merge joins—cyclo-join is not
bound to equality predicates. Modern application classes could
use this flexibility of cyclo-join to accelerate, for instance,
band joins [7] or similarity joins (a critical operation in data
cleaning and integration).

We assume that, prior to join processing, both input tables
are distributed over all network hosts Hi. We do not care how
the data is distributed, but we assume that the distribution
of at least S is reasonably even. This assumption is readily
provided, for instance, in recent database prototypes for cloud
infrastructures such as HadoopDB [1].

The join R on S is computed in a fully distributed fashion
and its result is again available as a distributed table. As such,
the join output could naturally be used as input to subsequent
processing in a larger query plan. The ternary join (R on S) on
T could, for example, be evaluated by using two runs of cyclo-
join.

B. Cyclo-Join Operation

The idea of cyclo-join is illustrated in Figure 6: one of
the two relations, say S, is kept stationary during processing
(partitioned into sub-relations Si) while the fragments of the
other relation, say R, are rotating in the Data Roundabout.

All ring members (Hosts Hi) join each fragment Rj flowing
by against their local piece of S (Si) locally using a commod-
ity in-memory join algorithm. The result of each Rj on Si

is a part of the overall join result. Cyclo-join accumulates all
Rj on Si at Hi. After one revolution of R, all hosts Hi have
seen the full relation R and have thus computed the partial
join results R on Si. Since the Si are a partitioning of S, the
full join result R on S is now available as a distributed table
spread across all Hi (ready, e.g., for further processing, as
mentioned above).

Host H2

Host H1

Host H6

Host H5

Host H4

Host H3

RDM
A

RDMA

R
D

M
A

RDM
A

RDMA

R
D

M
A

S2

S1
S6

S5

S4
S3

R2

R1

R6

R5

R4

R3

Fig. 6. Cyclo-join: Network hosts are organized in a logical ring. Relation
R circulates in the ring while S remains stationary.

The task of the Data Roundabout transport layer is to
efficiently move the rotating relation around the network. As
illustrated earlier in Section III-D, the transmitter and receiver
asynchronously move pieces of R in and out, attempting to
keep the join entity busy at all times. Depending on the shape
of the input data, this may be easier to achieve if the smaller
of the two input relations is chosen as the one that is kept
rotating.

C. A Selection of Join Algorithms

Within a full revolution of input relation R, all possible
combinations of fragments Rj and Si of R and S, respectively,
are co-located on some host once and are then combined to
produce Rj on Si. Cyclo-join can thus play together with
arbitrary implementations of on and support arbitrary join
predicates. In particular, the join algorithm does not need to
be aware of the distributed nature of the setup—we can thus
use any algorithm which was designed for local execution.

Since we strive for fully distributed in-memory processing,
we focus on join algorithms that are known to perform
well in main memory-based setups. We have thus ported
the MonetDB3 implementations of the partitioned hash join
and sort-merge join to our cyclo-join. The former inherently
provides support only for equi-joins, while our implementation
of the latter can also handle band joins. For all other join
predicates, our system falls back to the universal but slower
nested loops join (not further discussed in this report).

1) Hash-Based Equi-Join: Our implementation of the par-
titioned hash join is derived from the radix join algorithm [22]
as found in the most recent distribution of the MonetDB
system. The implementation is carefully tuned to exploit the
cache characteristics of modern CPU hardware, including the
size of the on-chip L2 cache and the size of an L2 cache line.

Radix join operates in two phases. During a setup phase we
partition all input data and create hash tables on the partitions
of the stationary in-memory join argument Si. A subsequent

3http://monetdb.cwi.nl

join phase then scans partitions of Rj and probes into hash
tables of the Si partitions.

We obtain a partitioning of the two input fragments Rj

and Si into sub-fragments rj;k and si;k using the same hash
function on their join keys. The goal is to achieve a partitioning
where each piece si;k of the stationary fragment Si and an
associated hash table fit into the L2 CPU cache. Such a
partitioning makes the subsequent join phase (that uses a
standard hash join to scan rj;k and probe into a hash table
on si;k) particularly cache-efficient, since all hash probes can
be handled fully by the L2 cache. For details refer to [22].

The join phase of our partitioned hash join can straightfor-
wardly exploit the parallelism provided by modern multi-core
systems by computing the disjoint rj;k on si;k and rj;l on si;l
on separate CPU cores. Our implementation uses all four cores
on our quad-core systems to run the join phase in parallel.

2) Sort-Merge Join: Sort-merge join operates in two phases
as well. The setup phase here involves sorting both input
fragments by their join keys. During the join phase, the sorted
fragments are scanned in parallel and “merged” by aligning
matches or skipping forward on misses. Though sorting incurs
an additional cost over the simpler partitioning in partitioned
hash join, the join phase of sort-merge join favors an even
more cache-efficient (strictly sequential) access pattern and
can be implemented to readily support band joins or inequality
predicates.

Much like in MonetDB, our implementation relies on an
efficient implementation of qsort in the C library, and we
leverage available parallelism by sorting both input fragments
(Ri and Si) in parallel. We note that our implementation bears
some potential for improvement here, such as the use of a
SIMD-optimized sorting algorithm [6]. The join phase also
runs multi-threaded: We split the Rj into a number of non-
overlapping sub-partitions (rj;k) equal to the number of cores
in the system. Individual threads then join the stationary Si

with one piece of Rj .

D. Interacting with Cyclo-Join

Our descriptions of partitioned hash join and sort-merge
join assumed that only a single join Rj on Si had to be
evaluated. Such an evaluation involves the execution of both
join phases, hashing/sorting and joining.

In practice, our join implementations sees the same input
data over and over again. It thus makes sense to invoke the
setup phase of either join implementation only once, then re-
use its output during the full execution of cyclo-join. The
effort spent in the setup phase is then amortized over multiple
executions of the join phase. We can do so by sending access
structures (such as hash tables) or re-organized data (sorted or
partitioned) over the Data Roundabout transport layer.

This is an instance where we can exploit the bandwidth
provided by our RDMA transport mechanism. Rather than
investing CPU cycles to reduce network traffic—the common
strategy in existing systems—we spend some network capacity
to save CPU work. Sometimes, cyclo-join may thus suggest a
different balance between the efforts spent on pre-processing

0

4

8

12

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

0

10

20

30

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a

ll
-c

lo
c

k
 t

im
e

[s

]

join

setup

single host performance

88

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

Fig. 7. Joining a fixed data set on an increasing number of nodes.

and join computation. We will assess and discuss such trade-
offs in more detail based on experimental evidence in Sec-
tion V-E.

V. EXPERIMENTAL EVALUATION

This section shows cyclo-join in action and provides an
analysis of its characteristic features.

A. Test Environment

Our experiments use Data Roundabout instances of up to
six network hosts (IBM HS21 BladeServers), which is the
maximum number of RDMA-equipped machines we currently
have available. Each of them has a quad core Intel Xeon CPU
running at 2.33 GHz, 32 KB L1 data cache and 32 KB L1
instruction cache, 4 MB unified L2 cache and 6 GB of main
memory. The BladeServers are running Fedora Core 9 with a
vanilla 2.6.27 Linux kernel.

RDMA hardware support is provided by Chelsio T3 RNICs
(S320EM-BCH) which offer full TCP/IP offloading (TOE)
and iWARP RDMA support. The RNICs are interconnected
through a Nortel 10 Gb Ethernet Switch Module.

B. Local Join versus Cyclo-Join

First, we investigate how well cyclo-join is able to leverage
the available resources. We generated input relations R and S

that are just about large enough to fit into the main memory
of a single machine (140 million rows per table with 12 bytes
per tuple; this resulted in a total data volume of 2� 1:6GB).
The 4-byte join key was populated with uniformly distributed
integer numbers.

Figure 7 shows the execution times we observed when
computing the join R on S on a single host and when the
evaluation was distributed over up to six network hosts using
cyclo-join. In all cases we used the partitioned hash join to
perform local joins. In the distributed case, we spread all data
evenly across all network hosts before join processing.

The most apparent observation is that the distribution of the
join considerably reduced the total join processing time, which
we separated into the time spent in the setup phase (shown in
dark gray) and in the join phase (white bars) of the partitioned
hash join. No execution time was lost otherwise; in particular
we could not see any delays due to network processing.

Data Roundabout Overhead. A design goal of Data Round-
about was to leverage RDMA such that network commu-
nication can be fully overlapped with data processing. Our
measurements confirmed that, indeed, Data Roundabout was
able to fully hide network cost and perform all communication
asynchronously to the actual join processing.4

Network processing will only cause an effect on the observ-
able execution speed if the in-memory join thread can finish
its task significantly faster than RDMA can bring in new data.
This effect can be observed in our implementation of sort-
merge join, which we are going to look at in Section V-E.

Setup Cost. The separation into the two processing phases
shows where the runtime improvement comes from. Distribut-
ing the generation of a hash table over the stationary relation
S cut down the time spent in the setup phase according to
the number of participating nodes. Distribution over six Data
Roundabout hosts, for instance, reduced the setup cost by a
factor of six (16.2 s for single-host execution vs. 2.7 s on six
hosts).

Join Cost. The total amount of time spent in the join phase,
by contrast, is not affected by the distribution through cyclo-
join, a behavior that might seem surprising at first. The reason
why cyclo-join does not accelerate the join phase in this
configuration is the particular characteristics of a hash join.
During the join phase, the local hash joins scan their current
piece of the outer join relation (i.e., Rj) and perform a hash
lookup for each tuple in Rj . Assuming a reasonably “friendly”
configuration (a proper hash function and rare hash collisions),
the cost of a hash lookup is independent of the size of the
(local part of the) inner join relation Si.

During a full run of cyclo-join, each participating host will
scan all pieces Rj of R—hence, the entire relation R—exactly
once. The total cost of the join phase is thus independent of
the number of network hosts:

cost (Si on R) �= jRj � cost per hash lookup : (?)

Highly skewed data invalidates the assumption of rare hash
collisions. In Section V-D, we illustrate how this affects the
performance of the join phase in the cyclo-join setting.

C. Large In-Memory Join

The primary purpose of cyclo-join is to distribute the
processing of large join instances that could not be evaluated
on a single host. We verified this capability by scaling up the
problem size, while simultaneously distributing the problem
over more network hosts (we keep the per-host data volume
constant). Figure 8 illustrates the resulting processing times
for data volumes up to 19.2 GB.

Distribution of the hash generation phase now leads to a
size-independent setup cost. This is because we distributed

4In an earlier report on cyclo-join [12] we had used a different hash join
implementation with a higher memory bandwidth demand. This had led to
a situation where our system was contended on the local memory bus even
when using RDMA, such that join threads frequently had to wait for the
arrival of new data.

0

4

8

12

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

0

10

20

30

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a

ll
-c

lo
c

k
 t

im
e

[s

]

join

setup

single host performance

88

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

Fig. 8. Each node adds 3.2 GB to the data set.

join processing such that the per-host data volume remains
constant. The time spent in the join phase now scales linearly
with the size of the input data (or, more precisely, the size of
the rotating relation R). This confirms our assessment of the
join phase cost for the hash join, as given by Equation (?).

The important outcome of the experiment is that with cyclo-
join we were able to process large problem sizes purely in
distributed memory. A single machine with a large enough
memory might have achieved comparable throughput in its
join phase (though with higher setup costs). However, while
the amount of memory addressable by a single host is severely
limited (even the modern Intel i7/Nehalem CPUs are limited
to 64 GB of physical memory [15, Table 2-2]), cyclo-join can
be trivially scaled up to much larger configurations. Cyclo-
join makes distributed memory available to process joins of
arbitrary size.

D. Skewed Input

The previous experiments were all based on hash-friendly
uniform key distributions. Real-world use cases rarely follow
perfect uniformity, but exhibit various flavors of skew. We
explore the effect of skewed input data on the cyclo-join
mechanism by generating input tables according to a Zipf
distribution with varying Zipf factors z.

For various z values we generated input data of size jRj =
jSj = 412MB (36 million 12-byte tuples). For each generated
instance we ran the join R on S once on a single host and once
on a cyclo-join ring that consists of six hosts. Figure 9 reports
the execution times that we measured for the join phase of
our partitioned hash join. We omitted the setup phase in this
graph since it is unaffected by the data skew.

For Zipf factors of z = 0:6 and greater, the exponential
increase of the number of duplicates in the data sets begins
to have a noticeable effect on the execution time of our
in-memory hash join. This is not a surprise: the increasing
number of hash collisions lets hash join slowly degrade toward
a nested loops-style evaluation.

The distributed join (white bars) can handle the increasing
skew appreciably better. While, in line with our previous ex-
periments, the processing of uniformly distributed data cannot
benefit from a cyclo-join-based execution, Figure 9 shows a

0.1

1

10

100

1000

10000

0.00

(uniform)

0.30 0.50 0.60 0.70 0.80 0.90

zipf factor

jo
in

 p
h

a
s
e
 (

lo
g

)
 [

s
]

cyclo-join local

Fig. 9. Join phase on skewed data.

70

75

80

85

90

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

sync

setup

0

25

50

75

100

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

single host performance

Fig. 10. Sort-Merge Join: Joining a fixed data set on an increasing number
of nodes.

five-fold advantage of cyclo-join for input data with a skew of
z = 0:9.

The benefit comes from two sources. First, the ring buffer
mechanism of Data Roundabout balances differences in the
execution speeds of the participating hosts. Thus, a host that
is stuck in a chunk of data with a high number of duplicates
will not immediately slow down the remainder of the ring.
A follower in the Data Roundabout will only have to start
waiting once it has fully consumed all data in its ring buffer.

Secondly, distribution will lead to a better use of CPU
caches. Cyclo-join will chop all input data (in particular the
inner join relation S) into pieces. Thus, even in the presence of
skew, individual partitions within our hash join are less likely
to exceed the size of our CPU caches and the join phase can
perform more work from within caches.

E. Sort-Merge Join and Setup Cost vs. Join Cost

The runtime characteristics of sort-merge join resemble the
behavior of the partitioned hash join shown above. Sorting,
however, incurs a significantly higher cost than the generation
of hash tables, which can cause considerable setup costs. As
can be seen in Figure 10, this leads to significantly longer
execution times for small Data Roundabout configurations.

The high setup cost slightly pays off during the join phase
(shown again as white bars; we will discuss the light-gray
“sync” part in a moment). Merging two sorted tables yields
a cache-friendly, strictly sequential data access pattern. In the
case of our largest join configuration (19.2 GB distributed over

70

75

80

85

90

3.2 GB 6.4 GB 9.6 GB 12.8 GB 16 GB 19.2 GB

data volume

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

sync

setup

0

25

50

75

100

1 2 3 4 5 6

ring size [#nodes]

w
a
ll
-c

lo
c
k
 t

im
e

[s

]

join

setup

(1 node) (2 nodes) (3 nodes) (4 nodes) (5 nodes) (6 nodes)

single host performance

Fig. 11. Sort-Merge Join: Each node adds 3.2 GB to the data set.

6 hosts), this cut down the time spent in the join phase from
16.2 s to 6.4 s seconds, a more than two-fold advantage.5

In cyclo-join, the setup cost is a one-time investment
which—in contrast to a single-host execution—the in-memory
join steps can benefit from several times. How often a join
execution takes advantage of the up-front investment depends
on the size of the Data Roundabout ring. The larger the rings
on which cyclo-join operates, the better the high setup costs
can be amortized.

Thus, the use of cyclo-join may suggest a different balance
between the effort spent into a join’s setup phase and its
resulting performance in the join phase. For the two particular
implementations that we have at hand, MonetDB’s partitioned
hash join and a qsort-based sort-merge join, we expect that
the latter implementation would overpass the former in Data
Roundabout configurations of � 30 nodes upward (i.e., for data
volumes & 100GB).

Kim et al. [17] recently studied the trade-off between hash
and sort-merge joins with highly tuned implementations of
both algorithms and concluded almost comparable perfor-
mance already on single hosts. Sort-merge join would then
likely be the better choice already for cyclo-join configurations
running on only few nodes.

F. “Synchronization” Cost

While sort-merge join incurs high setup cost, its execution
speed in the join phase is faster than that of partitioned hash
join. In Figure 11, we see that with sort-merge join, the join
phase has become too fast to fully hide the cost of network
communication. The time shown in light gray is the time that
the join threads now spent waiting for new data to arrive via
the Data Roundabout transport layer (we say they synchronize
with the Data Roundabout layer).

The performance that we observe indicates that we are
hitting the limits of the physical 10 Gb/s transport layer. For a
full cyclo-join run, the entire relation R has to be pumped once
through each participating host. For the 6-host configuration
in Figure 11, this means that jRj = 9:6GB of data crossed
each Data Roundabout link in 6:4 s + 2:3 s = 8:7 s, which

5Even with the new “sync” time considered (2.3 s), the advantage is still a
factor of 1.8.

0

20

40

60

1 2 3 4

number of threads

w
a

ll
-c

lo
c

k
 t

im
e

[s

]

TCP join

TCP sync

RDMA join

RDMA sync

Fig. 12. Hash join on RDMA versus TCP with varying number of join
threads.

corresponds to a network throughput of 1.1 GB/s, very close
to the theoretical maximum of 10 Gb/s, i.e., 1.25 GB/s.

G. RDMA vs. Software-Based TCP

In Section III we argued the necessity of RDMA based on
CPU and memory bandwidth resource consumption. In this
section, we compare RDMA-based processing to a TCP-based
implementation running as part of the operating system kernel.

To this end, we generated data instances of sizes jRj =
jSj = 160 million tuples (corresponding to a data volume of
2 � 6:7GB) and distributed the evaluation of R on S over
a Data Roundabout installation of size six (as before). We
ran the join with RDMA support, but also with the standard
mechanisms provided by the Linux kernel. That is, we changed
the transmitter and receiver of Data Roundabout to use send

and recv calls instead of their RDMA counterparts.
Since this obviously causes additional load on the available

CPU cores, we configured cyclo-join to allocate a varying
number of cores for join processing, keeping the remaining
cores available for TCP handling. When we use only two join
threads, for instance, two CPU cores should always remain
fully available for the two communication threads (transmit
and receive).

Figure 12 shows the execution times we observed for the
join phase of our partitioned hash join. Since the setup phase
is independent of the transport mechanism, we omitted it in
the comparison.

The RDMA-based cyclo-join outperforms the TCP-based
one in all configurations. RDMA is even better in the case
where only 1 core is computing the join and three cores
should be available for the data propagation. This is due to the
fact that RDMA not only saves CPU cycles by avoiding the
immediate buffer copies, but also reduces the context switch
rate, since the communication with the network is based on
queues. This results in less disturbance of data processing
operations and therefore in a lower cache pollution.

The largest performance difference between RDMA and
TCP results when using all four cores for the join processing.
Join and communication entities now all compete for the
available CPU cycles, pollute each others caches, and cause a
large number of context switches. The benefits of the cache-
efficient join algorithm are mostly annihilated.

cpu load TCP cpu load RDMA

1 thread 31 % 25 %
2 threads 59 % 50 %
3 threads 84 % 76 %
4 threads 86 % 100 %

TABLE I
CPU LOAD DURING THE JOIN PHASE OF THE HASH JOIN. 100 % REFERS

TO ALL FOUR CORES BEING COMPLETELY BUSY.

Adding more CPUs is not an alternative to RDMA. In
the case where all cores are processing the join, total CPU
utilization reaches only about 86 % (Table I) which indicates
that adding further CPUs would not yield an improvement.
RDMA, on the other hand, incurs a CPU load which matches
the number of cores that are computing the join and is able
to fully utilize the available compute resources. The join
processing is never interrupted by the network.

We further observe that even though the transport is multi-
threaded, the TCP approach (in contrast to RDMA) is not able
to fully hide the synchronization time.

VI. A LOOK INTO THE RESEARCH NEIGHBORHOOD

We kept the design of cyclo-join and its transport layer Data
Roundabout deliberately simple. As such we think many of the
ideas presented in this paper would blend well with existing
research work and with some of the recent developments in
hardware technology.

The availability of a fast transport mechanism eliminates
much of the urgency to reduce network transfer volumes as
it was the primary goal of earlier work [4], [21], [25]. Yet,
network traffic might still become a concern, for instance in
scenarios with highly concurrent or memory-intensive work-
loads, and much of the existing work could become relevant
to address such scenarios.

Our spinning join setup resembles the DataCycle system [5]
or the Broadcast Disks [2], systems that put significant effort
into properly scheduling data on the transport stream. Inte-
grating the ideas of this work into our system is part of our
ongoing work [13] and inspired a number of design decisions
in our evolving system prototype. The ring-based equality-join
operation presented by Menon and Hsiao [23] is even closer to
our Data Roundabout system. However, it is designed to for
database machines from 1981 with very limited amounts of
memory. Also, their systems relies on a centralized controller.

More recent work in the research neighborhood are new sys-
tems designed for cloud environments. While systems built on
MapReduce-style architectures (such as the recently proposed
HadoopDB [1]) can achieve excellent scale-out for certain
types of queries, they still lack a convincing means to perform
arbitrary joins across the pre-assigned data partitions. Cyclo-
join could fill this gap and enable the vision of distributed
true-SQL system.

On the technology side, cyclo-join could be a very in-
teresting application for Intel’s emerging I/O Acceleration

Technology (I/OAT) [14]. With help of the Direct Cache Access
(DCA) feature of I/OAT, capable network controllers can place
data directly into CPU caches. As we showed in Section III-
C, Data Roundabout works well already with RDMA transfer
units under a megabyte, small enough to be loaded straight
into caches. This might not only help to cut down transport
latencies, but also yield an even further reduction of main
memory bus contention.

Finally, we would like to relate our work to the systolic sys-
tems developed in the 1980s. Systolic systems are composed
of a network of processors with a simple rhythmical (hence
the term “systolic”) data flow in-between. Although Kung and
Leiserson [18] had small-scale, on-chip processing units in
mind when they presented the first “systolic algorithms,” some
of the observations made at the time may still be applicable
to a cyclo-join ring.

VII. SUMMARY

Modern advances in networking technology may shift the
priorities in distributed data processing. We demonstrated
how the bandwidth offered by modern networks (10 Gb/s
and beyond) can be exploited with help of Remote Direct
Memory Access (RDMA), a network transfer protocol with
widely available hardware support. To this end we developed
cyclo-join, a mechanism that can distribute the evaluation of
relational database joins. Cyclo-join is built on top of the ring-
shaped Data Roundabout transport layer, which has promising
characteristics also in other settings [13], [16].

With cyclo-join, large database joins can be processed as
in-memory joins by taking advantage of the distributed main
memory in a cluster system. The system becomes CPU-limited
instead of bound by disk or network I/O. Other than in a
centralized system, the capacity of a Data Roundabout storage
ring can be scaled up trivially, making it possible to process
input data of arbitrary size. In line with the idea of cloud
computing, such scaling may even be performed at runtime
and as application workloads demand.

The effect of distributing CPU load depends on the par-
ticular join problem and on the algorithm chosen to perform
intra-host joins. We showed that critical and CPU-intensive
sub-tasks, such as hash generation or joins over skewed data,
can benefit best from the cyclo-join mechanism.

Our current research effort goes into the integration of cyclo-
join into the prototype Data Cyclotron system. This involves
the establishment of a complete SQL-enabled system and a
complete cost model for cyclo-join.

Acknowledgment

Jens Teubner is supported by an Ambizione grant of the
Swiss National Science Foundation (no. PZ00P2 126405).

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Rasin, and A. Sil-
berschatz, “HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads,” Proceedings of the
VLDB Endowment, vol. 2, no. 1, pp. 922–933, 2009.

[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast Disks:
Data Management for Asymmetric Communication Environments,” in
Proc. of the ACM SIGMOD Conference on Management of Data, 1995,
pp. 199–210.

[3] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie, “Query
Processing in a System for Distributed Databases (SDD-1),” ACM
Transactions on Database Systems (TODS), vol. 6, no. 4, pp. 602–625,
1981.

[4] P. Bernstein and D. ming Chiu, “Using Semi-Joins to Solve Relational
Queries,” Journal of the ACM, vol. 28, no. 1, pp. 25–40, 1981.

[5] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee, W. Mansfield,
J. Raitz, and A. Weinrib, “The Datacycle Architecture,” Communications
of the ACM, vol. 35, no. 12, pp. 71–81, 1992.

[6] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K.
Chen, A. Baransi, S. Kumar, and P. Dubey, “Efficient Implementation
of Sorting on Multi-Core SIMD CPU Architecture,” Proceedings of the
VLDB Endowment, vol. 1, no. 2, pp. 1313–1324, 2008.

[7] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An Evaluation of
Non-Equijoin Algorithms,” in Proc. of the 17th Int’l Conference on Very
Large Data Bases (VLDB), Barcelona, Spain, 1991, pp. 443–452.

[8] N. Dieu, A. Dragusanu, F. Fabret, F. Llirbat, and E. Simon, “1000 Tables
Inside the From,” Proceedings of the VLDB Endowment (PVLDB),
vol. 2, no. 2, pp. 1450–1461, 2009.

[9] R. Epstein, M. Stonebraker, and E. Wong, “Distributed Query Processing
in a Relational Data Base System,” in Proc. of the ACM SIGMOD
Conference on Management of Data, 1978, pp. 169–180.

[10] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier, “TCP
Performance Re-Visited, Analysis of Systems and Software,” in Proc.
of the IEEE ISPASS, 2003, pp. 70–79.

[11] P. Frey and G. Alonso, “Minimizing the Hidden Cost of RDMA,” in
Proc. of the 29th Int’l Conference on Distributed Computing Systems
(ICDCS), Montreal, QC, Canada, 2009, pp. 553–560.

[12] P. Frey, R. Goncalves, M. Kersten, and J. Teubner, “Spinning Rela-
tions: High-Speed Networks for Distributed Join Processing on New
Hardware,” in Proc. of the 5th Workshop on Data Processing on New
Hardware (DaMoN), Providence, RI, USA, 2009, pp. 27–33.

[13] R. Goncalves and M. Kersten, “The Data Cyclotron Query Processing
Scheme,” in Proc. of the 13th Int’l Conference on Extending Database
Technology (EDBT), 2010.

[14] Accelerating High-Speed Networking with Intel I/O Acceleration Tech-
nology, White Paper, Intel Corp., 2006.

[15] Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol-
ume 1, Intel Corp., Sep. 2009.

[16] M. Kersten, “The Database Architecture Jigsaw Puzzle,” in Proc. of the
IEEE Int’l Conference on Data Engineering (ICDE), 2008, pp. 3–4.

[17] C. Kim, E. Sedlar, and J. Chhugani, “Sort vs. Hash Revisited: Fast
Join Implementation on Modern Multi-Core CPUs,” Proceedings of the
VLDB Endowment, vol. 2, no. 2, pp. 1378–1389, 2009.

[18] H. Kung and C. Leiserson, “Systolic Arrays (for VLSI),” in Sparse
Matrix Proceedings, 1978, pp. 256–282.

[19] W. Litwin, M. Neimat, and D. Schneider, “LH* - A Scalable, Distributed
Data Structure,” ACM Transaction on Database Systems (TODS),
vol. 21, no. 4, pp. 480–525, 1996.

[20] G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger,
and P. Wilms, Query Processing in R*. Springer, 1985.

[21] L. Mackert and G. Lohman, “R* Optimizer Validation and Performance
Evaluation for Distributed Queries,” in Proc. of the 12th Int’l Conference
on Very Large Data Bases (VLDB), 1986, pp. 149–159.

[22] S. Manegold, P. Boncz, and M. Kersten, “Optimizing Main-Memory
Join on Modern Hardware,” IEEE Transaction on Knowledge and Data
Engineering (TKDE), vol. 14, no. 4, pp. 709–730, 2002.

[23] M. J. Menon and D. K. Hsiao, “Design and Analysis of a Relational
Join Operation for VLSI,” in Proc. of the 7th Int’l Conference on Very
Large Data Bases (VLDB), 1981, pp. 44–55.

[24] J. Rothnie, P. Bernstein, S. Fox, N. Goodman, M. Hammer, T. Landers,
C. Reeve, D. Shipman, and E. Wong, “Introduction to a System for
Distributed Databases (SDD-1),” ACM Transaction on Database Systems
(TODS), vol. 5, no. 1, pp. 1–17, 1980.

[25] P. Valduriez and G. Gardarin, “Join and Semijoin Algorithms for a
Multiprocessor Database Machine,” ACM Transaction on Database
Systems (TODS), vol. 9, no. 1, pp. 133–161, 1984.

