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ABSTRACT
We introduce a controlled form of recursion in XQuery, an
inflationary fixed point operator, familiar from the context
of relational databases. This operator imposes restrictions
on the expressible types of recursion, but it is sufficiently
versatile to capture a wide range of interesting use cases,
including Regular XPath and its core transitive closure op-
erator.

While the optimization of general user-defined recursive
functions in XQuery appears elusive, we describe how in-
flationary fixed points can be efficiently evaluated, provided
that the recursive XQuery expressions are distributive. We
test distributivity syntactically and algebraically, and pro-
vide experimental evidence that XQuery processors can ben-
efit substantially from this mode of evaluation.

1. INTRODUCTION
The backbone of the XML data model, namely ordered,

unranked trees, is inherently recursive and it is natural to
equip the associated languages with constructs that can re-
cursively query such structures. In XQuery [6], recursion
can be achieved only via recursive user-defined functions—
a construct that admits arbitrary types of recursion and
largely evades optimization approaches beyond “procedural”
improvements like tail-recursion elimination or unfolding.

In this paper, we explore a controlled form of recursion
in XQuery, the inflationary fixed point operator, familiar in
the context of relational databases [1]. While less expressive
than user-defined functions, the new operator embraces a
family of widespread use cases of recursion, including forms
of structural recursion and the pervasive transitive closure
operator (in particular, it captures Regular XPath [29]).
Most importantly, this operator admits an algebraic coun-
terpart and systematic optimizations at the algebraic level.
We present one such optimization.

The DTD of Figure 1 (taken from [25]) describes recur-
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<!ELEMENT curriculum (course)*>
<!ELEMENT course prerequisites>
<!ATTLIST course code ID #REQUIRED>
<!ELEMENT prerequisites (pre_code)*>
<!ELEMENT pre_code #PCDATA>

Figure 1: Curriculum data (simplified DTD).

1 declare function rec_body ($cs) as node()*
2 { $cs/id (./prerequisites/pre_code) };
3
4 declare function fix ($x) as node()*
5 { let $res := rec_body ($x)
6 return if (empty ($x except $res))
7 then $res
8 else fix ($res union $x)
9 };

10
11 let $seed := doc ("curriculum.xml")
12 //course[@code="c1"]
13 return fix (rec_body ($seed))

Figure 2: Prerequisites for course "c1" ( marks
the fixed point computation).

sive curriculum data, including courses, their lists of pre-
requisite courses, the prerequisites of the latter, and so on.
The XQuery expression of Figure 2 recursively computes all
prerequisite courses, direct or indirect, of the course coded
with "c1" on an instance document "curriculum.xml". The
compilation is seeded by the course element node with code
"c1". For a given sequence $x of course nodes, function
fix (·) calls rec_body (·) on $x to find their direct prerequi-
sites. While new nodes are encountered, fix (·) recursively
calls itself on the accumulated course node sequence. (This
query is not expressible in XPath 2.0.) Note that fix (·)
implements a generic inflationary fixed point computation:
only the seed ($seed := · · · ) and the body (rec_body (·))
are specific to the curriculum problem. This motivates us to
introduce a syntactic form for this pattern of computation.
Unlike in the case of user-defined function, this account of
recursion puts the query processor in control in choosing
the evaluation strategy. In Section 2, we define the syntax
and the semantics of the fixed point operation in XQuery
context.

In Section 3, we discuss two algorithms to compute in-
flationary fixed points, borrowed from the relational world,
Näıve and Delta. Näıve is a direct implementation of the
fixed point semantics. Delta applies a divide-and-conquer
evaluation strategy and it is more efficient, but not always



correct in the settings of XQuery. Provided that the body of
the recursion exhibits a distributivity property, Delta can be
safely applied to implement the fixed point computation. In
Section 4, we define this property and we show its benefits
in terms of correctness of Delta and in terms of the relation
between the transitive closure and inflationary fixed point
operators in the context of XQuery.

Distributivity can be efficiently tested on a syntactical
level—a non-invasive approach that can easily be realized on
top of existing XQuery processors. In Section 5, we present
a syntactic fragment of XQuery that guarantees distribu-
tivity. Further, if we adopt a relational view of the XQuery
semantics (as in [16, 17]), distributivity can be elegantly and
uniformly tested on the familiar algebraic level. In Section 6,
we present the algebraic counterpart of the inflationary fixed
point operator on top of a relational algebra and we show
how to test distributivity. We implement this approach in
MonetDB/XQuery [7], an open-source XQuery processor.

Compliance with the restriction that distributivity im-
poses on fixed point expressions is rewarded by significant
query runtime savings. In Section 7, we illustrate the effect
for the XQuery processors MonetDB/XQuery and Saxon [22].
Though we mainly speak about fixed point computation in
this work, we expect similar performance advantages if an
XQuery processor takes distributivity as an indication to
allow parallel processing of XQuery (sub)expressions.

In Section 8, we stop by related work on recursion on the
XQuery as well as the relational side of the fence, and finally
wrap up in Section 9.

2. DEFINING THE FIXED POINT
OPERATION IN XQUERY

The subsequent discussion will revolve around the recur-
sion pattern embodied by function fix (·) of Figure 2, known
as the inflationary fixed point operator (IFP) [1]. We will
introduce a new syntactic form to accommodate this opera-
tor on the XQuery language level and explore its semantics
and applications.

In the following, we regard an XQuery expression e1 con-
taining a free variable $x as a function of $x, denoted by
e1($x). We write e1(e2) to denote e1[e2/$x], i.e., the uni-
form replacement of all free occurrences of $x in e1 by the
value of e2. We write e1(X) to denote the result of e1($x),
evaluated on some given document, when $x is bound to
the sequence of items X. It is always clear from the context
which free variable we consider. The function fv(e) returns
the set of free variables of expression e.

Further, we introduce set-equality (
s
=), a relaxed notion of

equality for XQuery item sequences that disregards duplicate
items and order, e.g., (1,"a")

s
= ("a",1,1). For X1, X2

sequences of type node()*, we define

X1
s
=X2 ⇔ fs:ddo (X1) = fs:ddo (X2) .1 (SetEq)

To streamline the discussion, we only consider XQuery
expressions and sequences of type node()* in the following.2

1fs:ddo (·) abbreviates fs:distinct-doc-order (·) a func-
tion defined in the XQuery Formal Semantics [8].
2An extension of our definitions and results to general se-
quences of type item()* is possible but requires the re-
placement of XQuery’s node set operations that we use
(fs:ddo (·), union and except) with the corresponding op-
erations on sequences of items.

Definition 1. Inflationary Fixed Point. Given two
XQuery expressions eseed and ebody($x), we define the infla-
tionary fixed point of ebody($x) seeded by eseed as the sequence
resk obtained in the following manner:

res0 ← ebody(eseed)
resi+1 ← ebody(resi) union resi , i > 0

(IFP)

where k > 1 is the minimum number for which resk
s
=resk−1

and union is the XQuery union operator. If no such k exists,
the inflationary fixed point is undefined. �

To make this semantics accessible in the XQuery language,
we introduce the inflationary fixed point operator

with $x seeded by eseed recurse ebody($x) (1)

as a syntactic extension to XQuery. This with construct
may be orthogonally composed with the remaining XQuery
expression types. Its semantics is the inflationary fixed point
of ebody($x) seeded by eseed . The expressions $x, eseed , and
ebody($x) are the variable, seed, and body of the inflationary
fixed point operator, respectively.

Note that if expression ebody does not invoke node con-
structors (e.g., element {·} {·} or text {·}), expression (1)
operates over a finite domain of nodes and its semantics is al-
ways defined. Otherwise, nodes might be created at each it-
eration and the semantics of (1) might be undefined. For ex-
ample, with $x seeded by () recurse <a>{$x}</a> gen-
erates infinitely many distinct elements, thus it is undefined.
When the result is defined, it is always a duplicate-free and
document-ordered sequence of nodes, due to the semantics
of the set operation union. Using the new operator we can
express the query from Figure 2 in a concise and elegant
fashion:

with $x seeded by doc ("curriculum.xml")

//course[@code="c1"]

recurse $x/id (./prerequisites/pre_code)
. (Q1)

Clearly, the user-defined function template fix (·) (shown
in in Figure 2) can be used to express fixed point compu-
tation by means of existing XQuery functionality. But since
with-seeded by-recurse is a second-order construct (taking
an XQuery variable name and two XQuery expressions as
arguments), function fix (·) then has to be interpreted as
a template in which the recursion body rec_body (·) needs
to be instantiated to ebody (which is shown in Figure 2 for
Query Q1). Higher-order functions are currently not sup-
ported in the XQuery language.3

2.1 Using IFP to Compute Transitive Closure
Transitive closure is an archetype of recursive computa-

tion over relational data as well as over XML instances. For
example, Regular XPath [29, 23] extends the navigational
fragment of XPath, Core XPath [13], with a transitive clo-
sure operator on location paths. We extend this fragment
and allow any XQuery expression of type node()*.

Definition 2. Transitive Closure Operator. Let e
be an XQuery expression. The transitive closure operator

3A recent proposal and proof-of-concept implementation
illustrates how first-class function types, lambdas, and
their (partial) application could fit into a future version of
XQuery’s syntax and semantics [28].



(·)+ applied to e is the expression e+. The semantics of e+,
called the transitive closure of e, is the result of

e union e/e union e/e/e union · · · , (TC)

if it is a finite sequence. Otherwise, the semantics of e+ is
undefined. �

Analogously to the inflationary fixed point operator, e+ might
be undefined only if e contains node constructors. For exam-
ple, <a/>+ generates infinitely many distinct empty elements
tagged with a, thus it is undefined.

Operator (·)+ applied to location paths expresses the tran-
sitive closure of paths in the XML tree: (child::*)+ ≡
descendant::*; (child::*)+/self::a ≡ descendant::a.
Operator (·)+ applied to arbitrary expressions of type node()*
expresses the transitive closure of arbitrary relations on nodes.
The query from Figure 2 e.g., can be expressed as:

doc ("curriculum.xml")//course[@code="c1"]/

(id (./prerequisites/pre_code))+ . (Q′1)

Note that the expression in the scope of the transitive closure
operator is a data-value join and cannot be expressed in
Regular XPath.

Considering the equivalence of (Q1) and (Q′1), we can de-
duce the following translation of (·)+ into the with-seeded by-
recurse construct. For some e in XQuery, e+ can be ex-
pressed as follows:

with $x seeded by . recurse $x/e ,

where ‘.’ denotes the context node. Unfortunately, this
translation is not correct for all e in XQuery (but we will
show in Section 4 that it is correct for all e in Regular XPath).

2.2 Fixed Points in SQL:1999
Fixed point computation can be expressed in SQL using

the WITH RECURSIVE clause introduced with SQL:1999 [24].
The WITH clause defines a virtual table, while RECURSIVE

specifies that the table is recursively defined. To exemplify,
consider the table Curriculum(course, prerequisite) as a
relational representation of the curriculum data from Fig-
ure 1. The prerequisites P(course_code) of the course with
code ’c1’ expressed in Datalog are:

P(x) ← Curriculum(’c1’, x)
P(x) ← P(y), Curriculum(y, x) .

The equivalent SQL code reads:

WITH RECURSIVE P(course_code) AS

(SELECT prerequisite

FROM Curriculum

WHERE course = ’c1’)

9=; seed

UNION ALL

(SELECT Curriculum.prerequisite

FROM P, Curriculum

WHERE P.course_code = Curriculum.course)

9=;body

SELECT DISTINCT * FROM P;

Analogously to the XQuery variant, the query is composed
of a seed and a body. In the seed, table P is instantiated
with the direct prerequisites of course ’c1’. In the body,
table P is joined with table Curriculum to obtain the direct
prerequisites of the courses in P. The results are added to
P. The computation of the body is iterated until P stops
growing.

res ← ebody (eseed );

do

res ← ebody (res)unionres;
while res grows ;
return res;

(a) Algorithm Näıve.

res ← ebody (eseed );
∆← res;
do

∆← ebody (∆) except res;
res ← ∆ union res;

while res grows ;
return res;

(b) Algorithm Delta.

Figure 3: Algorithms to evaluate the inflationary
fixed point of ebody($x) seeded by eseed . The result is
res.

declare function delta ($x, $res) as node()*
{

let $delta := rec_body ($x) except $res
return if (empty ($delta))

then $res
else delta ($delta, $delta union $res)

};

Figure 4: An XQuery formulation of Delta.

The SQL:1999 standard requires engine support for linear
recursion, i.e., each RECURSIVE definition contains at most
one reference to a mutually recursively defined table. Note
that the recursive table P in the example above is defined
linearly: it is referenced only once in the FROM clause of the
body. This syntactic restriction allows for efficient evalua-
tion. In Section 5, we define a similar syntactic restriction
for the with-seeded by-recurse construct in XQuery.

3. ALGORITHMS FOR IFP
This section describes two algorithms, Näıve and Delta,

commonly used to evaluate fixed point queries in the rela-
tional setting. Delta is more efficient than Näıve, but unfor-
tunately, Delta is not always a correct implementation for
our with-seeded by-recurse extension to XQuery.

Definition 1 of the inflationary fixed point straightfor-
wardly yields the implementation shown in Figure 3(a), com-
monly referred to as Näıve [4]. At each iteration of the while
loop, ebody(·) is executed on the intermediate result sequence
res until no new nodes are added to it. Note that the re-
cursive function fix (·) shown in Figure 2 is the XQuery
equivalent of Näıve. Another remark is that the old nodes
in res are fed into ebody(·) over and over again. Depending
on the nature of ebody(·), Näıve may involve a substantial
amount of redundant computation.

A folklore variation of Näıve is the Delta algorithm [19]
of Figure 3(b). Delta implements a divide-and-conquer ap-
proach to evaluation. In this variant, ebody(·) is invoked only
for those nodes that have not been encountered in earlier
iterations: the node sequence ∆ is the difference between
ebody(·)’s last answer and the current result res. In general,
ebody(·) will process fewer nodes. Thus, Delta introduces
a significant potential for performance improvement, espe-
cially for large intermediate results and computationally ex-
pensive recursion bodies.

Figure 4 shows the corresponding XQuery user-defined
function delta (·,·) which, for Figure 2 and thus Query Q1,
can serve as a drop-in replacement for function fix (·) (in
line 13, return delta (rec_body ($seed), ()) needs to re-
place its invocation).



Unfortunately, Delta is not always a valid optimization
for the with-seeded by-recurse clause as we will see in the
following expression:

let $seed := <a><b><c/></b></a>

return with $x seeded by $seed

recurse if (count ($x) = 1)

then $x/* else ()

. (Q2)

While Näıve computes (a, b), Delta computes (a, b, c),
where a, b, and c denote the elements constructed by the
respective subexpressions of the seed. The table below il-
lustrates the progress of the iterations performed by both
algorithms.

Iteration Näıve Delta
res res ∆

0 (a) (a) (a)
1 (a, b) (a, b) (b)
2 (a, b) (a, b, c) (c)
3 (a, b, c) ()

The culprit in this example is the application count ($x)

which prohibits an evaluation based on divide-and-conquer
with respect to $x. Delta may not be safely applied in this
case.

Even though Delta does not always compute the inflation-
ary fixed point correctly, we can investigate for which body
expressions Delta computes the correct result and apply it
in those cases. In the next section, we provide a natural
semantic property which allows us to trade Näıve for Delta.

4. DISTRIBUTIVITY FOR XQUERY
In this section, we define a distributivity property for XQue-

ry expressions. We show that distributivity implies the
correctness of Delta as an implementation for the with-
seeded by-recurse clause. Moreover, we show that distribu-
tivity allows for the elegant formulation of transitive closure
(operator (·)+) based on our extension to the XQuery syntax.

4.1 Defining Distributivity
A function e defined on sets is distributive if, for any

non-empty sets X1 and X2, e(X1 ∪ X2) = e(X1) ∪ e(X2).
This property suggests the use of the divide-and-conquer ap-
proach taken by algorithm Delta, which applies the recursion
body to subsets of its input and takes the union of the re-
sults. We define a similar property for XQuery expressions
using the sequence set-equality

s
= defined in Section 2. Re-

call that in this paper we only consider XQuery expressions
and sequences of type node()*.

Definition 3. Distributivity Property. Let e be an
XQuery expression. Expression e($x) is distributive for $x

iff for any non-empty sequences X1, X2,

e(X1 unionX2)
s
= e(X1) union e(X2) . (2)

�

Note that if $x is not a free variable in e, then Equality (2)
always holds, thus e is distributive for $x.

Proposition 1. Let e be an XQuery expression. Expres-
sion e($x) is distributive for $x iff for any node sequence
X 6= () and any fresh variable $y,

(for $y in $x return e($y))(X)
s
= e(X) . (3)

Proof. Consider the following equality: for any sequence
X = (x1, . . . , xn), n ≥ 1,

(e(x1) union · · · union e(xn))
s
= e(X) . (4)

It is easy to see that for any partition X1 and X2 of X, i.e.,
X1 ∩X2 = ∅ and X1 ∪X2 = X, if Equality (2) holds then
Equality (4) holds for X, and vice versa. Thus Equalities (2)
and (4) are equivalent.

According to the XQuery Formal Semantics [8], the left-
hand side of Equality (3) evaluates to the sequence (e(x1),
. . . , e(xn)), which is set-equal to (e(x1) union · · · union

e(xn)), the left-hand side of Equality (4). From the equiva-
lence of Equalities (2) and (4), it follows the equivalence of
Equalities (2) and (3). qed

We will use Equality (3) as an alternative definition of dis-
tributivity.

Proposition 2. Any XQuery expression that has the form
e($x) = $x/p is distributive for $x if the expression p nei-
ther contains (i) free occurrences of $x, nor (ii) calls to
fn:position () or fn:last () that refer to the context item
sequence bound to $x, nor (iii) node constructors.

The proof of this proposition is given in [2].

Expressions of the form $x/p where p is a Core XPath
(or even Regular XPath) expression are prevalent exam-
ples of distributive expressions in XQuery. Note that all
Core XPath and Regular XPath expressions satisfy the con-
ditions (i) to (iii) of Proposition 2 above.

In reverse it is easy to see that $x[1] is not distribu-
tive for $x. For a counterexample, let $x be bound to
(<a/>, <b/>), then $x[1] evaluates to (<a/>), whereas for

$i in $x return $i[1] evaluates to (<a/>, <b/>).

4.2 Trading Naïve for Delta
We say that Delta and Näıve are equivalent for a given

fixed point expression, if for any XML document (collection)
both algorithms produce the same sequence of nodes.

Theorem 1. Distributivity Guarantees Correctness
of Delta. Consider the expression with $x seeded by eseed
recurse ebody($x). If ebody($x) is distributive for $x, then
the algorithm Delta correctly computes the inflationary fixed
point of ebody($x) seeded by eseed .

Proof. We show by inductive reasoning that Delta and
Näıve have the same intermediate results, denoted by res∆

i

and resi, respectively. The equivalence of Näıve and Delta
follows from this. The induction is on i, the iteration number
of the do · · ·while loops.

In its first loop iteration, Näıve yields

ebody (ebody (eseed)) union ebody (eseed)

which is equivalent to Delta’s first intermediate result

(ebody (ebody (eseed)) except ebody (eseed)) union ebody (eseed) .

Suppose that resk = res∆
k , for all k ≤ i. We show in the

following that resi+1 = res∆
i+1: Starting with the definition

from the Näıve algorithm (a), we can apply Set-Equality (2)
at (b). Note that we are allowed to replace set-equality with
strict equality here, since both sequences are in document
order and duplicate-free due to the semantics of union. At



(c) we apply the inductive step, before taking the definition
of res in algorithm Delta into account (at (d)). Deduction
(e) follows from the containment of ebody(resi−1) in resi.
Taking the definition of ∆ in Delta into account (at (f)) we
get the desired result:

resi+1 =
(a)

ebody (resi) union resi

= ebody ((resi except ∆i) union ∆i) union resi

=
(b)

ebody (resi except ∆i) union ebody (∆i) union resi

=
(c)

ebody
`
res∆

i except ∆i

´
union ebody (∆i) union res∆

i

=
(d)

ebody
`
res∆

i−1 union ∆i except ∆i

´
union

ebody (∆i) union res∆
i

= ebody
`
res∆

i−1

´
union ebody (∆i) union res∆

i

=
(e)

ebody (∆i) union res∆
i

=
`
ebody (∆i) except res∆

i

´
union res∆

i

=
(f)

∆i+1 union res∆
i

=
(d)

res∆
i+1 .

qed

In the next section, we discuss one more benefit of dis-
tributivity, namely the correctness of an elegant translation
of the transitive closure operator into the with-seeded by-
recurse clause.

4.3 Translating Transitive Closure
Distributivity is also a key to understanding the rela-

tion between the transitive closure operator and the with-
seeded by-recurse clause in our XQuery dialect. Intuitively,
if expression e is distributive for the context sequence, then
e+ is equivalent to the XQuery expression with $x seeded

by . recurse $x/e, where $x, a fresh variable, is a place-
holder for the context sequence.

Theorem 2. Consider an XQuery expression e and a vari-
able $x, such that $x 6∈ fv(e). If $x/e is distributive for $x,
then

e+ = with $x seeded by . recurse $x/e

The proof, similar to the proof of Theorem 1, is given in [2].

From Proposition 2 and Theorems 1 and 2 follows that
the transitive closure of any Regular XPath expression can
be safely computed with Delta using the translation in The-
orem 2.

5. ASSESSING DISTRIBUTIVITY
Whenever an XQuery processor plans the evaluation of

with $x seeded by eseed recurse ebody , knowing the an-
swer to “Is ebody distributive for $x?” is particularly valu-
able: it allows the processor to apply Delta for evaluating
the inflationary fixed point of ebody seeded by eseed . We may
legitimately expect Delta to be a significantly more efficient
fixed point evaluation strategy than Näıve (Section 7 will
indeed make this evident). While, unfortunately, there is
no complete procedure to decide this question4, still we can
safely approximate the answer.

4If, for two arbitrary expression e1, e2 in which $x does
not occur free, an XQuery processor could assess whether

5.1 A Syntactic Approximation
of Distributivity

In this section, we define a syntactic fragment of XQuery
for a variable $x, called the distributivity-safe fragment for
$x. The membership of this fragment can be determined in
linear time with respect to the size of the expression. We
show that distributivity safety implies distributivity. More-
over, this fragment is expressively complete for distributivity,
i.e., any distributive XQuery expression is expressible in the
distributivity-safe fragment of XQuery.

Intuitively, we may apply a divide-and-conquer evalua-
tion strategy for an expression e($x), if any subexpression
of e accesses the nodes in $x one by one. The most sim-
ple example of such subexpression is for $y in $x return

e($y), where e is an XQuery expression such that $x 6∈ fv(e).
On the other hand, we may not apply a divide-and-conquer
evaluation strategy if any subexpression of e accesses $x as
a whole. Examples of such problematic subexpressions are
count ($x) and $x[1], but also the general comparison $x

= 10 which involves existential quantification over the se-
quence bound to $x.

Further, subexpressions whose value is independent of $x

are distributive. The only exception of this rule are XQuery’s
node constructors, e.g., element {·} {·}, which create new
node identities upon each invocation. With $x bound to
(<a/>,<b/>), for example,

element { "c" } { () } 6=s for $y in $x return

element { "c" } { () } ,

since the right-hand side will yield a sequence of two distinct
element nodes.

We implement these considerations when defining the dis-
tributivity-safe fragment of XQuery. For practical reasons,
in our definition, we use LiXQuery [21], a fragment of XQuery.
LiXQuery has a simpler syntax and data model than XQue-
ry, though it preserves the Turing-completeness property. It
includes the most important language constructs, three ba-
sic types of items: xs:boolean, xs:string, and xs:integer

plus four node kinds: element(), attribute(), text(), and
document-node(). The language has well-defined semantics
and it was designed as a convenient tool for studying XQuery
language properties. Given our prior remarks on how node
constructors appearing in the recursion body inhibit distribu-
tivity, we deliberately omit their treatment in the upcoming
syntactic assessment of distributivity for recursion bodies
formulated in LiXQuery. (Note that this does not affect the
ability to construct nodes outside the recursion body.)

Definition 4. Distributivity Safety. A LiXQuery ex-
pression e is called distributivity-safe for $x, if the rules of
Figure 5 can infer ds$x (e). �

The inference rules of Figure 5 assess syntactically the
distributivity safety ds$x (e) of an arbitrary LiXQuery in-
put expression e by traversing e’s parse tree in a bottom-
up fashion. Rules Const and Var constitute the base of
the fragment, inferring the distributivity safety of LiXQue-
ry expressions that do not contain $x free and of variables,
including $x. Rule Concat propagates the distributivity
safety of subexpressions. Rules For1 and For2 ensure that

if (deep-equal (e1,e2)) then $x else $x[1] is distribu-
tive for $x, it could also decide the equivalence of e1 and e2

(which is impossible).



ds$x (c)
(Const)

ds$x ($v)
(Var)

$x /∈ fv(e1) ds$x (e2) ds$x (e3)

ds$x (if (e1) then e2 else e3)
(If)

⊕ ∈ {,, |} ds$x (e1) ds$x (e2)

ds$x (e1 ⊕ e2)
(Concat)

$x /∈ fv(e1) ds$x (e2)

ds$x (for $v at $p in e1 return e2)
(For1)

ds$x (e1) $x /∈ fv(e2)

ds$x (for $v in e1 return e2)
(For2)

$x /∈ fv(e1) ds$x (e2)

ds$x (let $v := e1 return e2)
(Let1)

ds$x (e1) $x /∈ fv(e2) ds$v (e2)

ds$x (let $v := e1 return e2)
(Let2)

$x /∈ fv(e1) ds$x (ci)i=1...n+1

ds$x

0BBB@
typeswitch (e1)
case τ1 return c1

...
case τn return cn
default return cn+1

1CCCA
(TypeSw)

$x /∈ fv(e1) ds$x (e2)

ds$x (e1/e2)
(Step1)

ds$x (e1) $x /∈ fv(e2)

ds$x (e1/e2)
(Step2)

declare function f($v1,. . . ,$vn) { e0 } ($x ∈ fv(ei)⇒ ds$x (ei) ∧ ds$vi
(e0))i=1...n

ds$x (f(e1,. . . ,en))
(FunCall)

Figure 5: Distributivity safety ds$x (·): A syntactic approximation of the distributivity property for LiXQue-
ry-formulated recursion bodies.

the recursion variable $x occurs either in the body e2 or in
the binding expression e1 of a for-iteration but not both. A
similar remark applies to Rules Step1, Step2 (in XQuery,
the step operator ‘/’ essentially describes an iteration over
a sequence of type node()* [8]) and Rules Let1, Let2.
Note that these conditions resemble the linearity constraint
of SQL:1999. Rules If and TypeSw ensure that $x does
not occur free in e1, the expression in the conditional, while
propagating the distributivity safety of subexpressions. Rule
FunCall recursively infers the distributivity of the body of
a called function if the recursion variable occurs free in the
function argument(s).

The rules in Figure 5 can be checked with a single traver-
sal of the parse tree of a LiXQuery expression. Thus the
membership to the distributivity-safe fragment is in linear
time with respect to the size of an XQuery expression.

Theorem 3. Soundness. Any XQuery expression e that
is distributivity-safe for a variable $x, i.e., for which ds$x (e)
holds, is also distributive for $x.

The proof of this implication, by induction on the syntactical
structure of e, is given in [2].

The distributive-safe fragment does not contain all dis-
tributive expressions. For example, count ($x) >= 1 is not
distributivity-safe, but still distributive for $x. However, it
is interesting to note that the distributivity-safe fragment is
expressive complete for distributivity.

Proposition 3. Expressive completeness. Given an
XQuery expression e($x), if e($x) is distributive for $x and
does not contain node constructors as subexpressions, then
it is set-equal to for $y in $x return e($y), which is dis-
tributivity-safe for $x.

Proof. This is a direct consequence of Rule For2 (Figure 5)
and Proposition 1. qed

At the expense of a slight query reformulation, we may pro-
vide a“syntactic distributivity hint”to an XQuery processor.

6. DISTRIBUTIVITY AND
RELATIONAL XQUERY

XDM XDM

Tables Tables

XQuery

Relational Algebra

Figure 6: Relational XQuery (dashed path) faith-
fully implements the XQuery semantics.

In this section we will, literally, follow an alternative route
to decide the applicability of Delta for the evaluation of the
with $x seeded by eseed recurse ebody($x) construct. We
leave syntax aside and instead inspect relational algebraic
code that has been compiled for ebody : the equivalent alge-
braic representation of ebody renders the check for the inher-
ently algebraic distributivity property particularly uniform
and simple.

Relational XQuery. This alternative route is inspired by
various approaches that compile instances of the XQuery
Data Model (XDM) and XQuery expressions into relational
tables and algebraic plans over these tables, respectively,
and thus follow the dashed path in Figure 6. The Pathfin-
der project5 fully implements such a purely relational ap-
proach to XQuery. Here we use the translation strategy
of Pathfinder that has been carefully designed to (i) faith-
fully preserve the XQuery semantics (including composi-
tionality, node identity, iteration and sequence order), and
(ii) yield relational plans which exclusively rely on regular
relational query engine technology (no specific operators or
index structures are required, in particular) [16, 17] . We
use the generated plans as a tool to reason over the distribu-
tivity of the associated XQuery expression.

The compiler emits a dialect of relational algebra that
mimics the capabilities of modern SQL query engines (Ta-
ble 1). The row numbering operator %a:〈b1,...,bn〉/p directly
compares with SQL:1999’s ROW_NUMBER() OVER (PARTITION

BY p ORDER BY b1, . . . , bn) and correctly implements the or-

5http://www.pathfinder-xquery.org/



Operator Semantics

πa1:b1,...,an:bn project onto col.s ai, rename bi into ai
σb select rows with column b = true
1p join with predicate p
:-
1q iterated evaluation of rhs argument (APPLY)
× Cartesian product
∪ union
\ difference
counta:/b aggregates (group by b, result in a)
}a:〈b1,...,bn〉 n-ary arithmetic/comparison operator ◦
%a:〈b1,...,bn〉/p ordered row numbering (by b1, . . . , bn)

α::n XPath step join (axis α, node test n)
ε, τ, . . . node constructors
µ, µ∆ fixpoint operators

Table 1: Relational algebra dialect emitted by the
Pathfinder compiler.

der semantics of XQuery on the (unordered) algebra. Other
non-textbook operators, like ε or , merely are macros rep-
resenting “micro plans” composed of standard relational op-
erators: expanding α::n(q), for example, reveals doc 1p q,
where p is a conjunctive range predicate that realizes the
semantics of an XPath location step along axis α with node
test n between the context nodes in q and the encoded
XML document doc. Dependent joins

:-
1—also named CROSS

APPLY in Microsoft SQL Server’s SQL dialect Transact-SQL—
like are only a logical concept and can be replaced by
standard relational operators [12].

The plans operate over relational encodings of XQuery
item sequences held in flat (1NF) tables with an iter|pos|item
schema. In these tables, columns iter and pos are used to
properly reflect for-iteration and sequence order, respec-
tively. Column item carries encodings of XQuery items, i.e.,
atomic values or nodes. The inference rules driving the com-
pilation procedure are described in [17]. The result is a
DAG-shaped query plan where the sharing of sub-plans pri-
marily coincides with repeated references to the same vari-
able in the input XQuery expression.

Since our current work is concerned with distributivity
assessment (as opposed to query evaluation—but see Sec-
tion 7), we rephrase the compilation of XQuery for expres-
sions of [17] (see Rule For′ in Appendix A) to make use
of the dependent join operator

:-
1. With correlations now

made explicit, we can assess distributivity purely based on
algebraic equivalences.

6.1 Is Expression ebody Distributive?
(An Algebraic Account)

An occurrence of our extension with $x seeded by eseed
recurse ebody($x) in a source XQuery expression will be com-

qseed

qbody$x µ

piled into a plan fragment as shown here
on the left. In the following, let q de-
note the algebraic query plan that has
been compiled for XQuery expression e.
Operator µ, the algebraic representation
of algorithm Näıve (Figure 3(a)), iterates
the evaluation of the algebraic plan for
ebody and feeds its output back to its
input until the IFP is reached. If we
can guarantee that the plan for ebody is

distributive, we may safely trade µ for its Delta-based vari-
ant µ∆ which, in general, will feed significantly less items
back in each iteration (see Figure 3(b) and Section 7).

∪
πiter,item

%pos:〈item〉/iter

qbody

?
≡

qbody qbody

∪
πiter,item

%pos:〈item〉/iter

(a) Distributivity assessment
(impacted by sequence order).

πiter,item

qbody

∪
πiter,

item
πiter,

item

?
≡

πiter,item

qbody qbody

∪

πiter,item πiter,item

(b) Distributivity assessment
agnostic to sequence order.

Figure 7: Algebraic distributivity assessment.

We defined the necessary distributivity property (Defini-
tion 3) based on the XQuery operator union. In the alge-
braic setting, the XQuery union operation is compiled to
an expression that faithfully implements the XQuery order
requirements—for each iteration the result is ordered by the
node rank in column item (Appendix A illustrates the com-
pilation of union, which had been omitted in [17]):

e1 union e2 Z⇒

%pos:〈item〉/iter

πiter,item

∪
q1 q2

.

Straightforward application of this translation to Defini-
tion 3 allows us to express the distributivity criterion based
on the equivalence of relational plans. If we can prove the
equivalence of the two plans in Figure 7(a), we know that
the XQuery expression qbody must be distributive.

The condition expressed in Figure 7(a), however, is slightly
more restrictive than necessary. It is a prerequisite for dis-
tributivity that the recursion body qbody does not inspect se-
quence positions in its input. For a distributive qbody it must
be legal to omit the row-numbering operator %pos:〈item〉/iter in
the left-hand side of Figure 7(a) and discard all position in-
formation in the inputs of sub-plan qbody (using πiter,item).6

Further, since Definition 3 is indifferent to sequence order,
we are also free to disregard the row-numbering operator
on top of the right-hand-side plan and place a projection
πiter,item on top of both plans to make the order indifference
explicit. Proving the equivalence illustrated in Figure 7(b),
therefore, is sufficient to decide distributivity. This equality
is the algebraic expression of the divide-and-conquer evalu-
ation strategy: evaluating ebody over a composite input (lhs,
∪ ) yields the same result as the union of the evaluation

of ebody over a partitioned input (rhs).
The equivalence criterion in Figure 7(b) suggests an as-

sessment of distributivity based on algebraic rewrites. If we
can successfully “push” a union operator ∪ through the sub-
plan qbody , its corresponding XQuery expression ebody must
be distributive and we can safely trade µ for µ∆ to compute
the fixed point.

To this end, we use a set of algebraic rewrite rules (Fig-
ure 8) that try to move a union operator upwards the plan
DAG. To avoid ambiguity or infinite loops during the rewrite
process, we mark the union operator (indicated as ]) in
the left-hand-side plan qleft of Figure 7(b), before we start
rewriting. We then exhaustively apply the rule set in Fig-
ure 8 to each sub-plan in qleft in a bottom-up fashion. Since

6Since order indifference proves valuable also for other rea-
sons, Pathfinder’s query compiler readily omits position in-
formation in this sense [15].



⊗ ∈ {π, σ,}, }
⊗ (q1 ] q2)→ (⊗ (q1)) ] (⊗ (q2))

(Unary)

⊗ ∈ {∪,×,1, :-
1}

(q1 ] q2)⊗ q3 → (q1 ⊗ q3) ] (q2 ⊗ q3)
(Binary1)

⊗ ∈ {∪,×,1, :-
1}

q1 ⊗ (q2 ] q3)→ (q1 ⊗ q2) ] (q1 ⊗ q3)
(Binary2)

(q1 ] q2) ∪ (q3 ] q4)→ (q1 ∪ q3) ] (q2 ∪ q4)
(Union)

Figure 8: An algebraic approximation of the dis-
tributivity property for arbitrary XQuery expres-
sions.

each rule in the set strictly moves the marked union oper-
ator upwards the plan, termination of the process is guar-
anteed. Further, the number of operators n in qbody is an
upper bound for the number of rewrites needed to push ]
through qbody ; n itself is bound by the size of ebody (we have
seen the same complexity bound for the syntactic analysis
of Section 5.1).

Once the rule set does not permit any further rewrites,
we compare the rewritten plan q′left with the right-hand side
plan qright of Figure 7(b) for structural equality. Such equal-
ity guarantees the equivalence of both plans and, hence, the
distributivity of ebody .

Figure 9 shows the rewrites involved to determine the dis-
tributivity of ebody for Query Q1 (Section 2). We place a
marked union operator ] as the input to the algebraic plan
qbody obtained for the recursion body of Query Q1. The re-
sulting plan corresponds to the left-hand side of Figure 7(b).
Applying the equivalence rules Unary, Binary1, and again
Rule Unary pushes ] up to the plan root, as illustrated
in Figures 9(b), 9(c), and 9(d), respectively. The final plan
(Figure 9(d)) is structurally identical to the right-hand side
of Figure 7(b), with qbody instantiated with the recursion
body in Query Q1. We can conclude distributivity for qbody
and, in consequence, for the recursion body in Query Q1.

Rewriting in Detail
Zooming in from the plan to the operator level, we now
provide justification for the equivalence rules in Figure 8.
Operators π, σ, and } of Rule Unary are defined in row-
by-row fashion and are distributive as such. As mentioned
earlier, operator of Rule Unary can be rewritten into a
join. The expanded operator then matches Rule Binary2,
where parameter e1 is the XML document relation doc. For
operators ∪, ×, and 1, the equivalences in Rules Binary1,
Binary2, and Union follow textbook-style plan rewriting.
The distributivity of

:-
1 (Rules Binary1 and Binary2) fol-

lows from its definition in Appendix A.

]

∪

Note that the bottom-up traversal in combi-
nation with the DAG-shaped plans may lead to
a situation where two marked union operators
] appear on either side of a binary operator. A
trivial example is the plan shown on the right,
where ] is pushed up along both branches of
the relational plan for $x union $x.

If this happens with operator ∪ in the mid-
dle, Rule Union uses the associativity of ∪ to re-order the

input arguments and change markings such that only one
instance of ] remains left. Pushing two instances of ]
through ×, 1, or

:-
1, by contrast, takes two rewrites along

Rules Binary1 and Binary2, yielding, e.g.,

×
]

q1 q2

]
q3 q4

→

]
]

×
q1 q3

×
q1 q4

]
×

q2 q3

×
q2 q4

.

Most likely, the resulting plan will not satisfy the even-
tual test for structural equality. The plan analyzer can
abort the rewrite process early in this case and report non-
distributivity. It is the lack of a rule like Rule Union
for ×, 1, and

:-
1 that implements the restriction on oc-

currences of the recursion variable $x that we saw in Sec-
tion 5.1 ($x /∈ fv(e) in the premises of Figure 5) or the
single-occurrence requirement in SQL:1999-style recursion
(Section 2.2).

For other non-distributive input, the application of the
rules in Figure 8 typically leads to a situation where one or
more instances of ] “get stuck” in places other than the plan
root. This happens, e.g., when non-distributive operators
such as difference (\), row numbering (%), or aggregation
operators are encountered during the ] push-up. Since the
structural equality check is bound to fail in such an event,
the algebraic distributivity analyzer may choose to abort
rewriting early and report the query as non-distributive.
(The query analyzer of Pathfinder follows this strategy, for
instance.)

6.2 Coping with Syntactic Variation
The virtue of an algebraic test for distributivity is its con-

cise specification in terms of the rewrite set in Figure 8. Let
us now see how both approaches to distributivity analysis
react to examples that are non-straightforward.

In both setups, the assessment of distributivity can be-
come rather intricate. Consider, e.g., the XQuery expression

let $a := doc ("a.xml")

return with $x seeded by eseed
recurse if ($x/self::b)

then () else $a

ff
ebody

. (Q3)

The syntactic as well as the algebraic approximation report
this query as non-distributive. And, indeed, if the seed eseed
contains an element labeled b, the output of algorithm Näıve
does not contain the document a.xml, whereas the applica-
tion of Delta would return a.xml as part of its result. Af-
ter the first evaluation of ebody , the implementation in Fig-
ure 3(b) no longer knows about the existence of the b node in
the seed, once it reaches the invocation of ebody(∆) (line 4 in
Figure 3(b)). The algorithm would thus (wrongly) emit the
content of $a as the result of the with-seeded by-recurse
clause.

πiter

πiter

\ q$a

×

The compiled plan for the body expres-
sion in QueryQ3 explains how the algebraic
distributivity analyzer made the right deci-
sion. Since the difference operator \ (used
to implement the check for non-existence)
is non-distributive, the rewrite does not
succeed in pushing up a union operator
through the plan. Rule If takes the account
in the syntactic analysis and prevents the



]

πiter,item

qbind

child::
prerequisites

child::
pre_code

id ref
...

...

1
item=id

πitem2:ref

:-
1
qbind

πiter,item:item2

(a)

πiter,
item

πiter,
item

]

qbind

child::
prerequisites

child::
pre_code

id ref
...

...

1
item=id

πitem2:ref

:-
1
qbind

πiter,item:item2

(b)

πiter,
item

qbind

child::
prerequisites

child::
pre_code

id ref
...

...

1
item=id

πitem2,
ref

:-
1
qbind

πiter,
item

qbind

child::
prerequisites

child::
pre_code

id ref
...

...

1
item=id

πitem2,
ref

:-
1
qbind

]

πiter,item:item2

(c)

πiter,
item

qbind

child::
prerequisites

child::
pre_code

id ref
...

...

1
item=id

πitem2,
ref

:-
1
qbind

πiter,
item

qbind

child::
prerequisites

child::
pre_code

id ref
...

...

1
item=id

πitem2,
ref

:-
1
qbind

πiter,item:item2
πiter,item:item2

]

(d)

Figure 9: Transformation of the recursion body ebody of Query Q1. (Rewrites proceed from left to right.)

appearance of the seed variable in an if-then-else condi-
tion.

Now consider a variant of Query Q3 that instantiates the
recursion body ebody with

e′body = if ($x/self::b) then $a else () .

(Note the swapped roles of the then and else branches.)
This subtle change made e′body a distributive expression and,
hence, algorithm Delta a valid means to evaluate the query.
Both algorithms now return the document node bound to $a

only if a b element can be found among the nodes in eseed .7

The syntactic approximation of Figure 5 concludes that
the new recursion body will not be distributive-safe either,
since variable $a still occurs in the clause’s condition. This
situation may easily be remedied by extending the rule set

πiter q$a

×

of Figure 5 (though we omit details here).
It is interesting to see, however, how an al-
gebraic analyzer handles the asymmetry of
the then/else branches in XQuery’s condi-
tional expressions. The compiled plan for
the rewritten recursion body now looks like
the one shown here. It is easy to see that
the “push-up” of the relational union will

succeed straightforwardly. The structural equality test will
then return a positive answer to the distributivity safety of
e′body .

Algebraic distributivity assessment plays its full trump,
however, if it is paired with algebraic instruments that help
further abstraction from syntactical equivalences. The query
compiler of Pathfinder, e.g., will discover the equivalence of

if (empty ($x/self::b)) then () else $a

and expression e′body above and produce identical plan DAGs
for both expressions. The distributivity safety then becomes
easy to detect by the algebraic checker. Detecting such in-
terplay between the if, then, and else clauses of an XQuery
conditional might remain a challenge, however, for an anal-
ysis based on syntax only.

7e′body is set-equivalent to the query for $y in $x/self::b
return $a.

7. QUERYING WITH DISTRIBUTIVITY
SAFETY BELT ON

Recasting a recursive XQuery query as an inflationary
fixed point computation imposes restrictions. Such recast-
ing, however, also puts the query processor into control since
the applicability of a promising optimization, trading Näıve
for Delta, becomes effectively decidable. This section pro-
vides the evidence that significant gains can indeed be real-
ized, much like in the relational domain.

To quantify the impact, we implemented the two fixed
point operator variants µ and µ∆ (Section 6.1) in Mon-
etDB/XQuery 0.22 [7], an efficient and scalable XQuery pro-
cessor that consequently implements the Relational XQuery
approach (Section 6). Its algebraic compiler front-end Path-
finder has been enhanced (i) to process the syntactic form
with-seeded by-recurse, and (ii) to implement the alge-
braic distributivity check. All queries in this section were
recognized as being distributive by Pathfinder. To demon-
strate that any XQuery processor can benefit from opti-
mized fixed point evaluation in the presence of distributiv-
ity, we also performed the transition from Näıve to Delta
on the XQuery source level and let Saxon-SA 8.9 [22] pro-
cess the resulting user-defined recursive queries (cf. Figures 2
and 4). All experiments were conducted on a Linux-based

host (64 bit), with two 3.2 GHz Intel Xeon® CPUs, 8 GB of
primary and 280 GB SCSI disk-based secondary memory.

Table 2 summarizes our observations for four query types,
chosen to inspect the systems’ behavior for growing input
XML instance sizes and varying result sizes at each recursion
level (the maximum recursion depth ranged from 5 to 33).

7.1 XMark Bidder Network
To assess scalability, we computed a bidder network—

recursively connecting the sellers and bidders of auctions
(Figure 10)—over XMark [27] XML data of increasing size
(from scale factor 0.01, small, to 0.33, huge). If Delta is
used to compute the inflationary fixed point of this net-
work, MonetDB/XQuery (2.1 to 3.4 times faster) as well as
Saxon (1.2 to 2.7 times faster) benefit significantly. Most
importantly, note that the number of nodes in the network
grows quadratically with the input document size. Algo-
rithm Delta feeds significantly less nodes back in each re-



Query MonetDB/XQuery Saxon-SA 8.9 Total # of Nodes Recursion
Fed Back Depth

Näıve Delta Näıve Delta Näıve Delta

Bidder network (small) 404 ms 190 ms 2,307 ms 1,872 ms 40,254 9,319 10
Bidder network (medium) 5,144 ms 2,135 ms 15,027 ms 7,284 ms 683,225 122,532 16
Bidder network (large) 40,498 ms 14,351 ms 123,316 ms 52,436 ms 5,694,390 961,356 15
Bidder network (huge) 1,344,806 ms 389,946 ms 1,959,749 ms 723,600 ms 87,528,919 9,799,342 24

Romeo and Juliet 1,332 ms 458 ms 1,150 ms 818 ms 37,841 5,638 33

Curriculum (medium) 200 ms 145 ms 1,308 ms 1,040 ms 12,301 3,044 18
Curriculum (large) 1,509 ms 687 ms 3,485 ms 2,176 ms 127,992 19,780 35

Hospital (medium) 695 ms 469 ms 1,301 ms 1,290 ms 99,381 50,000 5

Table 2: Näıve vs. Delta: Comparison of query evaluation times and total number of nodes fed back.

let $lengths := for $speech in doc ("r_and_j.xml")//SPEECH
let $rec := with $x seeded by ($speech/preceding-sibling::SPEECH[1], $speech) (: pair of speakers :)

recurse $x/following-sibling::SPEECH[1][SPEAKER = preceding-sibling::SPEECH[2]/SPEAKER]
return count ($rec)

return max ($lengths)

Figure 11: Romeo and Juliet dialogs query.

declare variable $doc := doc ("auction.xml");

declare function bidder ($in as node()*) as node()*
{ let $b := $doc//open_auction

[seller/@person = $in/@id]
/bidder/personref

return $doc//people/person[@id = $b/@person]
};

for $p in $doc//people/person
return <person>

{ $p/@id }
{ data ((with $x seeded by $p

recurse bidder ($x))/@id) }
</person>

Figure 10: XMark bidder network query.

cursion level which positively impacts the complexity of the
value-based join inside recursion payload bidder (·): for the
huge network, Delta exactly feeds those 10 million nodes
into bidder (·) that make up the result—Näıve repeatedly
revisits intermediate results and processes 9 times as many
nodes.

7.2 Romeo and Juliet Dialogs
Far less nodes are processed by a recursive expression that

queries XML markup of Shakespeare’s Romeo and Juliet8 to
determine the maximum length of any uninterrupted dialog
(see Figure 11). Seeded with SPEECH element nodes, each
level of the recursion expands the currently considered dia-
log sequences by a single SPEECH node given that the associ-
ated SPEAKERs are found to alternate (horizontal structural
recursion along the following-sibling axis). Although the
recursion is shallow (depth 6 on average), Table 2 shows how
both, MonetDB/XQuery and Saxon, completed evaluation
up to 3 times faster because the query had been specified in
a distributive fashion.

7.3 Transitive Closures
Two more queries, taken directly from related work [25,

8http://www.ibiblio.org/xml/examples/shakespeare/

10], compute transitive closure problems (we generated the
data instances with the help of ToXgene [5]). The first query
implements a consistency check over the curriculum data
(cf. Figure 1) and finds courses that are among their own
prerequisites (Rule 5 in the Curriculum Case Study in Ap-
pendix B of [25]). Much like for the bidder network query,
the larger the query input (medium instance: 800 courses,
large: 4,000 courses), the better MonetDB/XQuery as well
as Saxon exploited Delta.

The last query in the experiment explores 50,000 hospi-
tal patient records to investigate a hereditary disease [10].
In this case, the recursion follows the hierarchical structure
of the XML input (from patient to parents), recursing into
subtrees of a maximum depth of 5. Again, Delta makes a no-
table difference even for this computationally rather “light”
query.

We believe that this renders this particular controlled form
of XQuery recursion and its associated distributivity notion
attractive, even for processors that do not implement a ded-
icated fixed point operator (like Saxon).

8. MORE RELATED WORK
Bringing adequate support for recursion to XQuery is a

core research matter on various levels of the language. While
the efficient evaluation of the recursive XPath axes (e.g.,
descendant or ancestor) is well understood by now [3, 18],
the optimization of recursive user-defined functions has been
found to be tractable only in the presence of restrictions:
[26, 14] propose exhaustive inlining of functions but require
that functions are structurally recursive (use axes child

and descendant to navigate into subtrees only) over acyclic
schemata to guarantee that inlining terminates. Note that,
beyond inlining, this type of recursion does not come pack-
aged with an effective optimization hook comparable to what
the inflationary fixed point offers.

The distinguished use case for inflationary fixed point
computation is transitive closure. This is also reflected by
the advent of XPath dialects like Regular XPath [29] and
the inclusion of a dedicated dyn:closure (·) construct in
the EXSLT function library [9]. We have seen applications



in Section 7 [25, 10] and recent work on data integration and
XML views adds to this [11].

In the domain of relational query languages, Näıve is the
most widely described algorithmic account of the inflation-
ary fixed point operator [4]. Its optimized Delta variant, in
focus since the 1980’s, has been coined delta iteration [19],
semi-näıve [4], or wavefront [20] strategy in earlier work.
Since our work rests on the adaption of these original ideas to
the XQuery Data Model and language, the large “relational
body” of work in this area should be directly transferable,
even more so in the Relational XQuery context.

The adoption of inflationary fixed point semantics by Dat-
alog and SQL:1999 with its WITH RECURSIVE clause (Sec-
tion 2) led to investigations of the applicability of Delta
for these recursive relational query languages. For strati-
fied Datalog programs [1], Delta is applicable in all cases:
positive Datalog maps onto the distributive operators of re-
lational algebra (π, σ, 1, ∪, ∩) while stratification yields
partial applications of the difference operator x\R in which
R is fixed (f(x) = x \R is distributive).

SQL:1999, on the other hand, imposes rigid syntactical
restrictions [24] on the iterative fullselect (recursion body)
inside WITH RECURSIVE that make Delta applicable: group-
ing, ordering, usage of column functions (aggregates), and
nested subqueries are ruled out, as are repeated references
to the virtual table computed by the recursion. Replacing
this coarse syntactic check by an algebraic distributivity as-
sessment (Section 6) would render a larger class of queries
admissible for efficient fixed point computation.

9. WRAP-UP
This paper may be read in two ways:
(i) As a proposal to add an inflationary fixed point con-

struct, along the lines of with-seeded by-recurse, to XQuery
(this topic has actually been discussed by the W3C XQuery
working group in the very early XQuery days of 20019 but
then dismissed because the group aimed for a first-order lan-
guage design at that time).

(ii) As a guideline for query authors as well XQuery pro-
cessor designers to check for and then exploit distributivity
during the evaluation of recursive queries.

We have seen how such distributivity checks can be used
to safely unlock the optimization potential, namely algo-
rithm Delta, that comes tightly coupled with the inflation-
ary fixed point semantics. MonetDB/XQuery implements
this distributivity check on the algebraic level and signifi-
cantly benefits whenever the Delta-based operator µ∆ may
be used for fixpoint computation. Even if the approach is
realized on the coarser syntactic level on top of an existing
XQuery processor, feeding back less nodes in each recursion
level yields substantial performance improvements.

Remember that the distributivity notion suggests a divide-
and-conquer evaluation strategy in which parts of a compu-
tation may be performed independently (before a merge step
forms the final result). Beyond recursion, this may lead to
improved XQuery compilation strategies for back-ends that
can exploit such independence, e.g, set-oriented relational
query processors (cf. loop-lifting [16]) as well as parallel or
distributed execution platforms.

9http://www.w3.org/TR/2001/
WD-query-semantics-20010607/ (Issue 0008).
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APPENDIX
A. ALGEBRAIC XQUERY COMPILATION

In [17] we describe a compilation procedure to transform
arbitrary XQuery expressions into relational algebra. The
core of this compiler is described in terms of inference rules
that define function Z⇒ (“compiles to”). In these rules, a
judgment of the form

Γ; loop; ∆ ` e Z⇒ (q,∆′)

indicates that, given
1. an environment Γ that maps the free XQuery variables

$v in e to their algebraic representations qv,
2. a relation loop that describes the iteration context of e,
3. a set of live (or reachable) XML nodes ∆,

the XQuery expression e compiles to the algebraic plan q
with an associated set of possibly modified live nodes ∆′.
The compilation procedure ensures that any such plan q
evaluates to a ternary table with schema iter pos item which
encodes the item sequence result of e. A row 〈i, p, v〉 in this
table may invariably be read as “in iteration i, e assumes
value v at the sequence position corresponding to p’s rank
in column pos.”

XQuery for loops and variable binding. Here, to aid
our distributivity test, we propose an alternative formulation
of inference Rule For in [17] which is used to compile XQue-
ry for loops of the form for $v in e1 return e2. The new
Rule For′ makes the dependence of e2 on the for-bound
variable $v explicit in terms of the dependent join operator
:-
1 (A× in [12]). We adopt the operator’s definition from [12]:

q1
:-
1qbind q2 =

[
r∈q1

“
{r} × q2

h
{r}/qbind

i”
,

where q[x/y] denotes the consistent replacement of free oc-
currences of y in q by x. This definition mirrors the seman-
tics of the XQuery for loop construct: q2 (the loop body)
is treated like a function with parameter qbind which is it-
eratively evaluated for each row r of table q1. (Rule For-
At shows how an XQuery for loop with positional variable
for $v at $p . . . may be compiled in terms of

:-
1.)

Figure 12 further includes compilation Rule Union which
can compile XQuery’s union operation over node sequences—
this rule did not originally occur in [17].


