An Inflationary Fixed Point Operator in XQuery

Loredana Afanasiev ${ }^{\circ \dagger}$ Torsten Grust ${ }^{\star}$ Maarten Marx ${ }^{\circ}$ Jan Rittinger ${ }^{\star \ddagger}$ Jens Teubner ${ }^{\diamond}$
${ }^{\circ}$ ISLA, University of Amsterdam
Amsterdam, The Netherlands
\{lafanasi,marx\}@science.uva.nl
${ }^{\star}$ Technische Universität München Munich, Germany
\{grust, rittinge\}@in.tum.de
${ }^{\diamond}$ IBM T.J. Watson Research Center Hawthorne, NY, USA
teubner@us.ibm.com

Abstract

We introduce a controlled form of recursion in XQuery, an inflationary fixed point operator, familiar from the context of relational databases. This operator imposes restrictions on the expressible types of recursion, but we show that it is sufficiently versatile to capture a wide range of interesting use cases, including Regular XPath and its core transitive closure operator.

While the optimization of general user-defined recursive functions in XQuery appears elusive, we describe how inflationary fixed points can be efficiently evaluated, provided that the recursive XQuery expressions are distributive. We test distributivity syntactically and algebraically, and provide experimental evidence that XQuery processors can benefit substantially from this mode of evaluation.

I. Introduction

The backbone of the XML data model, namely ordered, unranked trees, is inherently recursive and it is natural to equip the associated languages with constructs that can recursively query such structures. In XQuery [1], recursion can be achieved only via recursive user-defined functions (RUDFs)a construct that admits arbitrary types of recursion and largely evades optimization approaches beyond "procedural" improvements like tail-recursion elimination or unfolding.

In this paper, we explore a controlled form of recursion in XQuery, the inflationary fixed point operator (IFP), familiar in the context of relational databases [2]. While less expressive than RUDFs, IFP embraces a family of widespread use cases of recursion, including forms of horizontal and vertical structural recursion and the pervasive transitive closure operator (in particular, IFP captures Regular XPath [3]). Let us consider an example of recursive data and query need.

Example 1.1: The DTD of Figure 1 (taken from [4]) describes recursive curriculum data, including courses, their lists of prerequisite courses, the prerequisites of the latter, and so on. The XQuery expression of Figure 2 recursively computes all prerequisite courses, direct or indirect, of the course coded with "c1", on an instance document "curriculum.xml". The compilation is seeded by the course element node with code "c1". For a given sequence $\$ \mathrm{x}$ of course nodes, function fix (\cdot) calls rec_body (\cdot) on $\$ x$ to find their direct prerequisites. While new nodes are encountered, fix (•) calls itself on the accumulated course node sequence. (This query is not expressible in XPath 2.0.)

[^0]```
<!ELEMENT curriculum (course)*>
<!ELEMENT course prerequisites>
<!ATTLIST course code ID #REQUIRED>
<!ELEMENT prerequisites (pre_code)*>
<!ELEMENT pre_code #PCDATA>
```

Fig. 1. Curriculum data (simplified DTD).

```
declare function rec_body ($cs) as node()*
{ $cs/id(./prerequisites/pre_code) };
declare function fix ($x) as node()*-------------------
{ let $res := rec_body ($x)
 return if (empty ($x except $res))
 then $res
 else fix($res union $x)
};
let $seed := doc("curriculum.xml")
 //course[@code="c1"]
return fix (rec_body ($seed))
```

Fig. 2. Prerequisites for course "c1" ( $\AA_{-}^{-}$- marks the fixed point computation).
Note that $\mathrm{fix}(\cdot)$ implements a generic inflationary fixed point computation: only the seed (\$seed := ..) and the body (rec_body (.)) are specific to the curriculum problem. This motivates the introduction of a syntactic form for this pattern of computation (Section II). Unlike in the case of RUDFs, this account of recursion puts the query processor in control in choosing the evaluation strategy.

Provided that the body of the recursion exhibits a distributivity property, the computation of IFP is susceptible to systematic optimization. Distributivity may be tested on a syntactical level-a non-invasive approach that can easily be realized on top of existing XQuery processors. Further, if we adopt a relational view of the XQuery semantics (as in [5]), distributivity can be elegantly and uniformly tested on the familiar algebraic level (Section III).

Compliance with the restriction that distributivity imposes on IFP expressions is rewarded by significant query runtime savings. We illustrate the effect for the XQuery processors MonetDB/XQuery [6] and Saxon [7] (Section IV).

Discussion of related work, further details and proofs are provided in [8].

## II. Defining IFP in XQuery

In this section we define an IFP operator in XQuery. We regard an XQuery expression $e_{1}$ containing a free variable $\$ \mathrm{x}$ as a function of $\$ \mathrm{x}$, denoted by $e_{1}(\$ \mathrm{x})$. We write $e_{1}\left(e_{2}\right)$ to denote $e_{1}\left[e_{2} / \$ \mathrm{x}\right]$, i.e., the uniform replacement of all free
occurrences of $\$ \mathrm{x}$ in $e_{1}$ by $e_{2}$, assuming that the free variables of $e_{2}$ are not bound in $e_{1}$. Finally, $e_{1}(X)$ denotes the result of $e_{1}(\$ \mathrm{x})$ when $\$ \mathrm{x}$ is bound to the sequence of items $X$.

Further, we introduce set-equality $(\stackrel{s}{=})$, a relaxed notion of equality for XQuery item sequences that disregards duplicate items and order, e.g., (1,"a") $\stackrel{s}{=}(" \mathrm{a} ", 1,1)$. For $X_{1}, X_{2}$ sequences of type node()*, we have ${ }^{1}$

$$
\begin{equation*}
X_{1} \stackrel{s}{=} X_{2} \quad \Leftrightarrow \quad \mathrm{fs}: \operatorname{ddo}\left(X_{1}\right)=\mathrm{fs}: \operatorname{ddo}\left(X_{2}\right) \tag{Seq}
\end{equation*}
$$

In this paper, we only consider XQuery expressions and sequences of type node()*. ${ }^{2}$

Definition 2.1: (Inflationary Fixed Point) Let $e_{\text {seed }}$ and $e_{\text {body }}(\$ \mathrm{x})$ be XQuery expressions. The inflationary fixed point (IFP) of $e_{\text {body }}(\$ \mathrm{x})$ seeded by $e_{\text {seed }}$ is the XQuery expression

$$
\begin{equation*}
\text { with } \$ \mathrm{x} \text { seeded by } e_{\text {seed }} \text { recurse } e_{b o d y}(\$ \mathrm{x}) \tag{1}
\end{equation*}
$$

The expressions $e_{\text {body }}, e_{\text {seed }}$, and $\$ \mathrm{x}$ are called, respectively, the recursion body, seed, and variable of the IFP operator.

The semantics of (1) is the sequence $R e s_{k}$, if it exists, obtained in the following manner:

$$
\begin{aligned}
& \operatorname{Res}_{0} \leftarrow e_{\text {body }}\left(e_{\text {seed }}\right) \\
& \operatorname{Res}_{i+1} \leftarrow e_{\text {body }}\left(\operatorname{Res}_{i}\right) \text { union } \operatorname{Res}_{i} \quad, \quad i \geqslant 0
\end{aligned}
$$

where $k \geqslant 1$ is the minimum number for which $\operatorname{Res}_{k} \stackrel{s}{=}$ $\operatorname{Res}_{k-1}$. Otherwise, the semantics of (1) is undefined. $\triangleleft$

Note that if expression $e_{\text {body }}$ does not invoke node constructors (e.g., element $\{\cdot\}\{\cdot\}$ or text $\{\cdot\}$ ), expression (1) operates over a finite domain of nodes and its semantics is always defined.

Example 2.2: Using the new operator we can express the query from Example 1.1 in a concise and elegant fashion:
with $\$ \mathrm{x}$ seeded by doc ("curriculum.xml") //course[@code="c1"]
recurse \$x/id (./prerequisites/pre_code)
Obviously, (1) is mere syntactic sugar as it can be equivalently expressed via the recursive user-defined function fix(•) (shown by $--\quad$ in Figure 2). Since (1) is a secondorder operator taking XQuery expressions as arguments, fix(•) has to be interpreted as a template in which rec_body ( $\$ \mathrm{x}$ ) is replaced with $e_{\text {body }}(\$ \mathrm{x})$ (XQuery does not support higher-order functions). Then (1) is equivalent to let $\$ \mathrm{x}:=e_{\text {seed }}$ return fix $\left(e_{\text {body }}(\$ \mathrm{x})\right.$ ).

Example 2.3: Like in the relational context, transitive closure is an archetype of recursive computation over XML instances. Regular XPath [3], for example, defines the transitive closure of XPath location paths and thus can express forms of horizontal and vertical structural recursion. Let $e$ be a Regular XPath expression and $e^{+}$its transitive closure as defined in [3]. Then $e^{+}$can be expressed using the new IFP operator: with $\$ \mathrm{x}$ seeded by . recurse $\$ \mathrm{x} / e$. Here '.' denotes the context node.

[^1]$$
\text { res } \leftarrow e_{\text {body }}\left(e_{\text {seed }}\right) ;
$$
do
$r e s \leftarrow e_{\text {body }}(r e s)$ union res; while res grows;
(a) Algorithm Nä̈ve
$$
\text { res } \leftarrow e_{\text {body }}\left(e_{\text {seed }}\right) ;
$$
$$
\Delta \leftarrow r e s ;
$$
do
$\Delta \leftarrow e_{\text {body }}(\Delta)$ except res; res $\leftarrow \Delta$ union res;
while res grows;
(b) Algorithm Delta

Fig. 3. Algorithms to evaluate the IFP of $e_{\text {body }}$ given $e_{\text {seed }}$. Result is res.

```
declare function delta($x,$res) as node()*
{ let $delta := rec_body ($x) except $res
 return if (empty ($delta))
 then $res
 else delta($delta,$delta union $res)
};
```

Fig. 4. An XQuery formulation of Delta.

## III. Implementing IFP in XQuery

## A. Algorithms for IFP

The semantics of the IFP operator (1) given in Definition 2.1 can be implemented straightforwardly. Figure 3(a) shows the resulting procedure, commonly referred to as Naïve [10]. At each iteration of the while loop, $e_{b o d y}$ is executed on the intermediate result sequence res until no new nodes are added to it. Note that the old nodes in res are fed into $e_{\text {body }}(\cdot)$ over and over again. Depending on the nature of $e_{\text {body }}(\cdot)$, Naïve may involve a substantial amount of redundant computation.

A now folklore variation of Naïve is the Delta algorithm [11] of Figure 3(b). In this variant, $e_{\text {body }}(\cdot)$ is invoked only for those nodes that have not been encountered in earlier iterations: node sequence $\Delta$ is the difference between $e_{\text {body }}(\cdot)$ 's last answer and the current result res. In general, $e_{\text {body }}(\cdot)$ will thus process fewer nodes. Delta introduces a significant potential for performance improvement, especially for large intermediate results and computationally expensive recursive bodies (Section IV). Figure 4 shows the corresponding RUDF delta $(\cdot, \cdot)$, which can serve as a drop-in replacement for function $\mathrm{fix}(\cdot)$ in Figure 2-line 13 then needs to be replaced by return delta (rec_body (\$d), ()).

Unfortunately, Delta is not always a valid optimization for the IFP operator in XQuery.

Example 3.1: Consider the following expression:

```
let $seed := (<a/\rangle,\langleb\rangle\langlec\rangle\langled/\rangle\langle/c></b\rangle)
return with $x seeded by $seed
 recurse if (count ($x/self::a))
 then $x/* else ()
```

While Nä̈ve computes ( $a, b, c, d$ ), Delta computes ( $a, b, c$ ), where $a, b, c$, and $d$ denote the elements constructed by the respective subexpressions of the seed.
When can Naïve be safely traded for Delta?

## B. Trading Naïve for Delta

Delta correctly computes the IFP operator if it produces the same results as Naïve on the same inputs. The algorithms are equivalent, in particular, if both yield the same intermediate res sequences in each iteration of their while loops.

In its first loop iteration, Nä̈ve yields $e_{\text {body }}\left(e_{\text {body }}\left(e_{\text {seed }}\right)\right)$ union $e_{\text {body }}\left(e_{\text {seed }}\right)$ which is equivalent to Delta's first intermediate result $\left(e_{\text {body }}\left(e_{\text {body }}\left(e_{\text {seed }}\right)\right)\right.$ except $\left.e_{\text {body }}\left(e_{\text {seed }}\right)\right)$ union $e_{\text {body }}\left(e_{\text {seed }}\right)$. For the second and further iterations, an inductive proof can show the equivalence of all subsequent intermediate res sequences, if for all sequences $X_{1}, X_{2}$,

$$
\begin{equation*}
e_{\text {body }}\left(X_{1} \text { union } X_{2}\right) \stackrel{s}{=} e_{\text {body }}\left(X_{1}\right) \text { union } e_{\text {body }}\left(X_{2}\right) \tag{2}
\end{equation*}
$$

Note how (2) resembles the distributivity property of functions defined on sets. It suggests a divide-and-conquer evaluation in which $e_{b o d y}$ is applied to (singleton) subsets of the input. We define a similar distributivity property for XQuery.

Definition 3.2: Distributivity property for XQuery. Let $e(\$ \mathrm{x})$ be an XQuery expression. Then $e$ is distributive for $\$ \mathrm{x}$ if, for any sequence $X \neq()$,

$$
\begin{equation*}
e^{\prime}(X) \quad \stackrel{s}{=} \quad e(X) \tag{3}
\end{equation*}
$$

where $e^{\prime}(\$ \mathrm{x})=$ for $\$ \mathrm{y}$ in $\$ \mathrm{x}$ return $e(\$ \mathrm{y})$ and $\$ \mathrm{y}$ is a fresh variable.
Equalities (3) and (2) are equivalent, thus we arrive at the following sufficient condition for the applicability of Delta:

Theorem 3.3: Let $e_{\text {body }}(\$ \mathrm{x})$ and $e_{\text {seed }}$ be XQuery expressions. If $e_{\text {body }}$ is distributive for $\$ \mathrm{x}$, then the algorithm Delta computes the IFP of $e_{\text {body }}(\$ \mathrm{x})$ seeded by $e_{\text {seed }}$.

Path expressions are a prevalent example of distributive expressions in XQuery. Any expression of the form $\$ \mathrm{x} / e$ is distributive for $\$ \mathrm{x}$ if $e$ contains neither (i) calls to fn:position() and fn:last() that refer to the context sequence bound to $\$ \mathrm{x}$, nor (ii) free occurrences of $\$ \mathrm{x}$, nor (iii) node constructors. Note that the body of (Q1) from Example 2.2 satisfies these conditions, thus Delta can be applied for its evaluation.

In contrast, expression $\$ \mathrm{x}[1]$ is not distributive for $\$ \mathrm{x}$. Let $\$ \mathrm{x}$ bound to the result of ( $\langle\mathrm{a} />,\langle\mathrm{b}\rangle\langle\mathrm{c} /></ \mathrm{b}\rangle$ ) and let $a, b$, and $c$ denote the respective elements. Then $\$ \mathrm{x}[1]$ evaluates to $a$, while for $\$ \mathrm{y}$ in \$x return \$y[1] yields ( $a, b$ ). Effectively, this invalidates Equation (3). Another example is the body of (Q2) from Example 3.1. For the same binding of $\$ \mathrm{x}$, we obtain $c$ and the empty sequence, respectively.

## C. Testing distributivity

If an XQuery engine can determine whether the body of an IFP expression is distributive it can automatically apply Delta. Unfortunately, distributivity is an undecidable property. Still, we can safely approximate the answer. We provide a syntactic fragment of XQuery who's membership can be efficiently checked. The syntactic rules describing the fragment are quite verbose, though.

Distributivity can be checked more efficiently if the XQuery processor is equipped with an algebraic rewrite engine. Pathfinder, the query compiler behind the MonetDB/XQuery system [6], e.g., uses a purely relational query formulation to analyze and optimize XQuery [5]. In [8], we extended the algebra of Pathfinder with the IFP operator $\mu$. A set of rewrite rules repeatedly applies the algebraic equivalent of Equation 2 to propagate the relational union operator $\cup$

| Data size | MonetDB/XQuery |  | Saxon-SA 8.9 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Naïve | Delta | Nä̈ve | Delta |
| medium | 183 ms | 135 ms | 1,308 ms | $1,040 \mathrm{~ms}$ |
| large | $1,466 \mathrm{~ms}$ | 646 ms | $3,485 \mathrm{~ms}$ | 2,176 ms |

TABLE I
Evaluation times for query from Example 1.1.
upwards in the recursion body of $\mu$. Once $\cup$ reaches $\mu$, distributivity is detected and we can use Algorithm Delta to implement the fixed point operation. With only a small number of modifications to the original query optimizer, this algebraic approach turns out to cover a larger distributive fragment than the syntactic fragment.

## IV. Practical Impact of Distributivity and Delta

We implemented the IFP operator in MonetDB/XQuery 0.18 and enhanced its algebraic compiler front-end Pathfinder (i) to process the IFP operator (Definition 2.1), and (ii) to implement the algebraic distributivity test. Whenever the distributivity test succeeds, Delta is applied, otherwise Nä̈ve.

To quantify the performance advantage that can be realized by using Delta, we ran a number of real-world queries over documents of various sizes. Table I lists the execution times we observed for Expression (Q1) from Example 2.2 over XML instances that contained about 800 ("medium") and 4,000 ("large") course elements. Thanks to the Delta algorithm, MonetDB/XQuery scales linearly with document sizes for this query.

To demonstrate that any XQuery processor can benefit from the techniques we explored here, we also expressed both evaluation alternatives using XQuery (cf. Figures 2 and 4) and ran them on Saxon-SA 8.9 [7]. As shown in Table I, Saxon too can benefit from optimized IFP evaluation.

## References

[1] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon, "XQuery 1.0: An XML query language," W3C Recommendation, 2007.
[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison Wesley, 1995.
[3] B. ten Cate, "Expressivity of XPath with Transitive Closure," in Proc. PODS, 2006, pp. 328-337.
[4] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, "xlinkit: A Consistency Checking and Smart Link Generation Service," ACM Transactions on Internet Technology, vol. 2, no. 2, 2002.
[5] T. Grust, S. Sakr, and J. Teubner, "XQuery on SQL Hosts," in Proc. VLDB, 2004.
[6] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner, "MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine," in Proc. SIGMOD, 2006.
[7] M. Kay, "The Saxon XSLT and XQuery Processor." [Online]. Available: http://saxon.sf.net/
[8] L. Afanasiev, T. Grust, M. Marx, J. Rittinger, and J. Teubner, "An Inflationary Fixed Point Operator in XQuery," Nov. 2007. [Online]. Available: http://arxiv.org/abs/0711.3375v1
[9] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon, and P. Wadler, "XQuery 1.0 and XPath 2.0 Formal Semantics," W3C Recommendation, 2007.
[10] F. Bancilhon and R. Ramakrishnan, "An Amateur's Introduction to Recursive Query Processing Strategies," in Proc. SIGMOD, 1986.
[11] U. Güntzer, W. Kieling, and R. Bayer, "On the Evaluation of Recursion in (Deductive) Database Systems by Efficient Differential Fixpoint Iteration," in Proc. ICDE, 1987.


[^0]:    ${ }^{\dagger}$ Supported by Netherlands Organization for Scientific Research (NWO), Grant 017.001.190.
    ${ }^{\ddagger}$ Supported by German Research Foundation (DFG), Grant GR 2036/2-1.

[^1]:    ${ }^{1}$ fs: ddo( $\cdot$ ) abbreviates the function fs:distinct-doc-order (•) of the XQuery Formal Semantics [9].
    ${ }^{2}$ An extension to general sequences of type item() $*$ is possible but requires the replacement of XQuery's node set operations (union, except) with appropriate variants.

