
ar
X

iv
:0

71
1.

33
75

v1
 [

cs
.D

B
]

21
 N

ov
 2

00
7

An Inflationary Fixed Point Operator in XQuery

Loredana Afanasiev• Torsten Grust◦ Maarten Marx• Jan Rittinger◦ Jens Teubner◦

• ISLA, University of Amsterdam, Amsterdam, The Netherlands
◦ Technische Universität München, Munich, Germany

E-mail:|lafanasi,marx@science.uva.nl|, |grust,rittinge,teubnerj@in.tum.de|

Abstract

We introduce a controlled form of recursion in XQuery,
inflationary fixed points, familiar in the context of rela-
tional databases. This imposes restrictions on the express-
ible types of recursion, but we show that inflationary fixed
points nevertheless are sufficiently versatile to capture a
wide range of interesting use cases, including the semantics
of Regular XPath and its core transitive closure construct.

While the optimization of general user-defined recursive
functions in XQuery appears elusive, we will describe how
inflationary fixed points can be efficiently evaluated, pro-
vided that the recursive XQuery expressions exhibit adis-
tributivity property. We show how distributivity can be as-
sessed both, syntactically and algebraically, and provide
experimental evidence that XQuery processors can substan-
tially benefit during inflationary fixed point evaluation.

1. Introduction

The backbone of the XML data model, namelyordered,
unranked trees of nodes, is inherently recursive and it is nat-
ural to equip the associated languages with constructs that
can query such recursive structures. To get from the re-
cursive axes in XPath,e.g., ancestor anddescendant,
to XQuery’s [7] recursive user-defined functions, language
designers took a giant leap, however. User-defined func-
tions in XQuery admitarbitrary types of recursion—a con-
struct that largely evades optimization approaches beyond
“procedural” improvements like tail-recursion elimination
or unfolding.

This paper embarks on a journey that explores a con-
trolled form of recursion in XQuery, theinflationary fixed
point (IFP), familiar in the context of relational databases
[1]. While this imposes restrictions on the expressible types
of recursion, IFP embraces a family of widespread use cases
of recursion in XQuery, including many forms of horizontal
or vertical structural recursion and the pervasivetransitive
closureproblem (IFP capturesRegular XPath[25], in par-
ticular).

<!ELEMENT curriculum (course)*>
<!ELEMENT course prerequisites>
<!ATTLIST course code ID #REQUIRED>
<!ELEMENT prerequisites (pre_code)*>
<!ELEMENT pre_code #PCDATA>

Figure 1. Curriculum data (simplified DTD).

Example 1.1 The DTD of Figure 1 (taken from [22]) de-
scribes recursive curriculum data, including courses, their
lists of prerequisite courses, the prerequisites of the lat-
ter, and so on. The XQuery program of Figure 2 uses
the course element node with code"c1" to seed a com-
putation that recursively finds all prerequisite courses, di-
rect or indirect, of course"c1". For a given sequence$x
of course nodes, functionfix(·) calls out torec(·) to
find their prerequisites. While new nodes are encountered,
fix(·) calls itself with the accumulatedcourse node se-
quence. (This is not expressible in XPath 2.0.) ⊳

Note thatfix(·) implements a generic fixed point com-
putation: only the initialization (let $seed := · · ·) and
thepayload functionrec(·) are specific to the curriculum
problem. This motivates the introduction of a syntactic form
that can succinctly accommodate this pattern of computa-
tion (Section 2).

Most importantly, however, such computation in IFP
form is susceptible to systematic optimization, provided
that the payload (orbody) of the recursion exhibits a spe-
cific distributivityproperty.

Unlike the general user-defined XQuery functions, this
account of recursion puts the query processor into control
in that it can decide whether the optimization may be safely
applied. Distributivity may be assessed on a syntactical
level—a non-invasive approach that can easily be realized
on top of existing XQuery processors (Section 3). Further,
though, if we adopt a relational view of the XQuery seman-
tics (as in [15]), the seemingly XQuery-specific distributiv-
ity notion turns out to be elegantly and uniformly tractable
on the familiar algebraic level (Section 4).

Compliance with the restriction that IFP imposes on
query formulation is rewarded by significant query runtime

1

http://arxiv.org/abs/0711.3375v1
|
|

1 declare function rec ($cs) as node()*
2 { $cs/id (./prerequisites/pre_code)
3 };
4

5 declare function fix ($x) as node()*
6 { let $res := rec ($x)
7 return if (empty ($x except $res))
8 then $res
9 else fix ($res union $x)

10 };
11

12 let $seed := doc ("curriculum.xml")
13 /course[@code="c1"]
14 return fix (rec ($seed))

Figure 2. Prerequisites for the course "c1"

(marks the fixed point computation).

savings that the IFP-inherent optimization hook can offer.
We document the effect for the XQuery processorsMon-
etDB/XQuery[8] andSaxon[20] in Section 5. This is pri-
marily due to a substantial reduction of the number of items
that are fed into the recursion’s payload function (the naı̈ve
implementation of Example 1.1 feeds already discovered
course element nodes back intorec(·)).

In Section 6, we stop by related work on recursion on
the XQuery as well as the relational side of the fence, and
finally wrap-up in Section 7.

2. An Inflationary Fixed Point in XQuery

The subsequent discussion will revolve around the re-
cursion pattern embodied by functionfix(·) of Figure 2,
known as theinflationary fixed point (IFP)[1]. We will
introduce a new syntactic form to introduce IFP on the
XQuery language level and then explore its semantics in
the XQuery context, application, and optimization.

In the following, we regard an XQuery expressione1

containing a free variable$x as a function of$x. We write
e1(e2) to denotee1[e2/$x], i.e., the consistent replacement
of all free occurrences of$x in e1 by e2. Functionfv(e)
returns the set of free variables of expressione. We further
introduceset-equality(

s
=), a relaxed notion of equality for

XQuery item sequences that disregards duplicate items and
order,e.g., (1,"a")

s
= ("a",1,1).

To streamline the discussion, in the following we assume
computations over sequences of typenode()* as trees are
the recursive data structure in the XQuery Data Model. In
this case, withX1, X2 of typenode()*, we have1

X1
s
= X2 ⇔ fs:ddo(X1) = fs:ddo(X2) .

1Here and in the following,fs:ddo(·) abbreviates the function
fs:distinct-doc-order(·) of the XQuery Formal Semantics [9].

An extension to general sequences of typeitem()* is pos-
sible and entails the replacement of XQuery’s node set op-
erations (union, except) with appropriate variants.

Definition 2.1 (Inflationary Fixed Point) Let eseed and
erec($x) be XQuery expressions of typenode()*. The in-
flationary fixed point (IFP) oferec($x) seeded byeseed is
an XQuery expression represented by the following syntac-
tic form:

with $x seeded by eseed recurse erec($x) . (1)

The payload expressionerec is called thebody, eseed is
called theseed, and$x is called therecursion variableof
the inflationary fixed point operator.

The semantics of the IFP oferec($x) seeded byeseed

is the sequence of nodesresk, if it exists, obtained in the
following manner:

res0 ← erec(eseed)
resi+1 ← erec(resi) union resi , i > 0

wherek > 1 is the minimum number for whichresk
s
=

resk−1. Otherwise, the IFP oferec($x) seeded byeseed is
undefined. ⊳

Note that if expressionerec doesnot invoke node construc-
tors (e.g.,element{·} {·} ortext {·}), such that the query
operates over a finite domain of nodes, IFP will always be
defined. Otherwise, the invocation of node constructors in
the recursion body might yield an infinite node domain and
IFP might be undefined.

Example 2.2 In terms of the newwith · · · seeded by · · ·
recurse syntactic form, we can now express the transitive
closure query from Example 1.1 in a quite concise and ele-
gant fashion:

with $x seeded by doc ("curriculum.xml")

/course[@code="c1"]

recurse $x/id (./prerequisites/pre_code)

(Q1)

⊳

Obviously, the new formwith · · · seeded by · · ·recurse
is mere syntactic sugar as it can be equivalently ex-
pressed via the recursive user-defined function template
fix(·) (shown in in Figure 2). Since the syntac-
tic form is a second-order construct taking an XQuery
variable name and two XQuery expressions as arguments,
function fix(·) has to be interpreted as a template in
which the recursion bodyrec(·) needs to be instanti-
ated (XQuery 1.0 does not support higher-order functions).
Given this, Expression (1) is equivalent to the expression
let $x := eseed return fix (rec ($x)).

2

Using IFP to Compute Transitive Closure. Much like in
the relational context,transitive closureis an archetype of
recursive computation over XML instances. Regular XPath
[25], for example, defines the transitive closure of XPath lo-
cation steps to obtain powerful primitives that express hor-
izontal and vertical structural recursion. We can naturally
extend this definition to any XQuery expression of type
node()*.

Definition 2.3 (Transitive Closure)Let e be an expression
of typenode()*. Thetransitive closuree+ of e is

e union e/e union e/e/e union · · · , (2)

if the resulting node sequence is finite. Otherwise,e+ is
undefined. ⊳

Given simple restrictions one, see Section 3.1, with the new
IFP forme+ is (‘.’ denotes the context node):

with $x seeded by . recurse $x/e .

IFP in SQL:1999. IFP has found its way into SQL in
terms of theWITH RECURSIVE clause introduced by the
ANSI/ISO SQL:1999 standard [21]. To exemplify, consider
the tableC(course, prerequisite) as a relational repre-
sentation of the curriculum XML data (Figure 1). The pre-
requisitesP(course_code) of the course with code’c1’
then are:

WITH RECURSIVE P(course_code) AS

(SELECT prerequisite

FROM C

WHERE course = ’c1’)

seed

UNION ALL

(SELECT C.prerequisite

FROM P, C

WHERE P.course_code = C.course)

body

SELECT DISTINCT * FROM P;

Analogous to the XQuery variant, tableP is seeded with
the direct prerequisites of course’c1’ before the join with
tableC in the body is iterated to also add all indirect prereq-
uisites untilP does not grow further.

The SQL:1999 standard dictates quite rigid syntactical
restrictions for theWITH RECURSIVE form (the body, in
particular, must belinear: P may occur only once in its
FROM clause). We will return to this in Section 3.2 and 6.

2.1. Algorithms for IFP

The semantics of the inflationary fixed point in XQuery,
i.e., the specification of the node sequenceresk of Defini-
tion 2.1, can be straightforwardly turned into an iterative
algorithm to compute IFP. Figure 3(a) shows the resulting

res ← erec(eseed);

do

res ← erec(res) union res ;
while res grows ;

(a) AlgorithmNaı̈ve

res ← erec(eseed);
∆← res ;
do

∆← erec(∆) except res ;
res ← ∆ union res ;

while res grows ;

(b) Algorithm Delta

Figure 3. Algorithms to evaluate the IFP of
erec given eseed . Result is res .

declare function delta ($x,$res) as node()*
{ let $delta := rec ($x) except $res

return if (empty ($delta))
then $res
else delta ($delta,$delta union $res)

};

Figure 4. An XQuery formulation of Delta.

procedure, commonly referred to asNäıve in the literature
[5]. In the do · · ·while loop body, the procedure calls out
to the recursion’s payload functionerec(·) to determine the
next portion of nodes that will augment the current interme-
diate result. Only iferec(·) cannot contribute new nodes,
the procedure returns the currentres .

Sinceres grows, this feeds the same nodes over and over
again intoerec(·). Dependent on the nature of the pay-
load,erec(·)’s answer might include nodes which we have
seen before. Ultimately,Näıverisks to initiate a substantial
amount of redundant computation.

A now folklore variation of Näıve is the Delta algo-
rithm [17] of Figure 3(b). In this variant, the payload is
invoked only for those nodes that have not been encoun-
tered in earlier iterations: node sequence∆ is the difference
betweenerec(·)’s last answer and the current resultres. In
general,erec(·) will thus process fewer nodes.

Delta introduces a significant potential for performance
improvement, especially for large node sequences and
computationally expensive payloads (Section 5). Fig-
ure 4 shows the corresponding XQuery user-defined
function delta(·,·) which, for Example 1.1 and thus
Query Q1, can serve as a drop-in replacement for func-
tion fix(·)—line 14 then needs to be replaced byreturn

delta(rec ($seed),()).

Is this replacement offix(·) bydelta(·,·) alwaysa valid
optimization? For XQuery, the answer isno.

Example 2.4 Consider the following expression:

let $seed := (<a/>,<c><d/></c>)

return with $x seeded by $seed

recurse if (count($x/self::a))

then $x/* else ()

(Q2)

3

Let a, b, c, andd denote the tree fragments constructed by
the seed’s subexpressions<a/>, <c><d/></c>,
<c><d/></c>, and<d/>, respectively. Thus,b/* is c and
c/* is d.

The table below illustrates the progress of the iterations
performed by algorithmsNäıveandDelta. While the former
computes(a,b,c,d), the latter returns(a,b,c).

Iteration Naı̈ve Delta
res res ∆

0 (a,b) (a,b) (a,b)
1 (a,b,c) (a,b,c) (c)
2 (a,b,c,d) (a,b,c) ()

3 (a,b,c,d)

⊳

What then is an effective characterization of those payloads
for whichNäıvemay safely be traded forDelta?

3. Trading Näıvefor Delta

We will now see that a simple notion ofdistributivity
for XQuery expressions suffices to let an XQuery proces-
sor safely switch to a more efficient evaluation mode for
with $x seeded by eseed recurse erec: whenever ex-
pressionerec is distributive (in the sense defined below),
algorithmDelta (Figure 3(b)) preserves the desired IFP se-
mantics. While thedistributivity property is undecidable in
general, we present two safe and effective approximations
of distributivity, one formulated on the level of XQuery lan-
guage syntax, and one cast in terms of an algebraic XQuery
representation. The algebraic approximation will turn out
to be particularly simple and uniform (Section 4).

3.1. Distributivity in XQuery

Obviously,Deltacomputes the IFP for given expressions
eseed anderec if the algorithm produces the same result as
Näıveon the same inputs. In particular, the algorithms are
equivalent if both yield equivalent intermediateresult se-
quences in each iteration of theirdo · · ·while loops.

In its first loop iteration,Näıve yields erec(erec(eseed))
union erec(eseed) which is equivalent toDelta’s first in-
termediate result(erec(erec(eseed)) except erec(eseed))
union erec(eseed). For the second and further iterations, an
inductive proof can show the equivalence of all subsequent
intermediateresult sequences, if we may assume that, for
two item sequencesX1, X2, we have

erec(X1 unionX2)
s
= erec(X1) union erec(X2) . (3)

For lack of space, we do not reproduce the straightforward
equational reasoning behind the proof here but refer to [2].

Note how (3) resembles thedistributivity propertyof
functions defined on sets. Such a functione is distributive
if, for all non-empty setsX , e(X) =

⋃

y∈X e({y}). This
property suggests a divide-and-conquer evaluation strategy
in whiche is applied to subsets (singletons) ofX only. We
define the correspondingdistributivity property for XQuery
as follows:

Definition 3.1 Distributivity property for XQuery.Lete be
an XQuery expression in which variable$x may occur free.
Expressione is distributive for$x if, for any item sequence
X 6= () and fresh variable$y,

for $y in X return e($y)
s
= e(X) . (4)

⊳

In particular, Equality (3) is a straightforward consequence
if we know that the recursion bodyerec is distributive for its
free variable. Overall, we arrive at the following sufficient
condition for the applicability ofDelta:

Theorem 3.2 Consider the expressionwith $x seeded

by eseed recurse erec. If erec is distributive for$x, then
algorithmDeltacomputes the IFP oferec giveneseed .

XPath Location Steps. XPath location steps are a preva-
lent example of distributive expressions in XQuery. Any
expression of the forme($x) = $x/s is distributive for
$x if the step subexpressions neither contains(i) free
occurrences of$x, nor (ii) calls to fn:position() and
fn:last() that refer to the context item sequence bound
to $x, nor (iii) node constructors. To see this, note that
the XQuery Core equivalent [9] of$x/s is fs:ddo(for

$fs:dot in $x return s), and then rewrite the lhs of
Equation (4) into its rhs, using the definition of

s
=.

Regular XPath. These observations about the distributiv-
ity of XPath location steps extend to Regular XPath [25] and
thus also make this XPath extension susceptible toDelta-
based evaluation. Since any Regular XPath step subexpres-
sions is of the form prescribed by(i) to (iii) above and Reg-
ular XPath’s transitive closures+ is equivalently expressed
as with $x seeded by . recurse $x/s (for the sim-
ple proof see [2]), Theorem 3.2 asserts that we may indeed
use algorithmDelta to evaluates+.

In contrast, expressione($x) = $x[1] is not distributive
for $x in general. With variable$x bound to the sequence
(<a/>,),$x[1] evaluates to<a/>, whilefor $y in

$x return $y[1] yields(<a/>,). Effectively, this
invalidates Equation (4).

4

3.2. Is Expressionerec Distributive?
(A Syntactic Approximation)

Whenever an XQuery processor plans the evaluation of
with $x seeded by eseed recurse erec, knowing the
answer to “Is erec distributive for$x?” is particularly valu-
able: we may legitimately expectDelta to be a significantly
more efficient IFP evaluation strategy thanNäıve(Section 5
will indeed make this evident). While, unfortunately, there
is no complete procedure to decide this question2, still we
can safely approximate the answer. Here, we will present
purely syntactic, sufficient conditions for XQuery distribu-
tivity. Section 4 approaches the same challenge on an alge-
braic level.

Intuitively, we maynot apply a divide-and-conquer eval-
uation strategy for an expressione($x), if any subexpres-
sion ofe inspects the sequence bound to$x as a whole:e
is only evaluated after$x has been divided into individual
items (see Equation 4). Obvious examples of such prob-
lematic subexpressions arecount($x) and$x[1], but also
the general comparison$x = 10 (that involves existential
quantification over the sequence bound to$x).

Subexpressions whose value isindependentof $x, on
the other hand, are distributive. The only exception of this
rule are XQuery’s node constructors,e.g., text {·}, which
create new node identities upon each invocation. With$x

bound to(<a/>,), for example,

text { "c" } 6=
s
for $y in $x return text { "c" } ,

since the rhs will yield a sequence of two distinct text nodes.

The inference rules of Figure 5 have been designed to im-
plement these considerations. The rules syntactically as-
sess thedistributivity safetyds$x (e) of an arbitrary LiX-
Query [19] input expressione by traversinge’s parse tree
in a bottom-up fashion. LiXQuery is a sublanguage of
XQuery that preserves Turing-completeness, removes all
but the most basic types, and excludes selected, rather es-
oteric, language features. LiXQuery’s simplification of the
verbose XQuery syntax and semantics have been designed
to make LiXQuery ideal for investigations of interesting
language properties, yet allow findings to be transposed to
full XQuery.

Rules FOR1 and FOR2 ensure that the recursion variable
$x occurs either in the bodye2 or in the range expression
e1 of a for-iteration but not both. This coincides with the
linearity constraint of SQL:1999. A similar remark applies
to Rules STEP1 and STEP2 (in XQuery, the step operator
‘/’ essentially describes an iteration over a sequence of type

2If, for two arbitrary expressione1, e2 in which$x does not occur free,
an XQuery processor could assess whetherif (deep-equal(e1,e2))

then $x else $x[1] is distributive for $x, it could also decide the
equivalence ofe1 ande2 (which is impossible).

node()* [9]). Also note how Rule FUNCALL recursively
infers the distributivity of the body of a called function ifthe
recursion variable occurs free in the function argument(s).

In our context, whenever the XQuery processor is able
to inferds$x (e) for an input expressione, then it is guaran-
teed thate is indeed distributive for$x. The proof of this
implication, by induction on the syntactical structure ofe,
is to be found in [2].

Distributivity Hints. Still, the inference rules of Fig-
ure 5 can only checksufficient syntactical conditionsfor
distributivity to hold. The processor might thus actu-
ally miss distributive expressions and will fail to infer
ds$x (count($x) >= 1), for example. However, it is in-
teresting to note that we can support the XQuery processor
in its distributivity assessment, since every distributive ex-
pression is equivalent to a distributivity-safe expression:

If expressione($x) is distributive for$x, then it is set-
equal to for $y in $x return e($y), for which
the rules of Figure 5 will successfully infer distribu-
tivity safetyds$x (·).

This is a direct consequence of Rule FOR2 (Figure 5) and
Definition 3.1. Thus, at the expense of a slight query refor-
mulation, we may provide a “syntactic distributivity hint”to
the XQuery processor which effectively paves the way for
IFP evaluation via algorithmDelta.

4. Distributivity and Relational XQuery

In this section we will, literally, follow an alternative
route to decide the applicability ofDelta for the evaluation
of the IFP of an XQuery expressionerec. We leave syntax
aside and instead inspectrelational algebraic codethat has
been compiled forerec: the equivalent algebraic represen-
tation oferec renders the check for the inherently algebraic
distributivity property particularly uniform and simple.

Relational XQuery. This alternative route is inspired by
the Pathfinder project3 which fully implements such a
purely relational approach to XQuery.Pathfindercompiles
instances of the XQuery Data Model (XDM) and XQuery
expressions into relational tables and algebraic plans over
these tables, respectively, and thus follows the dashed path
in Figure 6. The translation strategy built into the compiler
has been carefully designed (i) to faithfully preserve the
XQuery semantics (including compositionality, node iden-
tity, iteration and sequence order), and (ii) yield relational
plans which exclusively rely on regular relational query en-
gine technology (no specific operators or index structures
are required, in particular) [15].

3http://www.pathfinder-xquery.org/

5

http://www.pathfinder-xquery.org/

ds$x (c)
(CONST)

ds$x ($v)
(VAR)

$x /∈ fv(e1) ds$x (e2) ds$x (e3)

ds$x (if (e1) then e2 else e3)
(IF)

⊕ ∈ {,, |} ds$x (e1) ds$x (e2)

ds$x (e1 ⊕ e2)
(CONCAT)

$x /∈ fv(e1) ds$x (e2)

ds$x (for $v at $p in e1 return e2)
(FOR1)

ds$x (e1) $x /∈ fv(e2)

ds$x (for $v in e1 return e2)
(FOR2)

$x /∈ fv(e1) ds$x (e2)

ds$x (let $v := e1 return e2)
(LET1)

ds$x (e1) $x /∈ fv(e2) ds$v (e2)

ds$x (let $v := e1 return e2)
(LET2)

$x /∈ fv(e1) ds$x (ci)i=1...n+1

ds$x

0

B

B

B

B

@

typeswitch (e1)

case τ1 return c1
...

case τn return cn

default return cn+1

1

C

C

C

C

A

(TYPESW)
$x /∈ fv(e1) ds$x (e2)

ds$x (e1/e2)
(STEP1)

ds$x (e1) $x /∈ fv(e2)

ds$x (e1/e2)
(STEP2)

declare function f($v1,. . . ,$vn) { e0 } ($x ∈ fv(ei)⇒ ds$x (ei) ∧ ds$vi
(e0))i=1...n

ds$x (f(e1,. . . ,en))
(FUNCALL)

Figure 5. Distributivity-safety ds$x (·): A syntactic approximation of the distributivity property for
LiXQuery expressions.

XDM XDM

Tables Tables

XQuery

Relational Algebra

Figure 6. Relational XQuery (dashed path)
faithfully implements the XQuery semantics.

The compiler emits a dialect of relational algebra that
mimics the capabilities of modern SQL query engines (Ta-
ble 1). Note that the non-textbook operators, likeε or ,
merely are macros representing “micro plans” composed of
standard relational operators: expandingα::n reveals⋊⋉p,
wherep is a conjunctive range predicate that realizes the se-
mantics of an XPath location step along axisα with node
testn, for example. The row numbering operator̺ directly
compares with SQL:1999’sROW_NUMBER. The plans oper-
ate over relational encodings of XQuery item sequence held
in flat (1NF) tables with schemaiter|pos|item. In these ta-
bles, columnsiter andpos are used to properly reflectfor-
iteration and sequence order, respectively. Columnitem

carries encodings of XQuery items,i.e., atomic values or
nodes.

Further details of Relational XQuery do not affect our
present discussion of distributivity or IFP evaluation and
may be found in [15]. In the following, lete denote the
algebraic plan that has been compiled for XQuery expres-
sione.

Operator Semantics Push?

πa1:b1,...,an:bn
project onto col.sai, renamebi into ai ⊙

σb select rows with columnb = true ⊙
⋊⋉p join with predicatep �

× Cartesian product �

δ duplicate elimination (DISTINCT) −
∪ union �

\ disjoint difference (EXCEPT ALL) −
counta:/b aggregates (group byb, result ina) −
⊚a:〈b1,...,bn〉 n-ary arithmetic/comparison operator◦ ⊙
#a unique row tagging (tag ina) ⊙
̺a:〈b1,...,bn〉/p ordered row numbering (byb1, . . . , bn) −

α::n XPath step join (axisα, node testn) ⊙
ε, τ, . . . node constructors −
µ, µ∆ fixpoint operators ⊙

Table 1. Relational algebra dialect emitted by
the Pathfinder compiler.

4.1. Is Expressionerec Distributive?
(An Algebraic Account)

An occurrence of the newwith $x seeded by eseed

recurse erec form in a source XQuery expression will be

eseed

erec$x µ

compiled into a plan fragment as shown here
on the right. Operatorµ, the algebraic repre-
sentation of algorithmNäıve(Figure 3(a)), it-
erates the evaluation of the algebraic plan for
erec and feeds its output back to its input
until the IFP is reached. If we can guarantee
that the plan forerec is distributive, we may
safely tradeµ for its Delta-based variantµ∆

6

erec

∪

?
=

erec erec

∪

(a) Iserec distributive?

∪

e1 e2

→

∪

e1 e2

(b) Taking abig step: Pushing
∪ through a plan template

Figure 7. Algebraic distributivity assessment.

⊙

∪

e1 e2

→
∪

⊙ ⊙

e1 e2

(a) Unary operators⊙

�

∪

e1 e2

e3

→
∪

� �

e1 e3 e2 e3

(b) Binary operators�

Figure 8. Pushing ∪ through unary (⊙) and
binary (�) operators.

which, in general, will feed significantly less items back in
each iteration (see Figure 3(b) and Section 5).

In this algebraic setting, if the recursion bodyerec is dis-
tributive, its relational plan will satisfy the equality shown
in Figure 7(a). This equality is the algebraic expression
of a divide-and-conquer evaluation strategy forerec (Sec-
tion 3.1): evaluatingerec over a composite input (lhs,∪)
yields the same result as the union of the evaluation oferec

over a partitioned input (rhs). Effectively, the union opera-
tor∪ has been completely pushed up through all branches of
the DAG-shaped algebraic plan forerec. Zooming in from
the plan to the operator level, Figure 8 depicts how∪ is
pushed up through unary (⊙) and binary (�) operators. Col-
umn ‘Push?’ of Table 1 indicates whether∪may indeed be
validly pushed through a given operator. Note that this push
through is prohibited by exactly those operators that require
to consume theircompleteinput to produce the result. This
affects,e.g., aggregates, difference, and the row numbering
operator. As before, the occurrence of node constructors
renderserec non-distributive.

Because our primary goal is distributivity assessment (as
opposed to queryevaluation—but see Section 5), we may
actually employ simplified variants oferec in this context.
In particular, since the definition of distributivity disregards
duplicates and order (Definition 3.1), the compiler may
choose to remove code fromerec that is used to eliminate
duplicate nodes after XPath location steps as well as omit
those parts of the plan that realize the proper XQuery order
semantics [14].

Further, the plans generated by the XQuery compiler
typically contain numerous instantiations ofplan templates,

closed plan fragments with single entry and exit points (en-
closed by in Figure 9). These templates embody al-
gebraic implementations of basic XQuery constructs,e.g.,
the semantics offor-iteration or XPath location steps. As-
sessing the distributivity of such plan templates is a one time
effort. Once this has been done, whenever a distributive
template is encountered, the∪ push up process may disre-
gard the template’s contents and instead perform a single
big stepacross the template (see Figure 7(b)).

For the XQuery processor, this suggests the following sim-
ple procedure as a replacement fords$x (·) (Section 3.2) to
assess the distributivity oferec:

Start with the algebraic plan forerec with its input
replaced by ∪ ;
while not all∪ have reached do

Perform abig stepor push∪ up through its parent
operator, if possible. Otherwisereturn false ;

return true;

Figure 9 depicts the algebraic representations of the recur-
sion bodies of the Queries Q1 and Q2 (Section 2). For
Query Q1, to push∪ through from to , the distribu-
tivity check will succeed after it has performed two steps
across the two peripheral projections plus one intermedi-
atebig stepacross thefor-iteration that implements the se-
mantics of the$x/id(·) lookup. For Query Q2,∪ will be
pushed throughπiter,item and then upwards the two branches
of the DAG-shaped plan. In the right branch, the aggregate
countitem/iter blocks the process (Table 1) which indicates
that the processor maynot use algorithmDelta (or theµ∆

variant of the fixed point operator) to evaluate Query Q2.

Algebraic vs. Syntactic Approximation. Compared to
the syntactic approximationds (·), this algebraic account of
distributivity draws its conciseness from the fact that the
rather involved XQuery semantics and substantial number
of built-in functions nevertheless map to a small number of
algebraic primitives (given suitable relational encodings of
the XDM). Further, for these primitives, the algebraic dis-
tributivity property is readily decided.

To make this point, consider this slight yet equivalent
variation of Query Q1 in which variable$x now occurs free
in the argument of functionid(·):

with $x seeded by doc ("curriculum.xml")

/course[@code="c1"]

recurse id ($x/prerequisites/pre_code) .

If we unfold the implementation of the XQuery built-in
function id(·) (effectively, this expansion is performed
when Rule FUNCALL recursively invokesds$x (·) to assess

7

πiter,item

#inner

πinner,
outer:iter

πiter:inner,item

child::
prerequisites

child::
pre_code

id ref
...

...

⋊⋉

item=id

πiter,item:ref

⋊⋉

inner=iter

πiter:outer,item

lo
op

st
e

p

(a) erec of Query Q1

πiter,item

self::a

πiter

countitem/iter

⋊⋉

iter

child::*

st
e

p

st
e

p

(b) erec of Query Q2

Figure 9. Relational representations of the re-
cursion bodies erec of Queries Q1 and Q2.

the distributivity of the function body ofid(·)), we obtain

with $x seeded by doc("curriculum.xml")

/course[@code="c1"]

recurse

for $c in doc("curriculum.xml")/course

where $c/@code = $x/prerequisite/pre_code

return $c .

The syntactic approximation will flag the recursion body
as non-distributive because of the general comparison (=)
in thewhere clause (Section 3.2). While the algebraic ap-
proach would be unaffected by the variation, the rule set of
Figure 5 would need a specific rule forid(·) to be able to
infer its actual distributivity.

5. Practical Impact of Distributivity and Delta

Recasting a recursive XQuery query as an inflationary
fixed point computation imposes restrictions. Such recast-
ing, however, also puts the query processor into control
since the applicability of a promising optimization, trading
Näıve for Delta, becomes effectively decidable. This sec-
tion provides the evidence that significant gains can indeed
be realized, much like in the relational domain.

To quantify the impact, we implemented the two
fixed point operator variantsµ and µ∆ (Section 4.1)
in MonetDB/XQuery 0.18[8], an efficient and scalable
XQuery processor that consequently implements the Re-
lational XQuery approach (Section 4). Its algebraic com-
piler front-endPathfinderhas been enhanced (i) to pro-
cess the syntactic formwith · · · seeded by · · ·recurse,

declare variable $doc := doc("auction.xml");

declare function bidder ($in as node()*) as node()*
{ for $id in $in/@id
let $b := $doc//open_auction[seller/@person = $id]

/bidder/personref
return $doc//people/person[@id = $b/@person]

};

for $p in $doc//people/person
return <person>

{ $p/@id }
{ data ((with $x seeded by $p

recurse bidder ($x))/@id) }
</person>

Figure 10. XMark bidder network query.

and (ii) to implement the algebraic distributivity check. All
queries in this section were recognized as being distributive
by Pathfinder. To demonstrate that any XQuery processor
can benefit from optimized IFP evaluation in the presence of
distributivity, we also performed the transition fromNäıve
to Delta on the XQuery source level and letSaxon-SA 8.9
[20] process the resulting user-defined recursive queries (cf.
Figures 2 and 4). All experiments were conducted on a
Linux-based host (64 bit), with two 3.2 GHz Intel XeonR©

CPUs, 8 GB of primary and 280 GB SCSI disk-based sec-
ondary memory.

Table 2 summarizes our observations for four query
types, chosen to inspect the systems’ behavior for growing
input XML instance sizes and varying result sizes at each re-
cursion level (the maximum recursion depth ranged from 5
to 33).

XMark Bidder Network. To assess scalability, we com-
puted a bidder network—recursively connecting the sell-
ers and bidders of auctions (Figure 10)—over XMark [24]
XML data of increasing size (from scale factor 0.01, small,
to 0.33, huge). IfDelta is used to compute the IFP of this
network,MonetDB/XQuery(2.2 to 3.3 times faster) as well
asSaxon(1.2 to 2.7 times faster) benefit significantly. Most
importantly, note that the number of nodes in the network
grows quadratically with the input document size. Algo-
rithm Delta feeds significantly less nodes back in each re-
cursion level which positively impacts the complexity of
the value-based join inside recursion payloadbidder(·):
for the huge network,Delta exactly feeds those 10 million
nodes intobidder(·) that make up the result—Näıve re-
peatedly revisits intermediate results and processes 9 times
as many nodes.

Romeo and Juliet Dialogs. Far less nodes are processed
by a recursive expression that queries XML markup of

8

Query MonetDB/XQuery Saxon-SA 8.9 Total # of Nodes Fed Back Recursion
Naı̈ve Delta Naı̈ve Delta Naı̈ve Delta Depth

Bidder network (small) 362 ms 165 ms 2,307 ms 1,872 ms 40,254 9,319 10
Bidder network (medium) 5,010 ms 1,995 ms 15,027 ms 7,284 ms 683,225 122,532 16
Bidder network (large) 40,785 ms 13,805 ms 123,316 ms 52,436ms 5,694,390 961,356 15
Bidder network (huge) 9 m 46 s 176,890 ms 32 m 40 s 12 m 04 s 87,528,919 9,799,342 24

Romeo and Juliet 6,795 ms 1,260 ms 1,150 ms 818 ms 37,841 5,638 33

Curriculum (medium) 183 ms 135 ms 1,308 ms 1,040 ms 12,301 3,044 18
Curriculum (large) 1,466 ms 646 ms 3,485 ms 2,176 ms 127,992 19,780 35

Hospital (medium) 734 ms 497 ms 1,301 ms 1,290 ms 99,381 50,000 5

Table 2. Naı̈ve vs. Delta: Comparison of query evaluation ti mes and total number of nodes fed back.

Shakespeare’s Romeo and Juliet4 to determine the max-
imum length of any uninterrupted dialog. Seeded with
SPEECH element nodes, each level of the recursion ex-
pands the currently considered dialog sequences by a sin-
gle SPEECH node given that the associatedSPEAKERs are
found to alternate (horizontal structural recursion along
the following-sibling axis—we do not reproduce the
query here for space reasons.) Although the recursion is
shallow (depth 6 on average), Table 2 shows how both,
MonetDB/XQueryand Saxon, completed evaluation up to
5 times faster because the query had been specified in a dis-
tributive fashion.

Transitive Closures. Two more queries, taken directly
from related work [22, 11], compute transitive closure prob-
lems (we generated the data instances with the help of ToX-
gene [6]). The first query implements a consistency check
over the curriculum data (cf. Figure 1) and finds courses that
are among their own prerequisites (Rule 5 in the Curriculum
Case Study in Appendix B of [22]). Much like for the bid-
der network query, the larger the query input (medium in-
stance: 800 courses, large: 4,000 courses), the betterMon-
etDB/XQueryandSaxonexploitedDelta.

The last query in the experiment explores 50,000 hospi-
tal patient records to investigate a hereditary disease [11]. In
this case, the recursion follows the hierarchical structure of
the XML input (from patient to parents), recursing into sub-
trees of a maximum depth of 5. Again,Delta makes a no-
table difference even for this computationally rather “light”
query.

We believe that this renders this particular controlled
form of XQuery recursion and its associated distributivity
notion attractive, even for processors that do not implement
a dedicated fixed point operator (likeSaxon).

4http://www.ibiblio.org/xml/examples/shakespeare/

6. More Related Work

Bringing adequate support for recursion to XQuery is
a core research matter on various levels of the language.
While the efficient evaluation of the recursive XPath axes
(e.g.,descendantorancestor) is well understood by now
[3, 16], the optimization of recursive user-defined functions
has been found to be tractable only in the presence of re-
strictions: [23, 13] propose exhaustive inlining of functions
but require that functions arestructurally recursive (use
axeschild anddescendant to navigate into subtrees only)
overacyclicschemata to guarantee that inlining terminates.
Note that, beyond inlining, this type of recursion does not
come packaged with an effective optimization hook compa-
rable to what the inflationary fixed point offers.

The distinguished use case for inflationary fixed point
computation is transitive closure. This is also reflected by
the advent of XPath dialects like Regular XPath [25] and the
inclusion of a dedicateddyn:closure(·) construct in the
EXSLT function library [10]. We have seen applications in
Section 5 [22, 11] and recent work on data integration and
XML views adds to this [12].

In the domain of relational query languages,Näıve is the
most widely described algorithmic account of the inflation-
ary fixed point operator [5]. Its optimizedDelta variant, in
focus since the 1980’s, has been coineddelta iteration[17],
semi-näıve [5], or wavefront[18] strategy in earlier work.

Since our work rests on the adaption of these original
ideas to the XQuery Data Model and language, the large
“relational body” of work in this area should be directly
transferable, even more so in the Relational XQuery con-
text. In particular, optimization techniques likeMagic Set
rewriting [4] should apply (this has not been investigated in
the present paper).

The adoption of inflationary fixed point semantics by Data-
log and SQL:1999 with itsWITH RECURSIVE clause (Sec-
tion 2) led to investigations of the applicability ofDelta
for these recursive relational query languages. For strati-

9

http://www.ibiblio.org/xml/examples/shakespeare/

fied Datalog programs [1],Delta is applicable inall cases:
positive Datalog maps onto the distributive operators of re-
lational algebra (π, σ, ⋊⋉, ∪, ∩) while stratification yields
partial applications of the difference operatorx\R in which
R is fixed (f(x) = x \R is distributive).

SQL:1999, on the other hand, imposes rigidsyntacti-
cal restrictions [21] on the iterative fullselect (recursion
body) insideWITH RECURSIVE that makeDeltaapplicable:
grouping, ordering, usage of column functions (aggregates),
and nested subqueries are ruled out, as are repeated refer-
ences to the virtual table computed by the recursion. Re-
placing this coarse syntactic check by an algebraic distribu-
tivity assessment (Section 4) would render a larger class of
queries admissible for efficient fixed point computation.

7. Wrap-Up

This paper may be read in two ways:
(i) As a proposal to add an inflationary fixed point con-

struct, along the lines ofwith · · · seeded by · · ·recurse,
to XQuery (this has actually been discussed by the
W3C XQuery working group in the very early XQuery days
of 20015 but then dismissed because the group aimed for a
first-order language design at that time).

(ii) As a guideline for query authors as well XQuery
processor designers to check for and then exploit distribu-
tivity during the evaluation of recursive queries.

We have seen how such distributivity checks can be used
to safely unlock the optimization potential, namely algo-
rithm Delta, that comes tightly coupled with the inflation-
ary fixed point semantics.MonetDB/XQueryimplements
this distributivity check on the algebraic level and signifi-
cantly benefits whenever theDelta-based operatorµ∆ may
be used for fixpoint computation. Even if the approach is
realized on the coarser syntactic levelon top ofan existing
XQuery processor, feeding back less nodes in each recur-
sion level yields substantial performance improvements.

Remember that the distributivity notion suggests a divide-
and-conquer evaluation strategy (Section 3.1) in which parts
of a computation may be performed independently (before
a merge step forms the final result). Beyond recursion,
this may lead to improved XQuery compilation strategies
for back-ends that can exploit such independence,e.g, set-
oriented relational query processors (cf. loop-lifting [15]) as
well as parallel or distributed execution platforms.

Acknowledgments. Loredana Afanasiev is supported
by the Netherlands Organization for Scientific Research
(NWO) under project number 612.000.207. Jan Rittinger is

5http://www.w3.org/TR/2001/WD-query-semantics-20010607/

(Issue 0008).

supported by the German Research Foundation (DFG) un-
der grant GR 2036/2-1. We thank Massimo Franceschet for
input in an early stage of this work.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.

[2] L. Afanasiev. Distributivity for XQuery Expressions. Tech-
nical report, University of Amsterdam, 2007. Available at
http://staff.science.uva.nl/~lafanasi/Publications/2007/distr

[3] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas,
and D. Srivastava. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. InProc. ICDE, 2002.

[4] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic
Sets and Other Strange Ways to Implement Logic Programs.
In Proc. PODS, 1985.

[5] F. Bancilhon and R. Ramakrishnan. An Amateur’s Intro-
duction to Recursive Query Processing Strategies. InProc.
SIGMOD, 1986.

[6] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons.
ToXgene: A template-based Data Generator for XML. In
Proc. SIGMOD, 2002.

[7] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML query lan-
guage. W3C Recommendation, 2007.

[8] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger,
and J. Teubner. MonetDB/XQuery: A Fast XQuery Proces-
sor Powered by a Relational Engine. InProc. SIGMOD,
2006.

[9] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0
and XPath 2.0 Formal Semantics. W3C Recommendation,
2007.

[10] EXSLT: A Community Initiative to Provide Extensions to
XSLT. http://www.exslt.org/.

[11] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. SMOQE:
A System for Providing Secure Access to XML. InProc.
VLDB, 2006.

[12] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewrit-
ing Regular XPath Queries on XML Views. InProc. ICDE,
2007.

[13] M. Grinev and D. Lizorkin. XQuery Function Inlining for
Optimizing XQuery Queries. InProc. ADBIS, 2004.

[14] T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Order Indif-
ference in XQuery. InProc. ICDE, 2007.

[15] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In
Proc. VLDB, 2004.

[16] T. Grust, M. van Keulen, and J. Teubner. Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps. InProc.
VLDB, 2003.

[17] U. Güntzer, W. Kieling, and R. Bayer. On the Evaluation
of Recursion in (Deductive) Database Systems by Efficient
Differential Fixpoint Iteration. InProc. ICDE, 1987.

[18] J. Han, G. Z. Qadah, and C. Chaou. The Processing and
Evaluation of Transitive Closure Queries. InProc. EDBT,
1988.

[19] J. Hidders, P. Michiels, J. Paredaens, and R. Vercammen.
LiXQuery: A Foundation for XQuery Research.SIGMOD
Record, 3(4), 2005.

[20] M. Kay. The Saxon XSLT and XQuery Processor.
http://saxon.sf.net/.

[21] J. Melton and A. R. Simon.SQL: 1999 - Understanding Re-
lational Language Components. Morgan Kaufmann, 2002.

10

http://www.w3.org/TR/2001/WD-query-semantics-20010607/
http://staff.science.uva.nl/~lafanasi/ Publications/2007/distr-report.pdf
http://www.exslt.org/
http://saxon.sf.net/

[22] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: A Consistency Checking and Smart Link Generation
Service. ACM Transactions on Internet Technology, 2(2),
2002.

[23] C.-W. Park, J.-K. Min, and C.-W. Chung. Structural Func-
tion Inlining Technique for Structurally Recursive XML
Queries. InProc. VLDB, 2002.

[24] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. InProc. VLDB, 2002.

[25] B. ten Cate. Expressivity of XPath with Transitive Closure.
In Proceedings of PODS, pages 328–337, 2006.

11

	. Introduction
	. An Inflationary Fixed Point in XQuery
	. Algorithms for IFP

	. Trading Naïve for Delta
	. Distributivity in XQuery
	. Is Expression erec Distributive? (A Syntactic Approximation)

	. Distributivity and Relational XQuery
	. Is Expression erec Distributive? (An Algebraic Account)

	. Practical Impact of Distributivity and Delta
	. More Related Work
	. Wrap-Up

