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Abstract: Relational database systems are highly efficient hosts to table-shaped data.
It is all the more interesting to see how a careful inspection of both, the XML tree
structure as well as the W3C XQuery language definition, can turn relational databases
into fast and scalable XML processors.

This work shows how the deliberate choice of a relational tree encoding makes
the XML data model—ordered, unranked trees—accessible to relational database sys-
tems. Efficient XPath-based access to these data is enabled in terms of staircase join, a
join operator that injects full tree awareness into the relational database kernel. A loop-
lifting compiler translates XQuery expressions into purely algebraic query plans. The
representation of iteration (i.e., the XQuery FLWOR construct) in terms of set-oriented
algebra primitives forms the core of this compiler. Together, the techniques we de-
scribe lead to unprecedented XQuery evaluation scalability in the multi-gigabyte XML
range. Pathfinder is an open-source implementation of a purely relational XQuery pro-
cessor.

1 Introduction

The ubiquitous use of the XML file format to store, interchange, and process data raises
an increasing demand to manage these data in a scalable manner. Not only since the ini-
tiative of the W3C to develop XQuery as a standard query language for XML, researchers
around the globe ambitiously started to develop novel database techniques that can effi-
ciently handle semi-structured data. The approaches pursued have been as diverse as the
XML data themselves: new storage layouts can natively handle tree-structured data (e.g.,
[FHK+02, NvdL05]), new algorithms and index structures accelerate XPath navigation
primitives (e.g., [BKS02, CSF+01]), and tree algebras reflect the intricate semantics of the
XQuery language (e.g., [JLST01]).

In this work, we want to assess how far we can get without the construction of such new
and complex software systems. The processing model of existing relational databases—
bulk operations on sets of tuples—proves versatile enough to embrace the semantics of
XQuery in a standards-compliant fashion. At the same time, the maturity of existing im-
plementations provides unprecedented scalability with interactive query response times on
multi-gigabyte XML instances.

To meet these scalability goals, we contribute the purely relational XQuery processing
stack shown in Figure 1 which can turn any RDBMS implementation into a processor for
XQuery.



A relational tree encoding, derived from the XPath accelerator encoding by Grust [Gru02],
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Figure 1: XQuery processing stack.

provides a true isomorphism between instances of the XML
data model, ordered, unranked trees, and relational tables
of tuples. If B-tree indexes on such tables are chosen de-
liberately, interactive query response times for XML data
can be observed even on commodity RDBMS implementa-
tions.

The XPath performance of such a system can further be
improved if the underlying DBMS kernel is made aware
of properties inherent to the used tree encoding. Staircase
join encapsulates such knowledge in a single database operator and can accelerate tree
navigation by orders of magnitude.

Finally, we extend the processing stack to full XQuery compliance. The loop-lifting com-
pilation procedure trades XQuery’s for iteration primitive for truly bulk-oriented opera-
tions in the relational system. By shifting the dynamic evaluation into the DBMS kernel,
we make the scalability advantages of modern RDBMS implementations immediately ac-
cessible to process XQuery.

The Pathfinder XQuery compiler1 is a complete implementation of the techniques we
describe here. Pathfinder is part of the MonetDB/XQuery system, which is found among
the fastest XQuery processors in existence today.

Sections 2 to 4 in the following will sketch the components of the relational XQuery pro-
cessing stack. We provide performance figures obtained with MonetDB/XQuery in Sec-
tion 5, before we summarize in Section 6.

2 Relational Storage of XML Data

To losslessly store XML data in a relational system, we use range encoding, a variant of
the schema-oblivious tree encoding proposed by Grust [Gru02]. We enumerate all tree
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Figure 2: Sample tree (with
pre and size annotations)
and its relational encoding.

nodes according to the XML document order to obtain the
preorder rank pre(v) for each node v. Further, we maintain
size(v) as the number of v’s descendants and level(v), v’s dis-
tance from the document root. Two properties kind(v) ∈
{elem, text, comment, . . . } and prop(v) (holding v’s tag name or
textual content for text/comment nodes) account for the semanti-
cal information of each node. Figure 2 on the left illustrates this
encoding for a small sample tree.

On range-encoded data, XPath location steps translate into sim-
ple region predicates. To exemplify, the XPath descendant axis
becomes a range condition on preorder ranks:

v ∈ c/descendant⇔
pre(c) < pre(v) ≤ pre(c) + size(c) .

(DESC)

1Pathfinder is available in open source at http://www.pathfinder-xquery.org/.
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(b) DB2 query plan (using partitioned B-trees).

Figure 4: Partitioned B-trees provide efficient child navigation performance on range-encoded
XML trees without the expensive maintenance of parent/child references (IBM DB2 v8.2 on a
2× 3.2 GHz Intel Xeon system with 8 GB RAM; path //open_auction/bidder/increase).

The evaluation of such one-dimensional range predicates is well supported by existing
(e.g., B-tree) index structures.

2.1 Off-the-shelf RDBMSs are Better at XPath than You Might Expect

Numbering schemes of this kind are known to provide very efficient support for axes with
a recursive definition in XPath [Gru02]. At first sight, this does not hold for the important
non-recursive axes child and parent, which require an additional predicate on column
level to characterize their semantics, e.g.:

v ∈ c/child⇔
pre(c) < pre(v) ≤ pre(c) + size(c) ∧ level(v) = level(c) + 1 .

(CHILD)

Earlier work [Gru02] had thus used explicit parent/child references to provide acceptable
runtime behavior for non-recursive XPath axes. By using partitioned B-trees [Gra03] to
index the relational XML storage, however, we can reach a similar performance without

· · ·
level = 1 level = 2 · · · level = height(t)

Figure 3: B-tree partitioning.

the additional storage overhead. The prepend-
ing of the level column to a B-tree on pre (to
obtain a concatenated 〈level, pre〉 B-tree) par-
titions the resulting B-tree into height(t) re-
gions as shown on the right in Figure 3 (where
height(t) denotes the total height of the XML
document tree).

On such a partitioned B-tree, all children of a
given context node appear within a single index partition and in ascending pre-order (i.e.,
document order). As we see in Figure 4, this leads to efficient child evaluation on range-
encoded data without the storage overhead of explicit parent/child references. Similar uses
of partitioned B-trees are found to accelerate other XPath idioms as well [Teu06].
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Figure 5: Three techniques minimize XPath processing cost in staircase join: pruning, partitioning,
and skipping.

3 XPath Evaluation on Relational Back-Ends

Further improvements of an RDBMS’s XPath performance can be reached if we make the
system aware of the fact that underlying relational tables actually constitute the encoding
of a tree. Staircase join encapsulates such knowledge in a single database operator that
may easily be plugged into existing RDBMS implementations. Tuned for the evaluation
of XPath, staircase join largely avoids to spend work on irrelevant tuples, which brings
execution times down to a minimum.

Figure 5 uses the two-dimensional pre/post plane2 and the XPath descendant axis to
illustrate the three techniques that make staircase join an efficient means to answer XPath
queries:

Pruning. Since XPath demands the result of location paths to be returned without dupli-
cates, some context nodes may not contribute any new matches to the result set. In the
pre/post plane, this surfaces as an overlap of their corresponding query regions. Staircase
joins prunes such nodes early from the context set. This may significantly reduce the cost
to eliminate duplicates from a path result.

Partitioning. After pruning the context set, the resulting query region takes the shape of
a staircase in the pre/post plane. Staircase join divides this region into a distinct partition
for each remaining context node. Each partition is scanned only once and in pre order.
Regardless of the context set, the size of the document relation is now an upper bound
for the number of tuples that need to be processed. The production of result tuples in
document order obsoletes a subsequent sort operation as it was required in the original
query plan (cf. Figure 4(b)).

Skipping. Since the pre/post plane actually constitutes the encoding of a tree, we can
conclude that some regions in the plane cannot contain any nodes [GvKT03]. Staircase
join skips over such regions, which further reduces the number of tuples to be processed
from the document relation. The effect of skipping can be substantial: in earlier work
[GvKT03], we found staircase join to skip over more than 90 % of all tuples.

2Note that the range- and pre/post-encodings are isomorph. Concepts equally apply to range-encoded data.
In the pre/post plane, all descendants of a node v are to be found in the quadrant on v’s bottom-right.



π column projection, renaming % row numbering
σ row selection ·∪ disjoint union (UNION ALL)
on equi-join } arithmetic/comparison operator ◦
× Cartesian product � XPath step join

Table 1: Subset of the relational algebra emitted by the loop-lifting compiler. Operator % is the
equivalent of SQL:1999’s ROW_NUMBER operator.

Staircase join encapsulates full tree awareness within a single join operator. This operator
easily plugs into any existing relational database kernel. We have shown staircase join’s
effectiveness with implementations for the MonetDB and PostgreSQL systems, for which
we refer the reader to [Teu06].

4 Loop-Lifting: From XPath to XQuery

We have now seen how one of XQuery’s core data structures, ordered, unranked trees, can
suitably be mapped to relational database tables. The second principal data type in the
XQuery data model, ordered sequences of items, however, seems quite contradictory to
the processing model of relational systems, unordered sets of tuples. Existing systems thus
often tend to escape to a programming language outside the database kernel to implement
language features that are sensible to this difference.

The loop-lifting compilation technique, in contrast, carries these tasks into the database
kernel and leverages any RDBMS implementation to full XQuery support. Our approach
remains purely relational: the compiler emits plans of a standard relational algebra (see
Table 1 for an excerpt) whose operators are efficiently implementable on, e.g., SQL hosts.
Note that this algebra operates on first normal form relations only. No XQuery-specific
extensions (such as, e.g., the Map operators in [RSF06]) are required to back our compiler.

4.1 A Relational Representation for XQuery Sequences

The loop-lifting compiler represents any XQuery item sequence in terms of a relational
table. The table shown on the right shows the relational sequence encoding of the XQuery

pos item
1 "a"
2 "b"
3 "c"
4 "d"

sequence ("a", "b", "c", "d"). In this table, sequence order is maintained us-
ing column pos, while the actual sequence items are stored in column item. In line
with the XQuery data model, we assume that column item can host atomic values
as well as references to XML nodes (e.g., in terms of their preorder ranks pre(v))
in a heterogeneous fashion. See [Teu06] for ways to implement such a column.

4.2 Turning Iteration Into Joins

The heart of the loop-lifting compiler is the standards-compliant translation of XQuery’s
iteration primitive, the for-return construct. This construct successively binds a variable
$v to the items listed in its in part. The return body e is then evaluated for each binding



and all sub-results are assembled to form the overall expression result:

for $v in (x1,x2, . . . ,xn) return e ≡ ( e[x1/$v], e[x2/$v], . . . , e[xn/$v] ) .

The semantics of this construct remains purely functional: it is sound to evaluate e for
all bindings of $v in parallel. The iter|pos|item relation shown here for the variable $v

iter pos item
1 1 x1
2 1 x2...

...
...

n 1 xn

reflects this situation and encodes all bindings of $v in a single relation. This
loop-lifted sequence representation is pervasive in our approach. Each tuple
〈i, p, x〉 in it indicates that, in the ith iteration, the item at position p has the
value x (note that $v is a singleton in the above expression, hence, pos ≡ 1).

We can easily derive this representation of the binding variable from the rep-
resentation of the expression it is bound to: (i) attach a new iter column,
consecutively numbered from 1, . . . , n in the order given by the pos column, and then
(ii) set the pos column to constant 1.

The row-numbering step (i) is characteristic for this approach and we assume the avail-
ability of a respective operator %a:〈b1,...,bn〉‖c to implement it. For each group identified by
column c, operation %a:〈b1,...,bn〉‖c(R) extends R by a new column a that contains consec-
utive numbers in the order specified by 〈b1, . . . , bn〉. Many RDBMSs readily provide an
implementation for %. The construct ROW_NUMBER () OVER (PARTITION BY c ORDER
BY b1, ..., bn), e.g., implements %a:〈b1,...,bn〉‖c in SQL:1999 [GST04].

4.3 Independent Iterations

iter
1
2...
n

Note how column iter in the loop-lifted sequence representation enumerates the itera-
tions performed by the for loop. It is a principle idea of our compilation approach that
each subexpression is compiled in dependence of all enclosing for loops. To encode
the latter, we use a unary loop relation, a projection of the loop-lifted encoding of the
iteration variable on column iter. The table on the left depicts the loop relation that
encodes the n-fold iteration over the loop body e in the above example.

Once loop has been determined, we can use it to obtain the loop-lifted encoding of a

iter
1
2︸︷︷︸

loop

×
pos item
1 "a"
2 "b"

≡

iter pos item
1 1 "a"
1 2 "b"
2 1 "a"
2 2 "b"

constant subexpression by means of a Cartesian product.
We say that the expression is lifted with respect to loop.
To illustrate, the table on the right encodes the sequence
("a", "b") in the loop

for $v in (10, 20) return ("a", "b") .

To ensure compositionality, the full compilation procedure operates on loop-lifted se-
quence representations only. The compiler is defined in terms of a set of compilation
rules, such that the algebraic expressions consumed and produced by each rule evaluate to
the loop-lifted encodings of their respective XQuery equivalents, each one associated with
a loop relation.



iter
1
2
3
4

loop

iter pos item
1 1 false
2 1 true
3 1 false
4 1 true

qe1

σitem

σ¬item

πiter

πiter

≡

≡

iter
2
4

loopthen
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3

loopelse

×

×

pos item
1 "even"

qe2
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qe3

·∪ ≡

iter pos item
1 1 "odd"
2 1 "even"
3 1 "odd"
4 1 "even"

qe2 ·∪ qe3

Figure 6: Evaluation trace for the loop-lifted equivalent of Query Q1.

4.4 Compiling Arbitrary XQuery Expressions

The complete procedure to compile arbitrary XQuery expressions into their relational
equivalent is beyond the scope of this paper (refer to [Teu06] for an extensive documen-
tation). To provide an intuition of the typical plans emitted by the compiler, let us briefly
review the compilation and evaluation of the XQuery expression

for $v in (3, 4, 5, 6) return
if ($v mod 2 eq 0︸ ︷︷ ︸

e1

) then "even"︸ ︷︷ ︸
e2

else "odd"︸ ︷︷ ︸
e3

. (Q1)

The loop relation associated with the return body of this query is the relation shown on
the left in Figure 6. This relation is used to compile the predicate subexpression e1. We
omit the details of this compilation and show its outcome as the relation qe1 in Figure 6.
It contains the loop-lifted representation of a single Boolean value for each of the four
iterations (in the third iteration, e.g., e1 evaluates to false).

Depending on the outcome of the predicate, we need to either evaluate the then branch
e2 or the else branch e3. Two independent selections compute the respective sets of iter
values (σitem selects all tuples with value true in column item, σ¬item selects the comple-
ment) which are used to loop-lift the respective branches. Figure 6 shows the two relations
loopthen and loopthen. Cartesian products yield the loop-lifted encodings qe2 and qe3 of the
subexpressions e2 and e3, respectively. The result of the return clause is their disjoint
union qe2

·∪ qe3 shown on the right in Figure 6.

Observe how the intermediate result qe1 , the loop-lifted encoding of the predicate expres-
sion e1, is consumed by two different sub-plans in Figure 6. This plan sharing is charac-
teristic for query plans emitted by a loop-lifting compiler. The optimizer component of the
Pathfinder XQuery compiler has thus been explicitly tuned to handle graph-shaped plans
[RTG07].

4.5 Optimizing and Evaluating Loop-Lifted XQuery Plans

The loop-lifting compilation procedure turns arbitrary XQuery expressions into a query
plan composed of a rather standard set of algebraic operators (see Table 1). Besides the
scalability advantages that result from this approach, the use of relational algebra as an



equivalent representation for XQuery expressions can help to solve a number of problems
that proved hard on the level of the XQuery language:

Indifference of Order. Different notions of order are wired deeply into the XQuery lan-
guage (document order, sequence order, and iteration order). In loop-lifted query plans,
this surfaces as the maintenance of iter and pos information throughout the plan.

There are many situations in XQuery, however, where order does not matter to the outcome
of a query, e.g., in the inputs of existential predicates or the context sets of XPath location
steps. In the relational plans, this usually means that an iter or pos column generated
for some XQuery subexpression is never inspected by any upstream plan operator. The
Pathfinder compiler uses a specific variant of projection pushdown to counter this effect,
such that order information is only generated if indeed prescribed by the semantics of the
query [GRT07].

Robust Join Detection. Since, in XQuery, there is no explicit join construct, the syntactical
variations to express value-based joins are quite diverse. Based on the inference and in-
spection of functional dependencies, the Pathfinder compiler recognizes join situations in
loop-lifted XQuery evaluation plans. This recognition is independent of syntactical varia-
tions and will detect, e.g., the value-based join in let $d := fn:doc (· · · ) for $a in
$d//a return $d//b[@c =$a/@d] [RTG07].

Dependable Cardinality Estimates. The availability of dependable estimates for (inter-
mediate) result sizes can significantly improve query optimization and execution, e.g., to
efficiently allocate resources in the physical plan. Unfortunately, the determination of
such estimates is hard on the basis of the XQuery language. Existing techniques cover
only rather limited subsets of the language.

In contrast, cardinality inference for relational query plans is a well-investigated field in
database research. Loop-lifting makes this work immediately accessible to the estima-
tion of result sizes for arbitrary XQuery expressions. Depending on the workload, this
approach can be a suitable means to infer cardinality estimates for XQuery [Teu06].

5 Experimental Assessment

The prime motivation to re-use relational database technology for XML query processing
was the expected scalability that we can inherit from mature RDBMS implementations.
Pathfinder is a full implementation of the loop-lifting compilation procedure. Together
with a staircase join extension to the MonetDB database kernel, it constitutes the open-
source XQuery implementation MonetDB/XQuery [BGvK+06].

We used the XMark benchmark [SWK+02] and MonetDB/XQuery version 4.10.2 to ver-
ify whether the system indeed meets our scalability goals. At the top of Figure 7, we listed
the query execution times (in milli-seconds) required to process the 20 XMark queries on
a 111 MB XML instance (the system used for testing was equipped with 2× 3.2 GHz Intel
Xeon processors and 8 GB of main memory).

We further measured execution times on XMark instances of different sizes. Normalized to
the elapsed times observed for the 111 MB instance, the resulting figures are illustrated in
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Figure 7: MonetDB/XQuery scalability with respect to document size. Figures on top: execution
times on a 111 MB XMark instance. Execution times in the graph are normalized to these figures.

Figure 7. Over a large range of document sizes, we see a linear scaling with the document
size, the only real outliers being Queries Q11 and Q12. Both queries follow a quadratic
scaling that stems from an intermediate result with quadratic complexity. For more in-
depth experimental studies on the techniques we described, we refer to the experiments
performed in [Teu06].

6 Summary

Our work demonstrates once more the versatility of the relational data model. We have
shown how relational database systems can serve as efficient hosts to process XQuery. To
suitably store the underlying XML data, we described range encoding, a variant of the
XPath accelerator encoding developed in earlier work. A novel join operator, staircase
join, provides an efficient implementation for XPath navigation steps over encoded tree
data.

Our key contribution that allows the execution of arbitrary XQuery expressions on rela-
tional back-ends, however, is the loop-lifting compilation technique. Using a suitable en-
coding for XQuery’s basic data type, sequences of items, the loop-lifting technique turns
the for iteration primitive into a bulk-oriented execution strategy on the relational system.

To demonstrate the effectiveness of the resulting relational XQuery processing stack, we
used the software developed in the context of the Pathfinder and MonetDB/XQuery com-
panion projects. We showed how MonetDB/XQuery reaches linear scaling and interactive
query response times beyond the gigabyte XML size limit.
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