Pathfinder: XQuery Compilation Techniques for Relational Database Targets

Jens Teubner · Technische Universität München

Joint work with:

Torsten Grust, Peter Boncz, Martin Kersten, Maurice van Keulen, Stefan Manegold, Sjoerd Mullender, Jan Rittinger, Marc H. Scholl, ...

Challenge: Construction of a Scalable XQuery Processor

XQuery:

- tree-structured XML data
- ordered sequences of items: (x_1, \ldots, x_n)
- **explicit** iteration: for v in e_1 return e_2
- side effects: element t { e }

XQuery

Challenge: Construction of a Scalable XQuery Processor

XQuery:

- tree-structured XML data
- ordered sequences of items: (x_1, \ldots, x_n)
- **explicit** iteration: for v in v return v2
- side effects: element t { e }

Re-use existing RDBMS technology?

- flat, unordered data model: tables of tuples
- bulk-oriented processing
- no side effects

XQuery

RDBMS

Challenge: Construction of a Scalable XQuery Processor

XQuery:

- tree-structured XML data
- ordered sequences of items: (x_1, \ldots, x_n)
- **explicit** iteration: for v in v in v return v
- side effects: element t { e }

Re-use existing RDBMS technology?

- flat, unordered data model: tables of tuples
- bulk-oriented processing
- no side effects

XQuery

RDBMS

This talk bridges the apparent gap.

trees, sequences, iteration, side effects

compositional compilation: loop-lifting

relational step evaluation: staircase join

tree encoding: XPath accelerator

tables of tuples, relational algebra, SQL

XQuery

XQuery Semantics

XPath Evaluation

XML Storage

RDBMS

Pathfinder is a full open-source implementation of these techniques.

XPath Accelerator: Relational XML Storage

Pathfinder's XML Storage is based on XPath Accelerator (Grust '02)

n	pre	post
а	0	9
b	1	3
С	2	2
d	3	0
e	4	1
f	5	8
g	6	4
:	:	÷

- Any encoding providing node identity/document order suffices.
- We actually use a variant of this encoding: *pre/size/level*.

XPath on Commodity RDBMSs

Relational XML storage can beat native XPath processors.

■ Use B-trees with **low-selectivity** prefixes (e.g., *level*, tag names)!

Staircase Join: XPath Step Evaluation

XPath is the backbone of every XQuery processor.

XPath:

- Context is a set of nodes
- Document order, duplicate-free result

Problems:

- Repeated scans over the same area
- Expensive sorting and duplicate elimination

Staircase Join: XPath Step Evaluation

XPath is the backbone of every XQuery processor.

XPath:

- Context is a set of nodes
- Document order, duplicate-free result

Problems:

- Repeated scans over the same area
- Expensive sorting and duplicate elimination

Staircase join: [VLDB 2003]

- Encapsulates **tree awareness** in a single join operator
- Cache-friendly and XPath-compliant

Staircase Join: XPath Step Evaluation

We injected staircase join into PostgreSQL 7.3.

Query: /descendant::age/ancestor::person

[VLDB 2004 Demo]

XPath is only part the story.

- Variables and iteration: for v in e_1 return e_2
- Sequence construction: (e_1, e_2)
- Element construction: element { e_1 } { e_2 }
- Dynamic typing: e_1 instance of e_2
- etc.

XQuery is a functional language, though.

- Process independent FLWOR iterations in parallel
- Use bulk-oriented processing capabilities of modern RDBMSs

Loop-lifting: Encode independent iterations using a single relation.

for x in (1,2,3) return x to 3

- Column *iter* labels independent iterations.
- Sequence order is maintained in column pos.
- This is the loop-lifted encoding of an XQuery item sequence.
- The compilation procedure operates on loop-lifted sequence representations only.

iter	pos	item
1	1	1
1	2	2
1	3	3
2	1	2
2	2	3
3	1	3

Loop-lifting: Encode independent iterations using a single relation.

for
$$x$$
 in (1, 2, 3) return x to 3

- Column iter labels independent iterations.
- Sequence order is maintained in column pos.
- This is the loop-lifted encoding of an XQuery item sequence.
- The compilation procedure operates on loop-lifted sequence representations only.

iter	pos	item
1	1	1
1	2	2
1	3	3
2	1	2
2	2	3
3	1	3

Loop-lifting: Encode independent iterations using a single relation.

for
$$x$$
 in (1, 2, 3) return x to 3

- Column iter labels independent iterations.
- Sequence order is maintained in column *pos*.
- This is the loop-lifted encoding of an XQuery item sequence.
- The compilation procedure operates on loop-lifted sequence representations only.

iter	pos	item	type
1	1	1	$ au_{int}$
1	2	2	$ au_{int}$
1	3	3	$ au_{int}$
2	1	2	$ au_{int}$
2	2	3	$ au_{int}$
3	1	3	$ au_{int}$

This representation is highly versatile.

■ Item types to support **dynamic type** semantics

Loop-lifting: Encode independent iterations using a single relation.

for
$$x$$
 in (1, 2, 3) return x to 3

- Column iter labels independent iterations.
- Sequence order is maintained in column pos.
- This is the loop-lifted encoding of an XQuery item sequence.
- The compilation procedure operates on loop-lifted sequence representations only.

iter	pos	item	type	score
1	1	1	$ au_{int}$	1
1	2	2	$ au_{int}$	1
1	3	3	$ au_{int}$	1
2	1	2	$ au_{int}$	1
2	2	3	$ au_{int}$	1
3	1	3	$ au_{int}$	1

This representation is highly versatile.

- Item types to support **dynamic type** semantics
- Additional information to support, e.g., XQuery full-text search

XQuery on DB2

Commodity RDBMSs readily provide all the functionality we need.

E.g., SQL on IBM DB2 Universal Database V 8.2.

Pathfinder is a full implementation of a loop-lifting compiler.

■ Fully compositional, in line with the XQuery language

Pathfinder is a full implementation of a loop-lifting compiler.

■ Fully compositional, in line with the XQuery language

The resulting plans can be of significant size, though.

Pathfinder is a full implementation of a loop-lifting compiler.

Fully compositional, in line with the XQuery language

The resulting plans can be of significant size, though.

To optimize relational plans, Pathfinder thus implements

constant propagation,

Pathfinder is a full implementation of a loop-lifting compiler.

■ Fully compositional, in line with the XQuery language

The resulting plans can be of significant size, though.

To optimize relational plans, Pathfinder thus implements

- 1 constant propagation,
- projection pushdown,

51 sec 103 sec 112 sec

Pathfinder is a full implementation of a loop-lifting compiler.

■ Fully compositional, in line with the XQuery language

The resulting plans can be of significant size, though.

To optimize relational plans, Pathfinder thus implements

- 1 constant propagation,
- projection pushdown,
- 3 functional dependency and data flow analyses, and

1 0 sec 112 sec

33 sec

51 sec

103 sec 112 se

Pathfinder is a full implementation of a loop-lifting compiler.

■ Fully compositional, in line with the XQuery language

The resulting plans can be of significant size, though.

To optimize relational plans, Pathfinder thus implements

- 1 constant propagation,
- projection pushdown,
- functional dependency and data flow analyses, and
- algebraic join detection.

(You saw these optimizations in yesterday's demo session.)

0

4	1	3	2	l E	0
	0.1 sec 33	3 sec	51 sec	103 sec	112 sec

MonetDB/XQuery

Pathfinder targets the main-memory RDMBS MonetDB.

- Queries over multi-gigabyte XML instances answered in interactive time (XMark: 18 of 20 queries in ≪1 min on 1.1 GB)
- Unprecedented scalability

A complete and purely relational XQuery processing stack:

A relational tree encoding, derived from **XPath accelerator**, maps XML document trees into relational tables.

■ Re-use of mature storage and indexing techniques

A complete and purely relational XQuery processing stack:

A relational tree encoding, derived from **XPath accelerator**, maps XML document trees into relational tables.

■ Re-use of mature storage and indexing techniques

Staircase join encapsulates knowledge about our tree encoding in terms of a single join operator.

Outstanding XPath performance on any RDBMS

A complete and purely relational XQuery processing stack:

A relational tree encoding, derived from **XPath accelerator**, maps XML document trees into relational tables.

■ Re-use of mature storage and indexing techniques

Staircase join encapsulates knowledge about our tree encoding in terms of a single join operator.

Outstanding XPath performance on any RDBMS

The **loop-lifting** compilation procedure maps arbitrary XQuery expressions to primitives of relational algebra.

■ Implementation of iterative XQuery semantics in terms of efficient, bulk-oriented processing

Ongoing and Future Work

Pathfinder is an ongoing, joint research project with CWI Amsterdam, U Twente, and U Konstanz.

- Algebraic optimization, cost and result size estimation
- New functionality: recursion, dynamic typing, and validation
- Alternative back-ends: Idefix (UKN), SQL:1999 [SIGMOD 2007]

Ongoing and Future Work

Pathfinder is an ongoing, joint research project with CWI Amsterdam, U Twente, and U Konstanz.

- Algebraic optimization, cost and result size estimation
- New functionality: recursion, dynamic typing, and validation
- Alternative back-ends: Idefix (UKN), SQL:1999 [SIGMOD 2007]

MonetDB/XQuery has started to spread across the world already.

- X-RPC: XQuery processing in **peer-to-peer** networks
- XIRAF: multi-hierarchical XML documents
- Tijah: **full-text retrieval** for the MonetDB/XQuery system
- \sim 150 SourceForge downloads per month (MonetDB/XQuery only)

Ongoing and Future Work

Pathfinder is an ongoing, joint research project with CWI Amsterdam, U Twente, and U Konstanz.

- Algebraic optimization, cost and result size estimation
- New functionality: **recursion**, **dynamic typing**, and **validation**
- Alternative back-ends: Idefix (UKN), SQL:1999 [SIGMOD 2007]

MonetDB/XQuery has started to spread across the world already.

- X-RPC: XQuery processing in **peer-to-peer** networks
- XIRAF: multi-hierarchical XML documents
- Tijah: **full-text retrieval** for the MonetDB/XQuery system
- \sim 150 SourceForge downloads per month (MonetDB/XQuery only)

pathfinder ('pa:\theta_famd\theta) n. a person who makes or finds a way, esp. through unexplored areas or fields of knowledge.

Collins English Dictionary