
Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps

Torsten Grust◦ Maurice van Keulen• Jens Teubner◦

◦University of Konstanz
Department of Computer and Information Science

P.O. Box D 188, 78457 Konstanz, Germany
{grust,teubner}@inf.uni-konstanz.de

•University of Twente
Faculty of EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
m.vankeulen@utwente.nl

Abstract

Relational query processors derive much of
their effectiveness from the awareness of spe-
cific table properties like sort order, size, or
absence of duplicate tuples. This text ap-
plies (and adapts) this successful principle to
database-supported XML and XPath process-
ing: the relational system is made tree aware,
i.e., tree properties like subtree size, intersec-
tion of paths, inclusion or disjointness of sub-
trees are made explicit. We propose a local
change to the database kernel, the staircase
join, which encapsulates the necessary tree
knowledge needed to improve XPath perfor-
mance. Staircase join operates on an XML
encoding which makes this knowledge avail-
able at the cost of simple integer operations
(e.g., +,6). We finally report on quite promis-
ing experiments with a staircase join enhanced
main-memory database kernel.

1 Introduction

Relational database management systems (RDBMSs)
have repeatedly shown how versatile the relational data
model can be. RDBMSs are successfully used to host
types of data which have formerly not been anticipated
to live inside relational databases, e.g., non-first nor-
mal form (NF2, nested) tables, complex objects, and
spatio-temporal data.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

This paper contributes a building block, the stair-
case join, that can help relational technology to also
embrace the tree data type. We ultimately strive for
efficient database support for XML data storage and
XPath path queries [2]. The work’s key observation is
that the RDBMS’s efficiency can be significantly im-
proved with an increasing level of awareness of the
specific properties of the tree data type.

A now quite substantial body of research work has
proposed a number of tree mappings to encode tree-
shaped data, especially XML documents, using rela-
tions [5, 8, 11, 16, 17]. These encodings are designed
such that tree-specifics, like the ancestor/descendant
relationship of two tree nodes, can be recovered by a
relational query. This level of tree awareness is suffi-
cient to devise efficient relational implementations of
the XPath ancestor, parent, child, and descendant
axes.

In recent former work, we presented an encoding of
XML data, the XPath accelerator [8], which added real
XPath awareness in the sense that all 13 XPath axes
could be supported efficiently. In a nutshell, the XPath
accelerator uses the preorder and postorder ranks of
document nodes to map nodes onto a two-dimensional
plane. The evaluation of XPath axis steps then boils
down to process region queries in this pre/post plane.

This work is orthogonal in that we build upon the
simple XPath accelerator structure exactly as it was
described in [8], and shift focus to exploit additional
properties of the pre/post plane which help to signifi-
cantly speed up XPath query evaluation. These for-
merly unexplored properties exclusively derive from
the fact that we encode tree-shaped data. Thus, we
increase the level of tree awareness once more.

Pure SQL queries are capable of exploiting some of
these properties but not all. The gist of this paper thus
is the staircase join proposal, a join operator carefully
tuned to exploit and encapsulate all “tree knowledge”
present in the pre/post plane. With the staircase join

a•
b•nnnnnnn

c
•

d• e•PPPPPPP

f◦||||

g•
||||

h
•

BBBB i•
BBBB

j
•

•
b•nnnnnnn

c
•

d•

(a)

a•
b•nnnnnnn

c
•

d• e•PPPPPPP

f◦||||

g•
||||

h
•

BBBB i•
BBBB

j
•

•
•PPPPPPP

◦||||

g•
||||

h
•

BBBB

(b)

a•
b•nnnnnnn

c
•

d• e•PPPPPPP

f◦||||

g•
||||

h
•

BBBB i•
BBBB

j
•

a•
e•PPPPPPP

(c)

a•
b•nnnnnnn

c
•

d• e•PPPPPPP

f◦||||

g•
||||

h
•

BBBB i•
BBBB

j
•

•
•PPPPPPP

•
BBBB

•

(d)

Figure 1: XPath axes induce document regions: shaded nodes are reachable from context node f via a step along
the (a) preceding, (b) descendant, (c) ancestor, (d) following axes. Leaf nodes denote either empty XML
elements, attributes, text, comment, or processing instruction nodes; inner nodes represent non-empty elements.

added to the RDBMS’s kernel, SQL again suffices to
make full use of the tree awareness now present.

The paper proceeds as follows. Section 2 briefly re-
views the core details of the XPath accelerator idea
and the limitations an RDBMS faces if its SQL proces-
sor is not taught about advanced tree properties. Sec-
tion 3 introduces the staircase join and discusses the
tree-aware optimizations built into the join operator.
The pre/post plane makes it particularly easy to ex-
tract certain tree properties. This leads to algorithms
which use only a few CPU cycles per XML document
node. We discuss the implications for the implemen-
tation of staircase join, especially in the context of the
relational main-memory DBMS Monet in Section 4.
The section closes with a performance assessment of
the ideas developed so far. Section 5 reviews related
research before we conclude in Section 6.

2 The XPath Accelerator

The XPath accelerator [8] is a relational XML docu-
ment encoding. Here, relational is meant in the sense
of [10]: the encoded document (1) is represented as
a relational table, (2) can and should be indexed us-
ing index structures native to the RDBMS (preferably
B-trees, see below), and (3) may be queried using a
relational language, namely SQL.

The encoding has been designed with a close eye
on the XPath axes semantics: for each node of
a given XML document, the four axes preceding,
descendant, ancestor, and following partition the
document into four disjoint regions. Figure 1 depicts
the document regions for a 10-node XML instance
as seen from context node f . The XPath expression
f/preceding::node()—abbreviated as f/preceding
from now on—yields the node sequence (b, c, d).

Note that the context node plus the nodes in the
four regions cover all document nodes. The XPath
accelerator makes use of this observation: the nodes
of a document are encoded such that the region no-
tion is maintained. The evaluation of an XPath
step along those four axes then amounts to retriev-

ing the nodes contained in the region associated with
that axis.1 All further XPath axes determine eas-
ily characterizable super- or subsets of these regions
(e.g., ancestor-or-self) or are supported by stan-
dard RDBMS join algorithms (e.g., child, parent) [8].
The focus of this paper will, therefore, be on the four
partitioning axes.

The actual encoding maps each node v to its pre-
order and postorder traversal rank in the document
tree:

v 7→
〈
pre(v), post(v)

〉
.

Figure 2 shows the two-dimensional pre/post plane
that results from encoding the sample XML instance
of Figure 1. Like the original document tree, the
pre/post plane is partitioned into four, now rectangu-
lar, regions which characterize the XPath preceding,
descendant, ancestor, and following axes, e.g., the
nodes f/preceding = (b, c, d) are located in the lower
left region with respect to context node f .

Note that this characterization of document regions
applies to all nodes in the plane. For example, the
upper left region with respect to g hosts the nodes
g/ancestor = (a, e, f). This means that we can pick
any node v and use its location in the plane to evalu-
ate an XPath step, i.e., make v the context node. This
turns out to be an important feature when it comes
to the implementation of, e.g., XQuery [3], where ex-
pressions compute arbitrary context nodes and then
traverse from there. Exactly this usage scenario led to
the development of the present ideas: the XPath accel-
erator serves as the back-end of the Pathfinder XQuery
compiler runtime currently under development at the
University of Konstanz.

We refer to [8] for a more detailed explanation of
the XPath accelerator idea.

1In what follows we assume that a database stores a single
(large) document. Our discussion readily carries over to multi-
document databases (e.g., by introduction of document identi-
fiers or a new virtual root node under which several documents
may be gathered.)

• document node◦ context node

〈0,0〉
−1

−
−
−
−5

−
−
−
−

+
1

+ + + +
5

+ + + +

•a

•b
•
c

•d

•e

◦
f

◦g
•h

•i
•j

�
�
�
�
�
�
�
�
�
�
�

post
OO

pre//

pre post
a 0 9
b 1 1
c 2 0
d 3 2
e 4 8
f 5 5
g 6 3
h 7 4
i 8 7
j 9 6

Figure 2: Pre/post plane and the correspoding node
encoding table doc for the XML document of Figure 1.
Dashed and dotted lines indicate the document regions
as seen from context nodes f (__) and g (), re-
spectively.

1 SELECT DISTINCT v2.pre
2 FROM doc v1,doc v2

3 WHERE v1.pre > pre(c)
4 AND v1.pre < v2.pre
5 AND v1.post > post(c)
6 AND v1.post > v2.post
8 ORDER BY v2.pre

uniquepre

BC
ixscanpre

��

doc v2

ixscanpre/post

<<

doc v1

Figure 3: Query and associated plan.

2.1 SQL-based XPath Evaluation

The pre/post plane encoding enables an RDBMS to
translate XPath path expressions to pure SQL queries.

The evaluation of an XPath path expression2 like
s1/s2/ · · · /sn leads to a series of n region queries in
the pre/post plane where the node sequence output by
axis step si is the context node sequence for the subse-
quent step si+1. (The context node sequence for step
s1 is a singleton sequence (v) with v being an arbitrary
node.) Note that the XPath semantics require the re-
sulting node sequence to be duplicate free as well as
being sorted in document order [2].

In the pre/post plane of Figure 2, with initial con-
text node sequence (c) and XPath path expression
following::node()/descendant::node(), we get

(c)/following/descendant = (f, g, h, i, j) .

Let doc denote the two-column table loaded with
the pre/post node encodings (cf. Figure 2), then we
can systematically translate a path expression into an
equivalent SQL query [8]. For the example above, we
get the query in Figure 3.

2The XPath accelerator supports further XPath features like
predicates, node tests, etc., as well [8].

An analysis of the actual query plan chosen by the
optimizer—IBM DB2 V7.1 in this case—shows that a
relational database system can cope quite well with
this type of query (Figure 3): the RDBMS maintains a
B-tree using concatenated (pre, post) keys. The index
is used to scan the outer (left) doc table in pre-sorted
order. The actual region query evaluation happens in
the inner join input: the predicates in lines 3 and 4 of
the SQL query act as index scan range delimiters while
the predicates in lines 5 and 6 are sufficiently simple to
be evaluated during the B-tree index scan as well. The
join is actually a left semijoin producing its output in
pre-sorted order (which matches the request in line 8
for a result sorted in document order).

Actually, the query optimizer could further delimit
the index range scan in the inner join input. This op-
portunity derives from the fact that in any tree and
for any node v we can anticipate the size of the sub-
tree below v:

| (v)/descendant | = post(v)− pre(v) + level (v)︸ ︷︷ ︸
6h

, (1)

where level (v) denotes the length of the path from the
root to v which is obviously bound by h, the height
of the overall document tree.3 With this “tree know-
ledge” available to the RDBMS, the optimizer could
delimit the descendant range scan [8] and insert an
additional predicate into the initial SQL query:

7 AND v2.pre ≤ v1.post + h AND v2.post ≥ v1.pre + h .

The inner index range scan for the descendant step is
now delimited by the actual size of the context nodes’
subtrees and independent of the document size. In [8]
we observed a query speed-up of up to three orders of
magnitude. We will see in the sequel that awareness
of facts like Equation (1) can lead to more significant
improvements in XPath performance.

Notice that the unique operator in the plan of Figure 3
is indeed required since, in general, the join will gener-
ate duplicate nodes (see Section 3.1). The generation
of duplicates and thus the rather costly unique oper-
ator, however, could be avoided altogether if the join
operator would be informed about the fact that the doc
table encodes a tree structure. For similar reasons, we
furthermore could improve on the ixscans: since the
node distribution in pre/post plane is not arbitrary,
we can actually skip significant portions and guide the
scans to touch only those nodes which constitute the
actual result (modulo a small misestimation).

3The system computes h at document loading time. For typ-
ical real-world XML instances we found h ≈ 10.

This and further knowledge is present in pre/post
encodings although not accessible to the query opti-
mizer unless it can be made explicit at the SQL level
(as it is the case with the additional range predicate in
line 7 above).

3 The Staircase Join

Making the query optimizer of an RDBMS more “tree
aware” would allow it to improve its query plans con-
cerning XPath evaluation. However, incorporating
knowledge of the pre/post plane should, ideally, not
clutter the entire query optimizer with XML-specific
adaptations. As explained in the introduction, we pro-
pose a special join operator, the staircase join, that
exploits and encapsulates all “tree knowledge” present
in the pre/post plane. It behaves to the query opti-
mizer in many ways as an ordinary join, for example,
by admitting selection pushdown. In this section, we
will describe the staircase join and the tree-aware op-
timizations it encapsulates.

Before we proceed, a note on attributes. Except for
the attribute axis itself, no axis produces attribute
nodes. We use a special encoding for attribute nodes,
which allow them to be filtered out if needed. We dis-
regard attributes in our explanations, however, because
it would clutter them unnecessarily. Given numbers
and experimental results obviously include attribute
handling. Whenever the effects of attribute handling
are observable, we indicate this via footnotes.

3.1 Pruning

The evaluation of an axis step for a certain context
node boils down to selecting all document nodes in the
corresponding region. In XPath, however, an axis step
is generally evaluated on an entire sequence of con-
text nodes [2]. This leads to duplication of work if
the pre/post plane regions associated with the step are

a
•

b•nnnnnnn

c
•

d◦
e
◦PPPPPPP

f◦||||

g•
||||

h
◦

BBBB
i◦

BBBB

j
◦

a
•
d◦

e
◦PPPPPPP

f◦||||

g•
||||

h
◦

BBBB
i◦

BBBB

j
◦

(a)

a
•

b•nnnnnnn

c
•

d◦
e
•PPPPPPP

f•||||

g•
||||

h
◦

BBBB
i•

BBBB

j
◦

a
•
d◦

e
•PPPPPPP

f•||||

g•
||||

h
◦

BBBB
i•

BBBB

j
◦

(b)

Figure 4: (a) Intersection and inclusion of the
ancestor-or-self paths of a context node sequence.
(b) The pruned context node sequence covers the same
ancestor-or-self region and produces less duplicates
(3 rather than 11).

〈0,0〉

post
OO

pre//

• document node◦ context node

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

__

•

•

◦
c1

•

•

•
••
•
•

•◦
c2 ••

•

◦
c3

••
◦

c4 ••
•

(a) descendant axis

〈0,0〉

post
OO

pre//

__

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

•

•

◦
c1

•

•

•
••
•
•

•◦
c2 ••

•

◦
c3

••
◦

c4 ••
•

(b) ancestor axis

〈0,0〉

post
OO

pre//

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

____ �
�
�

__

•

•

◦
c1

•

•

•
••
•
•

•◦
c2 ••

•

◦
c3

••
◦

c4 ••
•

(c) following axis

〈0,0〉

post
OO

pre//

• document node◦ context node

__

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

•

•

◦
c1

•

•

•
••
•
•

•◦
c2 ••

•

◦
c3

••
◦

c4 ••
•

(d) preceding axis

Figure 5: Overlapping regions (context nodes ci).

independently evaluated for each context node. Fig-
ure 4 (a) depicts the situation if we are about to eval-
uate an ancestor-or-self step for context sequence
(d, e, f, h, i, j). The darker the path’s shade, the more
often are its nodes produced in the resulting node
sequence—which ultimately leads to the need for du-
plicate removal operator unique in the query plan of
Figure 3 to meet the XPath semantics. Obviously, we
could remove nodes e, f, i—which are located along a
path from some other context node up to the root—
from the context node sequence without any effect on
the final result (a, d, e, f, h, i, j) (Figure 4 (b)). Such
opportunities for the simplification of the context node
sequence arise for all axes.

Figure 5 depicts the situation in the pre/post plane
as this is the RDBMS’s view of the problem (these
planes show the encoding of a slightly larger XML doc-
ument instance). For each axis, the context nodes es-
tablish a different boundary enclosing a different area.
Result nodes can be found in the shaded areas. In gen-
eral, regions determined by context nodes can include
one another or partially overlap (dark areas). Nodes in
these areas generate duplicates.

The removal of nodes e, f, i earlier is a case of in-
clusion. Inclusion can be dealt with by removing the
covered nodes from the context: for example, c2, c4
for (a) descendant and c3, c4 for (c) following axis.

〈0,0〉

post
OO

pre//

• document node◦ context node

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

•

•

•

•

•

◦
c1 ••

•
•

◦
c2 •
••
•

◦
c3

••
•
••
•

Figure 6: Pruning produces a proper staircase.

The process of identifying the context nodes at the
cover’s boundary is referred to as pruning and is eas-
ily implemented for a pre/post encoded context node
sequence. Algorithm 1 gives the pruning procedure
for the descendant axis (ancestor pruning functions
analogously).

prunecontext_desc (context : table (pre,post)) ≡
begin

result � new table (pre , post); prev � 0;
foreach c in context do

if c.post > prev then
append c to result;
prev � c.post;

return result;
end

Algorithm 1: Context pruning for descendant axis,
table context is assumed to be pre-sorted.

After pruning for the descendant or ancestor
axis, all remaining context nodes relate to each other
on the preceding/following axis as illustrated for
descendant in Figure 6. The context establishes a
boundary in the pre/post plane that resembles a stair-
case.

Observe in Figure 6 that the three darker subregions
do not contain any nodes. This is no coincidence. Any
two nodes a, b partition the pre/post plane into nine
regions R through Z (see Figure 7). There are two
cases to be distinguished regarding how both nodes re-
late to each other: (a) on ancestor/descendant axis
or (b) on preceding/following axis. In (a), regions
S,U are necessarily empty because an ancestor of b
cannot precede (region U) or follow a (region S) if b is
a descendant of a. Similarly, region Z in (b) is empty,
because a, b cannot have common descendants if b fol-
lows a. The empty regions in Figure 6 correspond to
such Z regions. An RDBMS that is tree-aware enough
to know about pruning and empty regions, could use

•
a

•
b

∅

∅
R

U

X

S

V

Y

T

W

Z

post
OO

pre//

(a) Nodes a and b
relate to each other
on the ancestor/
descendant axis.

•
a

•
b

∅

R

U

X

S

V

Y

T

W

Z

post
OO

pre//

(b) Nodes a and b
relate to each other
on the preceding/
following axis.

Figure 7: Empty regions in the pre/post plane.

this knowledge to further delimit index range scans and
thus exclude the darker regions.

A similar empty region analysis can be done for all
XPath axes. The consequences for the preceding and
following axes are more profound. After pruning for,
e.g., the following axis, the remaining context nodes
relate to each other on the ancestor/descendant axis.
In Figure 7 (a), we see that for any two remaining con-
text nodes a and b, (a, b)/following = S ∪ T ∪ W .
Since region S is empty, (a, b)/following = T ∪W =
(b)/following. Consequently, we can prune a from
the context (a, b) without affecting the result. If this
reasoning is followed through, it turns out that all con-
text nodes can be pruned except the one with the max-
imum preorder rank in case of preceding and the min-
imum postorder rank in case of following. For these
two axes the context is reduced to a singleton sequence
such that the staircase join degenerates to a single re-
gion query. We will therefore focus on the ancestor
and descendant axes in the following.

3.2 Basic Staircase Join Algorithm

While pruning leads to a significant reduction of dupli-
cate work, Figure 4 (b) exemplifies that duplicates still
remain due to intersecting ancestor-or-self paths
originating in different context nodes. A much better
approach results if we separate the paths in the docu-
ment tree and evaluate the axis step for each context
node in its own partition (Figure 8 (a)).

Such a separation of the document tree is easily de-
rived from the staircase induced by the context node
sequence in the pre/post plane (Figure 8 (b)): each of
the partitions [p0, p1), [p1, p2), and [p2, p3) define a re-
gion of the plane containing all nodes needed to com-
pute the axis step result for context nodes d, h, and
j, respectively. Note that pruning reduces the number
of these partitions. (Although a review of the details
is outside the scope of this text, it should be obvious

a
•

b•nnnnnnn

c
•

d◦
e
•PPPPPPP

f•||||

g•
||||

h
◦

BBBB
i•

BBBB

j
◦

p1 p2 p3p0

a
•
d◦

e
•PPPPPPP

f•||||

g•
||||

h
◦

BBBB
i•

BBBB

j
◦

(a)

•a

•b•
c

◦d

•e

•
f
•g
◦h

•i
◦j

p0 p1 p2 p3

�
�

�
�

__

�
�
�
�

post
OO

pre//

(b)

Figure 8: The partitions [p0, p1), [p1, p2), [p2, p3) of the
ancestor staircase separate the ancestor-or-self
paths in the document tree.

that the partitioned pre/post plane naturally leads to
a parallel XPath execution strategy.)

The basic approach to evaluating a staircase join
between a document and a context node sequence thus
is to sequentially scan the pre/post plane once from
left to right selecting those nodes in the current par-
tition that lie within the boundary established by the
context node sequence (see Algorithm 2). Since the
XPath accelerator maintains the nodes of the pre/post
plane in the pre-sorted table doc, staircase join effec-
tively visits the tree in document order. The nodes
of the final result are, consequently, encountered and
written in document order, too.

The basic algorithm is perhaps most closely de-
scribed as a merge join with a dynamic range predicate.
It is important to observe that ‘doc[i].post’ in the algo-
rithm is not really a distinct lookup for the record with
preorder rank i, since the record is encountered during
a sequential scan. The notation ‘doc[i]’, hence, just
means the record at hand. Note, furthermore, that the
algorithm only works correctly on proper staircases,
i.e., with an already pruned context. Although we
presented pruning as a separate pre-processing stage,
staircase join is easily adapted to do pruning on-the-fly,
thus saving a separate scan over the context table.

This basic algorithm has several important charac-
teristics:

(1) it scans the doc and context tables sequentially,
(2) it scans both tables only once for an entire context

sequence,
(3) it never delivers duplicate nodes, and
(4) result nodes are produced in document order, so

no post-processing is needed to comply with XPath
semantics.

staircasejoin_desc (doc : table (pre ,post),
context : table (pre ,post)) ≡

begin
result � new table (pre, post);
foreach successive pair (c1, c2) in context do

scanpartition (c1.pre+ 1, c2.pre− 1, c1.post,<);

c � last node in context;
n � last node in doc;
scanpartition (c.pre+ 1, n.pre, c.post,<);
return result;

end

staircasejoin_anc (doc : table (pre ,post),
context : table (pre ,post)) ≡

begin
result � new table (pre, post);
c � first node in context;
n � first node in doc;
scanpartition (n.pre, c.pre− 1, c.post,>);
foreach successive pair (c1, c2) in context do

scanpartition (c1.pre+ 1, c2.pre− 1, c2.post,>);

return result;
end

scanpartition (pre1 ,pre2 ,post ,θ) ≡
begin

for i from pre1 to pre2 do
if doc[i].post θ post then

append doc[i] to result;

end

Algorithm 2: Staircase join algorithms (descendant
and ancestor axes).

3.3 More Tree-Aware Optimization: Skipping

The empty region analysis explained in Section 3.1 of-
fers another kind of optimization, which we refer to as
skipping. Figure 9 illustrates this for the XPath axis
step (c1, c2)/descendant. The staircase join is evalu-
ated by scanning the pre/post plane from left to right
starting from context node c1. During the scan of c1’s
partition, v is the first node encountered outside the
descendant boundary and thus not part of the result.

Note that no node beyond v in the current partition
contributes to result (the light grey area is empty).
This is, again, a consequence of the fact that we scan
the encoding of a tree data structure: node v is fol-
lowing c1 in document order so that both cannot have
common descendants, i.e., the empty region in Figure 9
is a region of type Z in Figure 7 (b).

Staircase join uses this observation to terminate the
current scanpartition early which effectively means
that the portion of the scan between pre(v) and the
successive context node pre(c2) is skipped.

The change to the basic staircase join algorithm
is minimal as only procedure scanpartition is af-

∅

〈0,0〉

post
OO

pre//

• document node◦ context node

�
�
�
�

�
�
�
�
�
�

�

scan

// �

scan

//�
skip

77

•

•

•

◦c1

•

•
••
•
•

•v •
••
•

•

••
◦c2 ••
•

Figure 9: Skipping technique for descendant axis.

fected. Procedure staircasejoin_desc is merely
modified to invoke the new replacement procedure
scanpartition_desc shown as Algorithm 3.

scanpartition_desc (pre1 ,pre2 ,post) ≡
begin

for i from pre1 to pre2 do
(?) if doc[i].post < post then

append doc[i] to result;

else
break; /* skip */

end

Algorithm 3: Skipping for the descendant axis.

The effectiveness of skipping is high. For each node
in the context, we either (1) hit a node to be copied into
the result, or (2) encounter a node of type v which leads
to a skip. To produce the result, we thus never touch
more than |result| + |context| nodes in the pre/post
plane while the basic Algorithm 2 would scan along
the entire plane starting from the context node with
minimum preorder rank.

A similar, although slightly less effective skipping
technique can be applied to the ancestor axis: if, in-
side the partition of context node c, we encounter a
node v outside the ancestor boundary, we know that
v as well as all descendants of v are in the preceding
axis of c and thus can be skipped. In such a case,
Equation (1) provides us with a good estimate—which
is maximally off by the document height h—of how
many nodes we may skip during the sequential scan,
namely post(v) − pre(v).

4 Main-Memory RDBMS Implementa-
tion Considerations

To assess the viability and the impact of the stair-
case join idea, we enhanced the kernel of the Monet

RDBMS [4] to incorporate the new join operator. The
main-memory RDBMS Monet has been chosen as the
preferred implementation platform for the aforemen-
tioned Pathfinder project. Additionally, Monet’s base
type and operator extensibility make the system a suit-
able experimentation platform. Adding staircase join
to a main-memory RDBMS kernel allowed us to study
CPU-related and cache-related adaptations to the orig-
inal join algorithms. It turns out that staircase join can
be optimized well for in-memory operation. We close
this section with a number of experiments to manifest
the efficiency of staircase join.

4.1 Experimentation Platform

We first describe our experimentation platform, Monet,
in order to have some concrete material for illustrative
purposes. We then show that CPU-related and cache-
related adaptations to the staircase join algorithm are
possible.

First off, Monet’s bulk data type, the binary ta-
ble (BAT), is a good match for the two-column table
doc holding the pre/post document encoding. BATs
provide several useful features, like the special column
type void: virtual oid. A column of this type repre-
sents a contiguous sequence of integers o, o+1, o+2, . . .
for which only the offset o needs to be stored. This
not only saves storage space—a document occupies
only about 1.5× its size in Monet using our storage
structure—it also allows many operations to be exe-
cuted using positional lookups. For more details about
the Monet RDBMS, we refer to [4].

In our experiments, we used a Dual–Pentium 4
(Xeon) machine running on 2.2 GHz , 2 GB main-
memory, a two-level cache (levels L1/L2) of size
8 kB/512 kB , L1/L2 cache line size 32 byte/128byte ,
L1/L2 miss latency 28 cy/387 cy = 12.7 ns/176 ns
(measured with Calibrator [12]). Without loss of gen-
erality, we will use the characteristics of this machine
to illustrate machine-dependent calculations.

4.2 CPU-related Adaptations

The staircase join algorithm basically includes two
loops which scan the context and doc BATs, respec-
tively. The context sequence ordinarily contains far
less elements than the document, so we concentrate on
the inner loop scanpartition_desc (Algorithm 3). It
sequentially scans a given partition of the doc BAT.
Each iteration contains a comparison and a write to
the result BAT (except for the last iteration).

The preorder ranks in table doc form a contigu-
ous sequence. We use Monet’s void column type
and thus only store (and scan) the postorder ranks
of 4 byte each. An L2 cache line, hence, contains

∅

oo h //

〈0,0〉

post
OO

pre//

• document node◦ context node

pre = post
���������������������������������

##FF

pre = post+h

���������������������������������

\\:::

�
�
�
�

�
�
�
�
�
�

�
a1

copy

//�
a2

scan

// �

scan

//
�

skip

77

•

•

•

◦c1

•

•
••
•
•

•v •
••
•

•

••
◦c2
••
•

Figure 10: Estimation-based skipping (h = height of
document).

128/4 = 32 nodes. On this machine, CPU work for
one iteration in scanpartition_desc is about 17 cy .4

For one cache line, this is 17 cy × 32 = 544 cy which
exceeds the L2 miss latency of 387 cy . Therefore, Algo-
rithm 3 is CPU-bound so we concentrate on reducing
CPU work first.

A major part of the CPU work concerns the pos-
torder rank comparison in the line labeled (?) in Algo-
rithm 3. For a large part, we can take it out of the main
loop as follows. According to Equation (1) on page 3,
we can calculate a lower and upper bound for the num-
ber of descendants of a node v (0 6 level (v) 6 h).
These bounds establish two diagonals in the pre/post
plane (see Figure 10).

Take context node c1. Because a preorder traver-
sal of a tree encounters the descendants of c1 directly
after c1 itself has been visited, it is guaranteed that
the first post(c1) − pre(c1) nodes following c1 in the
pre/post plane are its descendants. Consequently, we
can simply copy these nodes to result without check-
ing their postorder ranks (copy phase; interval a1 in
the figure). The upper bound tells us that there are
at most h additional descendants, which we can obtain
using the original loop (scan phase; interval a2 in the
figure). As before, we stop scanning at the first follow-
ing node found and skip to the next context node. We
call this technique estimation-based skipping, because
we estimate the number of descendants before we enter
the tight copy loop. See Algorithm 4.

The error of our estimation is maximally h.5 There-
fore, we have restricted postorder rank comparison to

4This number has been computed from the actual assembler
instruction latencies of Pentium 4 [6].

5We have devised an alternative pre/postorder encoding that
allows exact calculation of |(v)/descendant| for any node v. As
this paper builds upon [8], we used the original encoding de-
scribed there.

scanpartition_desc (pre1 ,pre2 ,post) ≡
begin

estimate � min(pre2 , post);
/* copy phase */
for i from pre1 to estimate do

append doc[i] to result;

/* scan phase */
for i from estimate + 1 to pre2 do

if doc[i].post < post then
append doc[i] to result;

else
break; /* skip */

end

Algorithm 4: Estimation-based skipping
(descendant axis).

at most h × |context| nodes. The remaining nodes,
at least |result| − (h × |context|), are simply copied.
A single node copy iteration takes about 5 cycles.
Processing one L2 cache line now takes 5 cy × 32 =
160 cy which clearly undercuts L2 miss latency. The
copy phase is therefore cache-bound rather than CPU-
bound. Since h is small (in the order of tens of
nodes, insignificant in multi-million node documents),
the copy phase represents the bulk of the work.

The low number of CPU cycles is also due to the
branch-prediction friendliness of staircase join. The
loops of both phases have a fixed end condition and the
if conditional always chooses the same (then) branch
except for the last iteration. The branching behavior
of the tight inner loops of staircase join is perfectly
predictable such that the significant penalties for in-
struction retirement are avoided [14]. We now shift
our attention to the CPU cache, as it turned out to be
the bottleneck in the copy phase.

4.3 Cache-related Adaptations

The sequential scan of the pre/post plane is main-
memory friendly since CPU cache lines are fully used.
The sequential memory bandwidth of a machine with
two cache levels can be calculated as follows [4]:

LSL2

LL2 +
LSL2

LSL1

× LL1

=
128 byte

176 ns +
128 byte

32 byte
× 12.7 ns

= 551 MB/s

(with LSC = cache line size of cache C; LC = cache
miss latency for cache C).

Pentium 4 like other modern processors, however,
supports hardware prefetching which partially hides
the memory and cache latency effects: after a startup

penalty—when the CPU has recognized the purely se-
quential access pattern of staircase join—it will read
two L2 cache lines (= 256 byte) ahead.

The copy phase uses two data streams (Pentium 4
supports up to 8 independent streams): one load
stream (doc) and one store stream (result). The sim-
ple experiment of evaluating (root)/descendant can
show that hardware prefetching indeed improves per-
formance of the staircase join. This particular experi-
ment consists almost entirely of a copy phase (for query
characteristics, see Table 1). It showed a bandwidth of

bytes read + bytes written

execution time

=
(|doc| + context nodes scanned + result size)× 4 byte

execution time

=
(50, 844, 982 + 1 + 47, 015, 212) × 4 byte

519 ms

= 719.0 MB/s .

Intel suggests [6] that further bandwidth improvement
can be obtained by employing software prefetching.
Given the overallL1 + L2 miss latency, 28 cy+387 cy =
415 cy , it is suggested to additionally put an explicit
prefetch-instruction (prefetchnta) in the algorithm to
prefetch 3 cache lines ahead. In combination with ex-
tra loop unrolling (reducing loop overhead) and em-
ploying Duff’s device [7], the bandwidth was boosted
to 805 MB/s .

Although the numbers given here are specific for our
platform, we believe a staircase join implementation in
another RDBMS may encounter similar conditions and
may admit similar optimizations.

4.4 Experiments

The staircase join encapsulates “tree knowledge” by
applying the pruning and skipping techniques de-
scribed in Sections 3 and 4. In the remainder of this
section, we will assess the performance gain achieved
by employing these techniques.

The system used for the experiments is the one de-
scribed in Section 4.1. To ensure the test runs to be re-
producible, we used an easily accessible source of XML
documents, namely the XML generator XMLgen, de-
veloped for the XMark benchmark project [15]. For a
fixed DTD, this generator produces instances of con-
trollable size. We have used XML instances of 1 MB
up to 1 GB size (50 000–50 000 000 document nodes).
All documents were of height 11. We chose two
queries that generate substantial intermediary results
(see Table 1; sizes for other documents are propor-
tionally smaller). Both queries use two axis steps:
a descendant step from the root and a subsequent
descendant or ancestor step. A third, fourth, or

Q1: /descendant ::profile /descendant ::education

47,015,2126 127,984 1,849,360 63,793
Q2: /descendant ::increase /ancestor ::bidder

47,015,212 597,777 706,193 597,777

Table 1: Number of nodes in intermediary results
(1 GB document; 50,844,982 nodes)

further step would behave much like the second axis
step which is why we restricted these experiments
to two-step paths. Furthermore, we concentrate on
descendant and ancestor as explained earlier. The
queries are evaluated as illustrated here for Q2:

r= root(doc)
s1 = nametest(staircasejoin_desc(doc, r), "increase")
s2 = nametest(staircasejoin_anc(doc, s1), "bidder")

Experiment 1: Pruning, Avoiding Duplicates

The naive way of evaluating an axis step for a context
node sequence would be to evaluate the step for each
context node independently and construct the end re-
sult from these intermediary results (Section 3.1). One
of the advantages of the basic algorithm given in Sec-
tion 3.2, is that it avoids the generation of any du-
plicates that the naive approach would produce. Fig-
ure 11 (a) shows the number of result nodes that the
ancestor step in query Q2 (excluding the name test)
would produce using the naive approach and the stair-
case join. In this experiment, the staircase join saves
generation and subsequent removal of the about 75%
duplicates. This number is no coincidence, because the
context sequence contains increase nodes, which all
appear on a path of length 4 up to the root, i.e., for all
context nodes c, level(c) = 4. A large number of pairs
of these paths, however, intersect at level 3 leading to
a duplicate/node ratio of about 3/4 (cf. Figure 4).

The fact that the staircase join algorithm scans doc-
ument and context tables sequentially and only once
has, besides avoiding duplicates, other advantageous
consequences: execution times are linear with docu-
ment size (see Figure 11 (b)). Moreover, a further effect
of the access pattern is that the result is immediately
in document order, so a costly sorting phase is avoided.

Experiment 2: Effectiveness of Skipping

Figures 11 (c) and (d) assess the effectiveness of the
skipping and estimation-based skipping techniques.
The experiment counts accessed nodes and execution
times for the staircase join in the second axis step of

6This number is smaller than the total number of nodes in
the document, since the result of a descendant step does not
contain any attributes.

PSfrag replacements

1.1 11.0 111.0 1111.0

1

10

102

103

104

105

106

107

108

n
u
m

b
er

o
f

n
o
d
es

number of nodes scanned

document size [MB]

time [ms]

duplicates avoided
staircase join

scj (early nametest)

IBM DB2 SQL

no skipping

skipping

skipping (estimated)

result size

ancestor::n2

/descendant::n1

0

1

108

109

11

1108

12

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

21

2230

224

26019

260929

2613715

2832

2
9
7
4
3
0

2
9
8
8
8
8
5

3

3
0
9
1
0

3319361

33288673

333835

345

34749

35
3
5
4
0

4

44

54

57

571

6

7

7
0
3
1
8

7
0
6
1
9
3

7
2
6
4

8
1
6

(a) Avoiding duplicates (Q2)

PSfrag replacements

1.1 11.0 111.0 1111.0
1

10

102

103

104

105

106

107

108

number of nodes

number of nodes scanned

document size [MB]
ti

m
e

[m
s]

duplicates avoided

staircase join

scj (early nametest)

IBM DB2 SQL

no skipping

skipping

skipping (estimated)

result size

ancestor::n2

/descendant::n1

0

1

108

109

11

1108

12

134

1400

14240

17

18387

184771

1849360

1
9
2

2

2
0

2021

2
0
3
7

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

44

54

57

571

6

7

70318

706193

7264

816

(b) Staircase join performance (Q2)

PSfrag replacements

1.1 11.0 111.0 1111.0

1

10

102

103

104

105

106

107

108

number of nodes

n
u
m

b
er

o
f

n
o
d
es

sc
a
n
n
ed

document size [MB]

time [ms]

duplicates avoided

staircase join

scj (early nametest)

IBM DB2 SQL

no skipping
skipping

skipping (estimated)

result size

ancestor::n2

/descendant::n1

0

1

108

109

11

1108

12

134

1400

14240

17

1
8
3
8
7

1
8
4
7
7
1

1
8
4
9
3
6
0

192

2

20

2
0
2
1

2037

21

2230

224

2
6
0
1
9

2
6
0
9
2
9

2
6
1
3
7
1
5

2
8
3
2

297430

2988885

3

30910

3
3
1
9
3
6
1

3
3
2
8
8
6
7
3

3
3
3
8
3
5

345

3
4
7
4
9

35

3540

4

44

54

57

571

6

7

70318

706193

7264

816

(c) Effectiveness of skipping

PSfrag replacements

1.1 11.0 111.0 1111.0

1

10

102

103

104

105

106

107

108

number of nodes

number of nodes scanned

document size [MB]

ti
m

e
[m

s]

duplicates avoided

staircase join

scj (early nametest)

IBM DB2 SQL

no skipping
skipping
skipping (estimated)

result size

ancestor::n2

/descendant::n1

000

111

1
0
8

109

1
1

1108

12

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

4
45
4

57

571

6

7

70318

706193

7264

816

(d) Effectiveness of skipping

PSfrag replacements

1.1 11.0 111.0 1111.0

1

10

102

103

104

105

106

107

108

number of nodes

number of nodes scanned

document size [MB]

ti
m

e
[m

s]

duplicates avoided

staircase join
scj (early nametest)

IBM DB2 SQL

no skipping

skipping

skipping (estimated)

result size

ancestor::n2

/descendant::n1

0

1

108

1
0
9

11

1
1
0
8

1
2

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

2
1

2
2
3
0

2
2
4

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

3
4
5

34749

3
5

3540

4

44

54

57

571

6

7

70318

706193

7264

816

(e) Performance comparison (Q1)

PSfrag replacements

1.1 11.0 111.0 1111.0

1

10

102

103

104

105

106

107

108

number of nodes

number of nodes scanned

document size [MB]

ti
m

e
[m

s]

duplicates avoided

staircase join
scj (early nametest)

IBM DB2 SQL

no skipping

skipping

skipping (estimated)

result size

ancestor::n2

/descendant::n1

0

1

108

109

11

1108

12

1
3
4

1
4
0
0

1
4
2
4
0

1
7

18387

184771

1849360

1
9
2

2

2
0

2021

2
0
3
7

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

44

54

5
7

5
7
1

6 7

70318

706193

7264

816

(f) Performance comparison (Q2)

Figure 11: Experimental results (diagrams use a log scale).

query Q1. Skipping reduces the number of nodes ac-
cessed to at most |result| + |context| (see Section 3.3).
The logarithmic scale of (c) clearly shows that the
amount of nodes accessed for “skipping” that do not
appear in the result remains limited.7 The amount
of nodes actually skipped (the difference between “no
skipping” and “skipping”) is significant: about 92 %
of the nodes were skipped. This number obviously de-
pends on the query, but the main point is that skipping
makes the number of accessed nodes independent of the
document size.

The reduction in accessed nodes has its effect on ex-
ecution times. Under the same conditions (staircase
join in second axis step of query Q1), execution time

7Because of attribute filtering, the difference between “skip-
ping” and “result size” is slightly larger than |context|. The
statement ‘we scan at most |context| nodes too many’ holds nev-
ertheless.

is about cut in half (“no skipping” vs. “skipping” for
the larger document sizes in (d)). Employing the cache
conscious implementation of estimation-based skipping
(see Sections 4.2 and 4.3) gives an additional perfor-
mance gain of about 20% (“skipping (estimated)”).

Experiment 3: Comparison with IBM DB2

The focus of this paper is on the staircase join and
its benefit for evaluating axis steps. Other aspects
of XPath like name tests and predicates, have largely
been left out of the discussion. For this reason, an
axis step like cs/ancestor::n has up to now been
treated as nametest(staircasejoin_anc(doc, cs), n),
i.e., first fully evaluate the ancestor step for context
sequence cs , and then do a subsequent name test for
tag name n.

In the introduction, however, we already mentioned
that the staircase join behaves to the query optimizer in

many ways as an ordinary join, for example, by admit-
ting selection pushdown. Observe that the result of the
staircase join contains a selection of nodes from the doc
table. The subsequent name test is a selection on tag
name n. Pushing the name test through the staircase
join, hence, means doing both selections in opposite
order. The tree properties used by the staircase join
are entirely based on preorder and postorder ranks.
Those properties remain valid for a subset of nodes.
Therefore, staircasejoin_anc(nametest(doc, n), cs)
is a valid equivalent of the example. Note that, con-
sequently, the name test is performed on the entire
document, which obviously makes sense for selective
name tests only.

Figures 11 (e) and (f) compare execution times for
both queries with and without name test pushdown. In
both queries, an execution plan with name test push-
down shows to be faster by about a factor 3. Future
research on a cost model is intended to let the system
intelligently decide for or against name test pushdown
or similar rewrites.

The experiment furthermore shows the execution
times of an implementation with limited tree awareness
(on top of IBM DB2). Considering the performance in-
creases we have seen for avoiding duplicates, pruning,
and skipping, we believe a conventional RDBMS can
achieve an increase of similar magnitude by employing
the staircase join which is in line with the observations
in [17]. Note that, although not explicitly shown in the
query plan of Figure 3, IBM DB2 also performs an early
name test (the B-tree index actually uses concatenated
(pre, post, tag name) keys). As a further note, being
tree-unaware, an RDBMS query optimizer sometimes
makes bad estimations and consequently chooses bad
query plans, which happened for our query Q2 (this
has been observed by others as well [16]): the actual
execution times shown are for the SQL query corre-
sponding with the equivalent manual rewrite [13] of
Q2, /descendant::bidder[descendant::increase].

5 More Related Research

Recall that the core operation of staircase join resem-
bles a self merge join of the pre-sorted doc table with
the join predicate dynamically changed to trace the
staircase boundary (cf. Section 3.2). In [17], the
multi-predicate merge join (MPMGJN) was introduced
with the specific purpose to efficiently support interval
containment predicates. While such predicates allow
to express the semantics of the XPath ancestor and
descendant axes, MPMGJN has been designed to ex-
ploit the hierarchical containment of intervals and thus
lacks further tree awareness: due to pruning and skip-
ping, staircase join touches and tests less nodes than

MPMGJN. Nevertheless, we subscribe to the view ex-
pressed in [16, 17], that increased awareness of data
type properties will be critical in turning RDBMSs into
efficient XML processors.

Staircase join is a real self join in the sense that
context nodes and document nodes are tuples of the
doc encoding table. A single B+-tree—built at doc-
ument loading time—suffices to index both, arbitrary
context sequences and the document. This is unlike
the approaches described in [5] and [9], where a special
purpose index structure needs to be built over context
and document (referred to as ancestor and descendant
lists in [5, 9]) to support ancestor or descendant step
evaluation with skipping. Like staircase join, the al-
gorithms of [5, 9] depend on the lists being sorted in
document order. The join operators of [5] are based
on a modified B+-tree implementation that uses extra
sibling pointers. The authors of [9] propose to build
new index structures, the XR-Trees, over context and
document.

Staircase join derives all pruning and skipping in-
formation from the doc table itself and it does so using
simple integer arithmetic. We do not require the under-
lying RDBMS’s B+-tree implementation to be altered.
Furthermore, since a single B+-tree instance indexes
the context as well as the pre/post plane, it is likely
that less index pages compete for buffer slots during
query evaluation.

The conceptual simplicity of staircase join led to al-
gorithms which exhibit particularly simple control flow.
Just like [14], we found this to be critical to achieve
high efficiency, especially in the main-memory RDBMS
context. Highly predictable branches in its inner loop
and a strictly sequential access pattern [1] make stair-
case join CPU- and cache-friendly.

Finally, note that staircase join never touches a node
in tables context and doc more than once (skipping, in
fact, helps to avoid touching a significant number of
nodes at all). This is in contrast to, e.g., the EE/EA
join algorithms of [11] which repeatedly iterate over
context and document in their inner loops.

6 Conclusions

The staircase join operator described in this paper
exploits the tree properties encoded in the pre/post
plane to optimize database-supported XPath evalua-
tion. Knowledge of tree properties like subtree size and
inclusion/disjointness of subtrees is available in this en-
coding at the cost of simple integer operations. We
have shown that increased tree awareness can lead to
significantly improved XPath performance.

To avoid cluttering the query optimizer with XML
specifics, we propose to teach the RDBMS about tree

properties by means of a local change to its kernel: the
addition of a single join operator, the staircase join,
encapsulating all “tree knowledge”. The staircase join
has been added to a main-memory RDBMS kernel. In
this context, we could demonstrate that staircase join
can be optimized well for in-memory operation.

Future Research

Ideally, we would like to experiment with a stair-
case join implementation in a commercial disk-based
RDBMS, if possible. Secondly, in our experiments,
we used documents of up to 1 GB . For even larger
documents or large multi-document databases, one ev-
idently needs to apply fragmentation strategies. An
interesting strategy is to fragment by tag name. First
experiments are encouraging: the execution time of
Q1 could be brought down from 345 ms to 39 ms .
This strategy should probably be combined with a
partitioning-inspired one (see Section 3.2) when tag
name fragments become too large. It should be ob-
vious that fragmentation naturally leads to a parallel
XPath execution strategy.

Further research goes in the direction of a cost model
to be able to intelligently choose between name/node
test pushdown and related XPath rewriting laws.

Acknowledgments

The authors would like to thank the Monet people at
CWI (Amsterdam, The Netherlands) for their support
and most useful feedback. Maurice van Keulen has
been with the University of Konstanz as a DAAD IN-
NOVATEC funded research fellow.

References

[1] Anastassia Ailamaki, David J. DeWitt, and Mark D.
Hill. Data Page Layouts for Relational Databases on
Deep Memory Hierarchies. The VLDB Journal, 11(3),
2002.

[2] Anders Berglund, Scott Boag, Don Chamberlin,
Mary F. Fernandez, Michael Kay, Jonathan Robie, and
Jérôme Siméon. XML Path Language (XPath) 2.0.
Technical Report W3C Working Draft, Version 2.0,
World Wide Web Consortium, November 2002. http:
//www.w3.org/TR/xpath20/.

[3] Scott Boag, Don Chamberlin, Fernandez Mary F.,
Daniela Florescu, Jonathan Robie, and Jérôme
Siméon. XQuery 1.0: An XML Query Language. Tech-
nical Report W3C Working Draft, World Wide Web
Consortium, November 2002. http://www.w3.org/

TR/xquery.

[4] Peter A. Boncz. Monet, a Next-Generation DBMS
Kernel for Query-Intensive Applications. PhD thesis,
CWI Amsterdam, 2002.

[5] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang,
Vassilis J. Tsotras, and Carlo Zaniolo. Efficient Struc-
tural Joins on Indexed XML Documents. In Proc.
of the 28th VLDB Conference, pages 263–274, Hong
Kong, China, August 2002.

[6] Intel Corporation. Intel Pentiumr and Intel Xeonr
Processor Optimization Reference Manual, 2002.

[7] Tom Duff. Netnews posting. http://www.jargon.net/
jargonfile/d/Duffsdevice.html, 1984.

[8] Torsten Grust. Accelerating XPath Location Steps.
In Proc. of the 21st ACM SIGMOD Conference, pages
109–120, Madison, Wisconsin, USA, June 2002. ACM
Press.

[9] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin
Ooi. XR-Tree: Indexing XML Data for Efficient Struc-
tural Joins. In Proc. of the 19th ICDE Conference,
Bangalore, India, March 2003. IEEE Computer Soci-
ety.

[10] Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl.
Managing Intervals Efficiently in Object-Relational
Databases. In Proc. of the 26th VLDB Conference,
pages 407–418, Cairo, Egypt, September 2000.

[11] Quanzhong Li and Bongki Moon. Indexing and Query-
ing XML Data for Regular Path Expressions. In Proc.
of the 27th VLDB Conference, pages 361–370, Rome,
Italy, September 2001.

[12] Stefan Manegold. Understanding, Modeling, and Im-
proving Main-Memory Database Performance. PhD
thesis, CWI Amsterdam, 2002.

[13] Dan Olteanu, Holger Meuss, Tim Furche, and François
Bry. Symmetry in XPath. Technical Report PMS-FB-
2001-16, Institute of Computer Science, University of
Munich, Germany, October 2001.

[14] Kenneth A. Ross. Conjunctive Selection Conditions
in Main Memory. In Proc. of the 21st ACM Sym-
posium on Principles of Database Systems (PODS),
pages 109–120, Madison, Wisconsin, June 2002. ACM
Press.

[15] Albrecht Schmidt, Florian Waas, Martin Kersten,
Michael J. Carey, Ioana Manolescu, and Ralph Busse.
XMark: A Benchmark for XML Data Management. In
Proc. of the 28th VLDB Conference, pages 974–985,
Hong Kong, China, August 2002.

[16] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer,
Jayavel Shanmugasundaram, Eugene Shekita, and
Chun Zhang. Storing and Querying Ordered XML Us-
ing a Relational Database System. In Proc. of the 21st
ACM Symposium on Principles of Database Systems
(PODS), Madison, Wisconsin, June 2002. ACM Press.

[17] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong
Luo, and Guy Lohman. On Supporting Containment
Queries in Relational Database Management Systems.
In Proc. of the 20th ACM SIGMOD Conference, pages
425–436, Santa Barbara, California, May 2001. ACM
Press.

