I adopted some of this material from a slide set of René Müller (now with IBM Research).
While **general-purpose CPUs** increasingly feature “multi-media” functionality,

graphics processors become increasingly **general-purpose**.
Graphics Pipeline

- **App** → **API** → **Front-End** → **vertices** → **Transform & Lighting** → **Geometry & Primitive Assembly** → **Rasterization** → **Frame Buffer** → **Fragment Coloring & Texture**

- Connectivity information:
 - **Scissor**
 - **Alpha**
 - **Stencil**
 - **Depth**

| © Jens Teubner · Data Processing on Modern Hardware · Winter 2019/20 | 269 |
Some tasks in the pipeline lend themselves to in-hardware processing.

- Embarrassingly parallel
- Few and fairly simple operations
- Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today’s cards can do much more.
The programmability of GPUs has improved dramatically.

- hard-coded fix-function pipeline
- customization through parameters
- programmable shaders
 - vertex shader
 - geometry shader
 - fragment shader (fragment: pixel)
- “general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)
General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.
→ geometry shaders idle for pixel-heavy workloads and vice versa
→ unified model with general-purpose cores

Thus: Design inspired by CPUs, but different

Rationale: Optimize for **throughput**, not for **latency**.
CPUs vs. GPUs

CPU: task parallelism
- relatively heavyweight threads
- 10s of threads on 10s of cores
- each thread managed explicitly
- threads run different code

GPU: data parallelism
- lightweight threads
- 10,000s of threads on 100s of cores
- threads scheduled in batches
- all threads run same code
 → SPMD, single program, multiple data
To handle 10,000s of threads efficiently, keep things simple.

- Don’t try to **reduce** latency, but **hide** it.
 - Large thread pool rather than caches
 (This idea is similar to SMT in commodity CPUs \(\uparrow\) slide 140.)

- Assume **data parallelism** and restrict **synchronization**.
 - Threads and small **groups** of threads use local memories.
 - Synchronization only within those groups (more later).

- Hardware **thread scheduling** (simple, in-order).
 - Schedule threads in **batches** (\(\sim\) “warps”).
OpenCL Computation Model

- Host system and **co-processor** (GPU is only one possible co-processor.)
- Host triggers
 - data copying
 - host \(\leftrightarrow\) co-processor,
 - invocations of **compute kernels**.
- Host interface: **command queue**.
Processing Model: (Massive) Data Parallelism

A traditional loop

```c
for (i = 0; i < nitems; i++)
  do_something(i);
```

becomes a **data parallel kernel invocation** in OpenCL (~ map):

```c
status = clEnqueueNDRangeKernel(
  commandQueue,
  do_something_kernel, ..., &nitems, ...);
```

```c
__kernel void do_something_kernel(...) {
  int i = get_global_id(0);
  ...
}
```
Idea: Invoke kernel for each point in a problem domain

- e.g., 1024 × 1024 image, one kernel invocation per pixel; → 1,048,576 kernel invocations (“work items”).
- Don’t worry (too much) about task → core assignment or number of threads created; runtime does it for you.
- Problem domain can be 1-, 2-, or 3-dimensional.

- Can pass global parameters to all work item executions.
- Kernel must figure out work item by calling `get_global_id()`.
OpenCL defines a **C99-like** language for compute kernels.

- Compiled **at runtime** to particular core type.
- Additional set of built-in functions:
 - Context (e.g., `get_global_id()`); synchronization.
 - Fast implementations for special math routines.

```c
__kernel void square (__global float *in, __global float *out)
{
    int i = get_global_id(0);
    out[i] = in[i] * in[i];
}
```
Work items may be grouped into **work groups**.

- Work groups \leftrightarrow scheduling batches.
- Synchronization between work items **only** within work groups.
- There is a device-dependent limit on the number of work items per work group (can be determined via `clGetDeviceInfo()`).
- Specify items per group when queuing the kernel invocation.
- All work groups must have same size (within one invocation).

E.g., Problem space: 800×600 items (2-dimensional problem).

\rightarrow Could choose $40 \times 6, 2 \times 300, 80 \times 5, \ldots$ work groups.
Example: NVIDIA GPUs

NVIDIA GTX 280

- 10 Thread Processing Clusters
- 10×3 Streaming Multiprocessors
- $10 \times 3 \times 8$ Scalar Processor Cores
 → More like ALUs (slide 272)
- Each Multiprocessor:
 - 16k 32-bit registers
 - 16kB shared memory
 - up to 1024 threads
 (may be limited by registers and/or memory)

source: www.hardwaresecrets.com
Inside a Streaming Multiprocessor

- 8 Scalar Processors (Thread Processors)
 - single-precision floating point
 - 32-bit and 64-bit integer
- 2 Special Function Units
 - sin, cos, log, exp
- Double Precision unit
- 16 kB Shared Memory
- Each Streaming Multiprocessor: up to 1,024 threads.
- GTX 280: 30 Streaming Multiprocessors
 → 30,720 concurrent threads (!)
Inside a Streaming Multiprocessor: nVidia Fermi

The third generation SM introduces several architectural innovations that make it not only the most powerful SM yet built, but also the most programmable and efficient.

- 512 High Performance CUDA cores
 - Each SM features 32 CUDA processors—a fourfold increase over prior SM designs. Each CUDA processor has a fully pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). Prior GPUs used IEEE 754-1985 floating point arithmetic. The Fermi architecture implements the new IEEE 754-2008 floating-point standard, providing the fused multiply-add (FMA) instruction for both single and double precision arithmetic. FMA improves over a multiply-add (MAD) instruction by doing the multiplication and addition with a single final rounding step, with no loss of precision in the addition. FMA is more accurate than performing the operations separately. GT200 implemented double precision FMA.
 - In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly designed integer ALU supports full 32-bit precision for all instructions, consistent with standard programming language requirements. The integer ALU is also optimized to efficiently support 64-bit and extended precision operations. Various instructions are supported, including Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population count.

- 16 Load/Store Units
 - Each SM has 16 load/store units, allowing source and destination addresses to be calculated for sixteen threads per clock. Supporting units load and store the data at each address to cache or DRAM.

Source: nVidia Fermi White Paper
Inside a Streaming Multiprocessor: nVidia Turing

- now 64 “cores” (thread processors) per streaming multiprocessor (SM) (after 128 in Pascal architecture)
- 72 SMs per GPU \((i.e. \ 4608 \ “cores” \ per \ GPU) \)
- plus:
 - “Tensor Cores” \((\sim \) NN training)\)
 - “Ray Tracing Cores”
- 6 MB L2 Cache

Source: nVidia Turing White Paper
Scheduling in Batches

- In SM threads are scheduled in units of 32, called **warps**.
- **Warp**: Set of 32 parallel threads that start together at the same program address.

For memory access warps are split into **half-warps** consisting of 16 threads.

- Warps are scheduled with zero-overhead.
- Scoreboard is used to track which warps are ready to execute.

- GTX 280: 32 warps per multiprocessor (1024 threads)
- newer cards: 48 warps per multiprocessor (1536 threads)
- **SIMT**: Single Instruction, Multiple Threads
- All threads execute the same instruction.
- Threads are split into warps by increasing thread IDs (warp 0 contains thread 0).
- At each time step scheduler selects warp ready to execute (i.e., all its data are available)
- nVidia Fermi: dual issue; issue two warps at once

\[\text{no dual issue for double-precision instr.}\]
GPUs implement **fine-grained multithreading**

![Diagram showing fine-grained multithreading]

But:
- Scheduling decisions here affect **entire warps**.
- GPUs have **more functional units** ("scalar processors").
- Functional units cannot be scheduled arbitrarily.

The above illustration is somewhat misleading in that regard.
Warps and Latency Hiding

Some runtime characteristics:

- Issuing a warp instruction takes \(4 \text{ cycles}\) (8 scalar processors).
- Register write-read latency: \(24 \text{ cycles}\).
- Global (off-chip) memory access: \(\approx 400 \text{ cycles}\).

Threads are executed **in-order**.

→ **Hide latencies** by executing other warps when one is paused.
→ Need **enough warps** to fully hide latency.

E.g.,

- Need \(24/4 = 6\) warps to hide register dependency latency.
- Need \(400/4 = 100\) instructions to hide memory access latency. If every 8th instruction is a memory access, \(100/8 \approx 13\) warps would be enough.
Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various *resource limits*

- Limited number of 32-bit *registers* per multiprocessor

 E.g.: 11 registers per thread, 256 threads/items per work group.

 CUDA compute capability 1.1: 8,192 registers per multiprocessor.

 \rightarrow max. 2 work groups per multiprocessor ($3 \times 256 \times 11 > 8192$)

- 48 kB *shared memory* per multiprocessor (compute cap. 2.0)

 E.g.: 12 kB per work group

 \rightarrow max. 4 work groups per multiprocessor

- 8 *work groups* per multiprocessor; max. 512 work items per work group

- Additional constraints: *branch divergence, memory coalescing.*

Occupancy calculation (and choice of work group size) is complicated!
Work Groups (NVIDIA: “Blocks”)

Work Groups (on NVIDIA GTX 280):

- Work group can contain up to 512 threads
- A work group is scheduled to exactly one SM
 - Central round-robin distribution
 - Remember: Synchronization and collaboration through shared memory only within work group
- Each SM can execute up to 8 work groups
 - Actual number depends on register and shared memory usage
 - Combined shared memory usage of all work groups ≤ 16 kB

⚠️ Characteristics of one particular piece of hardware, not part of the OpenCL specification!
Executing a Warp Instruction

Within a warp, **all threads** execute **same instructions**.

→ What if the code contains **branches**?

```c
if (i < 42)
    then_branch();
else
    else_branch();
```

- If **one** thread enters the branch, **all** threads have to execute it.
 → Effect of branch execution discarded if necessary.
 ⇐ Predicated execution (↗ slide 112).

- This effect is called **branch divergence**.

- **Worst case:** all 32 threads take a different code path.
 → Threads are effectively executed **sequentially**.
Branch divergence will make GPU lanes **inactive**

→ “wasted” resources

This can be harmful in typical database query plans.

In the example on the left, 90 k warp iterations (rather than 1.1 M) would have been enough.
The effect can be addressed with the **Lane Refill** technique:

- If a warp gets under-utilized, **buffer** its content and **abort** processing that warp.
- Later, use buffer content to **fill up** (some other) under-utilized warp.
OpenCL Memory Model

- Global memory
- Compute device
 - Compute unit 1
 - Private memory
 - Work item 1
 - Work item 2
 - Local memory
 - Compute unit 2
 - Private memory
 - Work item 1
 - Work item 2
 - Local memory
- Host memory
- Host
NVIDIA/Cuda uses a slightly different terminology:

<table>
<thead>
<tr>
<th>OpenCL</th>
<th>Cuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>private memory</td>
<td>registers</td>
</tr>
<tr>
<td>local memory</td>
<td>shared memory</td>
</tr>
<tr>
<td>global memory</td>
<td>global memory</td>
</tr>
</tbody>
</table>

On-chip memory is **significantly** faster than off-chip memory.
Like in CPU-based systems, GPUs access **global memory** in chunks (32-bit, 64-bit, or 128-bit **segments**).

→ Most efficient if accesses by threads in a half-warp **coalesce**.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

- Coalesced access → 1 memory transaction

- Misaligned → 16 memory transactions (2 if comp. capability ≥ 1.2)
Coalescing Example

Example to demonstrate coalescing effect:

```c
__kernel void copy(__global unsigned int *din,
                  __global unsigned int *dout,
                  const unsigned int offset)
{
    int i = get_global_id(0);
    dout[i] = din[i + offset];
}
```

⚠️ **Strided access** causes similar problems!
Shared memory (OpenCL: “local memory”):

- **fast** on-chip memory (few cycles latency)
- throughput: 38–44 GB/s per multiprocessor(!)

- partitioned into **16 banks**
 - 16 threads (1 half-warp) can access shared memory simultaneously **if and only if** they all access a different bank.
 - Otherwise a **banking conflict** will occur.

- Conflicting accesses are **serialized**
 - (potentially significant) **performance impact**
Bank Conflicts to Shared Memory

stride width: 1 word

→ no bank conflicts

© Jens Teubner · Data Processing on Modern Hardware · Winter 2019/20
Bank Conflicts to Shared Memory (cont.)

stride width: 2 words

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

→ 2-way bank conflicts

stride width: 4 words

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

→ 4-way bank conflicts
Exception: Broadcast Reads

Broadcast reads do not lead to a bank conflict.

- All threads must read the same word.
Thread Synchronization

Threads may use built-in functions to synchronize within work groups.

- `barrier(flags)` Block until all threads in the group have reached the barrier. Also enforces memory ordering.
- `mem_fence(flags)` Enforce memory ordering: all memory operations are committed before thread continues.

```c
for (unsigned int i = 0; i < n; i++)
{
    do_something();
    barrier(CLK_LOCAL_MEM_FENCE);
}
```

If barrier occurs in a branch, same branch must be taken by all threads in the group (danger: deadlocks or unpredictable results).
Synchronization Across Work Groups

To synchronize **across** work groups,

- use **in-order** command queue and queue multiple kernel invocations from the host side
 - Can also queue **markers** and **barriers** to the command queue.

or

- use OpenCL **event mechanism**.
 - Can also synchronize host ↔ device and kernel executions in **multiple command queues**.

To wait on host side until all queued commands have been completed, use `clFinish(command queue)`.
GPUs

To summarize,

- GPUs provide **high degrees of parallelism** that can be programmed using a **high-level language**.

But:

- GPUs are not simply “multi-core processors.”
- Unleashing their performance requires significant efforts and great care for details.

Also note that

- GPUs provide lots of **Giga-FLOPS**.

 → But rather few applications really need raw GFLOPS.