Part VI

Graphics Processors (GPUs)

I adopted some of this material from a slide set of René Müller (now with IBM Research).
While **general-purpose CPUs** increasingly feature “multi-media” functionality,

- **SIMD**
- **rich instructions**
- **streaming parallelism**

CPUs

GPUs

- **memory model**
- **programmable shaders**
- **general-purpose instructions**
- **I/O**

graphics processors become increasingly **general-purpose**.
Graphics Pipeline

App → Front-End → Transform & Lighting → Geometry & Primitive Assembly → Rasterization

connectivity information

Frame Buffer → Raster & Operations → Fragment Coloring & Texture

Scissor Alpha Stencil Depth \{ Test \}
Graphics Processors

Some tasks in the pipeline lend themselves to in-hardware processing.

- Embarrassingly parallel
- Few and fairly simple operations
- Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today’s cards can do much more.
The programmability of GPUs has improved dramatically.

- hard-coded **fix-function pipeline**
- customization through **parameters**
- programmable **shaders**
 - vertex shader
 - geometry shader
 - fragment shader (fragment: pixel)
- “general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)
General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.

→ geometry shaders idle for pixel-heavy workloads and vice versa
→ **unified model** with general-purpose cores

Thus: Design inspired by CPUs, but different

Rationale: Optimize for **throughput**, not for **latency**.
CPUs vs. GPUs

CPU: task parallelism
- relatively heavyweight threads
- 10s of threads on 10s of cores
- each thread managed explicitly
- threads run different code

GPU: data parallelism
- lightweight threads
- 10,000s of threads on 100s of cores
- threads scheduled in batches
- all threads run same code
 → SPMD, single program, multiple data
Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

- Don’t try to \textit{reduce} latency, but \textit{hide} it.
 - Large thread pool rather than caches
 (This idea is similar to SMT in commodity CPUs \(\uparrow\) slide 139.)

- Assume \textbf{data parallelism} and restrict \textit{synchronization}.
 - Threads and small \textbf{groups} of threads use local memories.
 - Synchronization only within those groups (more later).

- Hardware \textbf{thread scheduling} (simple, in-order).
 - Schedule threads in \textbf{batches} (\(\sim\) “warps”).
OpenCL Computation Model

- **Host system and co-processor** (GPU is only one possible co-processor.)

- **Host triggers**
 - data copying
 - host ↔ co-processor,
 - invocations of **compute kernels**.

- **Host interface**: command queue.
A traditional loop

```c
for (i = 0; i < nitems; i++)
    do_something (i);
```

becomes a data parallel kernel invocation in OpenCL (map):

```c
status = clEnqueueNDRangeKernel (
        commandQueue,
        do_something_kernel, ..., &nitems, ...);

__kernel void do_something_kernel (...) {
    int i = get_global_id (0);
    ...
}
```
Kernel Invocation

Idea: Invoke kernel for each point in a problem domain

- *e.g.*, 1024×1024 image, one kernel invocation per pixel; \rightarrow 1,048,576 kernel invocations ("work items").
- Don’t worry (too much) about task \rightarrow core assignment or number of threads created; **runtime** does it for you.
- Problem domain can be 1-, 2-, or 3-dimensional.

- Can pass global parameters to all work item executions.
- Kernel must figure out work item by calling `get_global_id()`.
OpenCL defines a **C99-like** language for compute kernels.

- Compiled **at runtime** to particular core type.
- Additional set of built-in functions:
 - Context (e.g., `get_global_id()`); synchronization.
 - Fast implementations for special math routines.

```c
__kernel void square(__global float *in,
                      __global float *out)
{
    int i = get_global_id(0);
    out[i] = in[i] * in[i];
}
```
Work Items and Work Groups

Work items may be grouped into work groups.

- Work groups ↔ scheduling batches.
- Synchronization between work items only within work groups.
- There is a device-dependent limit on the number of work items per work group (can be determined via clGetDeviceInfo()).
- Specify items per group when queuing the kernel invocation.
- All work groups must have same size (within one invocation).

E.g., Problem space: 800×600 items (2-dimensional problem).
→ Could choose 40×6, 2×300, 80×5, ... work groups.
Example: NVIDIA GPUs

NVIDIA GTX 280

- 10 Thread Processing Clusters
- 10×3 Streaming Multiprocessors
- $10 \times 3 \times 8$ Scalar Processor Cores
 → More like ALUs (↗slide 271)
- Each Multiprocessor:
 - 16k 32-bit registers
 - 16 kB shared memory
 - up to 1024 threads
 (may be limited by registers and/or memory)

source: www.hardwaresecrets.com
Inside a Streaming Multiprocessor

- 8 Scalar Processors (Thread Processors)
 - single-precision floating point
 - 32-bit and 64-bit integer
- 2 Special Function Units
 - sin, cos, log, exp
- Double Precision unit
- 16 kB Shared Memory
- Each Streaming Multiprocessor: up to 1,024 threads.
- GTX 280: 30 Streaming Multiprocessors
 → 30,720 concurrent threads (!)
Third Generation Streaming Multiprocessor

The third generation SM introduces several architectural innovations that make it not only the most powerful SM yet built, but also the most programmable and efficient.

- 512 High Performance CUDA cores
- Each SM features 32 CUDA processors—a fourfold increase over prior SM designs. Each CUDA processor has a fully pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). Prior GPUs used IEEE 754-1985 floating point arithmetic. The Fermi architecture implements the new IEEE 754-2008 floating-point standard, providing the fused multiply-add (FMA) instruction for both single and double precision arithmetic. FMA improves over a multiply-add (MAD) instruction by doing the multiplication and addition with a single final rounding step, with no loss of precision in the addition. FMA is more accurate than performing the operations separately. GT200 implemented double precision FMA.
- In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly designed integer ALU supports full 32-bit precision for all instructions, consistent with standard programming language requirements. The integer ALU is also optimized to efficiently support 64-bit and extended precision operations. Various instructions are supported, including Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population count.
- 16 Load/Store Units
- Each SM has 16 load/store units, allowing source and destination addresses to be calculated for sixteen threads per clock. Supporting units load and store the data at each address to cache or DRAM.

Source: nVidia Fermi White Paper
In SM threads are scheduled in units of 32, called **warps**.

Warp: Set of 32 parallel threads that start together at the same program address.

For memory access warps are split into **half-warps** consisting of 16 threads.

Warps are scheduled with zero-overhead.

Scoreboard is used to track which warps are ready to execute.

- GTX 280: 32 warps per multiprocessor (1024 threads)
- newer cards: 48 warps per multiprocessor (1536 threads)
SPMD / SIMT Processing

- **SIMT**: Single Instruction, Multiple Threads
 - All threads execute the same instruction.
 - Threads are split into warps by increasing thread IDs (warp 0 contains thread 0).
 - At each time step scheduler selects warp ready to execute (i.e., all its data are available)
 - nVidia Fermi: dual issue; issue two warps at once\(^a\)
 - \(^a\)no dual issue for double-precision instr.
GPUs implement **fine-grained multithreading**

But:

- Scheduling decisions here affect **entire warps**.
- GPUs have **more functional units** ("scalar processors").
- Functional units cannot be scheduled arbitrarily.

The above illustration is somewhat misleading in that regard.
Warps and Latency Hiding

Some runtime characteristics:

- Issuing a warp instruction takes \textbf{4 cycles} (8 scalar processors).
- Register write-read latency: \textbf{24 cycles}.
- Global (off-chip) memory access: \(\approx 400\) cycles.

Threads are executed \textbf{in-order}.

\begin{itemize}
 \item \textbf{Hide latencies} by executing other warps when one is paused.
 \item Need \textbf{enough warps} to fully hide latency.
\end{itemize}

\textit{E.g.},

\begin{itemize}
 \item Need \(24/4 = 6\) warps to hide register dependency latency.
 \item Need \(400/4 = 100\) instructions to hide memory access latency. If every 8th instruction is a memory access, \(100/8 \approx 13\) warps would be enough.
\end{itemize}
Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various resource limits

- limited number of 32-bit **registers** per multiprocessor

 E.g.: 11 registers per thread, 256 threads/items per work group.

 CUDA compute capability 1.1: 8,192 registers per multiprocessor.

 → max. 2 work groups per multiprocessor ($3 \times 256 \times 11 > 8192$)

- 48 kB **shared memory** per multiprocessor (compute cap. 2.0)

 E.g.: 12 kB per work group

 → max. 4 work groups per multiprocessor

- 8 **work groups** per multiprocessor; max. 512 work items per work group

- Additional constraints: **branch divergence, memory coalescing**.

Occupancy calculation (and choice of work group size) is complicated!
Work Groups (NVIDIA: “Blocks”)

Work Groups (on NVIDIA GTX 280):

- Work group can contain up to 512 threads
- A work group is scheduled to exactly one SM
 - Central round-robin distribution
 - Remember: Synchronization and collaboration through shared memory only within work group
- Each SM can execute up to 8 work groups
 - Actual number depends on register and shared memory usage
 - Combined shared memory usage of all work groups ≤ 16 kB

⚠️ Characteristics of one particular piece of hardware, not part of the OpenCL specification!
Executing a Warp Instruction

Within a warp, **all threads** execute **same instructions**.

→ What if the code contains **branches**?

```c
if (i < 42)
    then_branch();
else
    else_branch();
```

- If **one** thread enters the branch, **all** threads have to execute it.

 → Effect of branch execution discarded if necessary.
 → Predicated execution (↗ slide 111).

- This effect is called **branch divergence**.

- **Worst case**: all 32 threads take a different code path.

 → Threads are effectively executed **sequentially**.
OpenCL Memory Model

- **Global Memory**
 - Connected to **Compute Device**
 - Shared by all compute units

- **Local Memory**
 - Unique per compute unit
 - private memory
 - work item 1
 - work item 2

- **Private Memory**
 - Unique per work item
 - private memory

- **Compute Device**
 - Contains multiple compute units
 - compute unit 1
 - compute unit 2

- **Host Memory**
 - Connected to **Host**

- **Host**
 - Access to global memory

© Jens Teubner · Data Processing on Modern Hardware · Winter 2018/19
NVIDIA/Cuda uses a slightly different terminology:

OpenCL
- private memory
- local memory
- global memory

Cuda
- registers
- shared memory
- on-chip
- global memory
- off-chip

On-chip memory is **significantly** faster than off-chip memory.
Like in CPU-based systems, GPUs access **global memory** in chunks (32-bit, 64-bit, or 128-bit **segments**).

→ Most efficient if accesses by threads in a half-warp **coalesce**.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

- Coalesced access → 1 memory transaction

- Misaligned → 16 memory transactions (2 if comp. capability \(\geq 1.2 \))
Coalescing Example

Example to demonstrate coalescing effect:

```c
__kernel void
copy (__global unsigned int *din,
     __global unsigned int *dout,
     const unsigned int offset)
{
    int i = get_global_id(0);
    dout[i] = din[i + offset];
}
```

Strided access causes similar problems!
Shared memory (OpenCL: “local memory”):
- **fast** on-chip memory (few cycles latency)
- throughput: **38–44 GB/s per multiprocessor(!)**

- partitioned into **16 banks**
 - 16 threads (1 **half-warp**) can access shared memory simultaneously **if and only if** they all access a different bank.
 - Otherwise a **banking conflict** will occur.

- Conflicting accesses are **serialized**
 - (potentially significant) **performance impact**
Bank Conflicts to Shared Memory

stride width: 1 word

→ no bank conflicts

© Jens Teubner · Data Processing on Modern Hardware · Winter 2018/19
Bank Conflicts to Shared Memory (cont.)

stride width: 2 words

→ 2-way bank conflicts

stride width: 4 words

→ 4-way bank conflicts
Broadcast reads do not lead to a bank conflict.

- All threads must read the same word.
Thread Synchronization

Threads may use built-in functions to synchronize within work groups.

- `barrier(flags)` Block until all threads in the group have reached the barrier. Also enforces memory ordering.

- `mem_fence(flags)` Enforce memory ordering: all memory operations are committed before thread continues.

```c
for (unsigned int i = 0; i < n; i++)
{
    do_something();
    barrier(CLK_LOCAL_MEM_FENCE);
}
```

If barrier occurs in a `branch`, same branch must be taken by all `threads` in the group (danger: deadlocks or unpredictable results).
Synchronization Across Work Groups

To synchronize **across** work groups,

- use **in-order** command queue and queue multiple kernel invocations from the host side

 → Can also queue **markers** and **barriers** to the command queue.

or

- use OpenCL **event mechanism**.

 → Can also synchronize host ↔ device and kernel executions in **multiple command queues**.

To wait on host side until all queued commands have been completed, use `clFinish(command queue)`.
GPUs

To summarize,

- GPUs provide **high degrees of parallelism** that can be programmed using a **high-level language**.

But:

- GPUs are not simply “multi-core processors.”
- Unleashing their performance requires significant efforts and great care for details.

Also note that

- GPUs provide lots of **Giga-FLOPS**.
 - But rather few applications really need raw GFLOPS.