
Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Winter 2016/17
Part IX

Parallel Databases
Motivation

It is increasingly attractive to leverage parallelism available in hardware.

Reduced Cost:
- Large monolithic systems are extremely complex to build.
- Smaller systems sell at much higher volumes, with much better price/performance ratio.

Reduced Energy Consumption:
- Performance scales linearly with clock frequency; energy consumption scales quadratically.
- Additional cooling cost makes this even worse.
- Modern chip designs are power-limited (multi-core)

Prepare for Hardware Failures?
- A spare COTS system is cheaper than a spare mainframe.
Desirable: **speed-up** and **scale-up**

![Graph showing linear and sub-linear speed-up and scale-up](image)

- **Linear speed-up**: Transactions per second increase linearly with the number of CPUs.
- **Sub-linear speed-up**: Transactions per second increase at a decreasing rate with the number of CPUs.
- **Linear scale-up**: Transactions per second increase linearly with the number of CPUs.
- **Sub-linear scale-up**: Transactions per second increase at a decreasing rate with the number of CPUs.
Different architectures have been proposed for parallel databases.

- **Shared nothing**
- **Shared memory**
- **Shared disk**
Advantages of shared memory architectures:
- Porting to shared memory architecture (relatively) easy.

Problems of shared memory architectures:
- **Contention** in interconnect
 - Here: memory contention
 - Hard to build scalable and fast interconnect.
- **Interference**:
 - Addl. CPUs **slow down** existing ones (e.g., due to contention).

→ Suitable for **low degrees of parallelism** (up to few tens).
Shared disk architectures have similar problems.

→ contention and interference problems

Further:

■ For read/write access, coherence tricky to get right.

→ Shared nothing seems to be the method of choice.
Parallel Query Evaluation

Intra-query parallelism:

- **Pipeline parallelism:**
 - Assign plan operators to CPUs; send tuples from CPU to CPU.
 - Only works for **non-blocking operators**.
 - **Limited scalability:** few operators per plan; load balancing?

- **Data parallelism:**
Data Parallelism

Data parallelism goes particularly well with data partitioning.

→ Distribute tuples over nodes (→ horizontal partitioning)

~ Parallel scan; high I/O bandwidth

Round-Robin Partitioning:

- Easy, trivial load balancing

Range Partitioning:

- Need to access only those nodes that hold relevant data.
- Data skew may lead to trouble.
- May be beneficial for sorting, joining, etc.
- Range boundaries?
Data Parallelism

Hash Partitioning:

- **Data skew** less of a problem
- May also help certain operations (e.g., joins)
- **No knowledge** about data or types required
Parallelizing Operator Evaluation

Scan: Easy

→ Scan-heavy queries benefit easily from data parallelism.

Sort:

- Merge sort/external sort: run early stages in parallel, then merge
- With **range partitioning**, merging becomes trivial.
 → Thus, first range-partition (re-distribute) data, then sort.
 → Determine range boundaries with help of **sampling**.

Join:

- **Partition** (re-distribute) tuples (hash or range partitioning)
- $R_i \bowtie S_i$ joins can now be computed locally.
Parallel Joins (Using Merge Sort Locally)

input relation

range partition

local sort

(local)

(local)

(local)

(local)

range partition and local sort

input relation
Parallel Joins (here: MPSM)

input relation

range partition

local sort

local sort

local sort

local sort

input relation

scan

scan

scan

scan

local sort

local sort

local sort

local sort

input relation
Instead: Sort, then Merge/Partition

- Re-distributes ("shuffles") likely limited by interconnect bandwidth.
- Perform merge/join during shuffle
 - Leverage available CPU capacity while I/O-limited.
Bloom filters can help reduce communication cost.

1. Partition and distribute outer join relation \(R \).
2. On each node \(H_i \), compute Bloom filter vector for \(R_i \).
3. Broadcast all Bloom filters to all nodes.
4. Partition and distribute \(S \), but filter tuples before sending.
5. Compute \(R_i \Join S_i \) locally on all \(H_i \).

23 A Bloom filter is a compact data structure that can be used to filter data according to a set of valid key values. We’ll discuss Bloom filters later in this course.