Data Warehousing

Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner · Data Warehousing · Winter 2015/16

Part II

Overview

© Jens Teubner · Data Warehousing · Winter 2015/16

Data Warehouse

🕲 "Tune"?

So what is a data warehouse?

- A data warehouse is a database

 - ightarrow Think of multiple terabytes \sim a few petabytes
- Data warehouses are tuned for analytics

$\mathsf{OLTP}\leftrightarrow\mathsf{OLAP}$

OLTP (Online Transaction Processing):

- Day-to-day business operations
 - ightarrow Mix of insert, update, delete, and read operations
 - \rightarrow e.g., enter orders, maintain customer data, etc.
- System sometimes called operational data store (ODS)
 - ightarrow Up-to-date state of the data
- From a database perspective:
 - → Short-running operations
 - ightarrow Most queries known in advance
 - ightarrow Often **point access**, usually through indexes
 - \rightarrow write access \rightarrow 2 ACID principles

$\mathsf{OLTP}\leftrightarrow\mathsf{OLAP}$

OLAP (Online Analytical Processing):

- Provide data for **reporting** and **decision making**
 - ightarrow Mostly **read-only** access
 - ightarrow e.g., resource planning, marketing initiatives
- Need **archive data**; (slightly) outdated information might be okay
 - \rightarrow Report changes over time
 - ightarrow Can use separate data store (non-ODS)
- From a database perspective:
 - \rightarrow Long-running operations, mostly read-only
 - ightarrow Queries not known in advance, often complex (\sim indexing?)
 - ightarrow Might need to scan through large amounts of data
 - \rightarrow Data is (almost) **append-only**.

	OLTP	ODS	OLAP	DM / DW
Business Focus	Operational	Oper./Tact.	Tactical	Tact./Strat.
DB Technology	Relational	Relational	Cubic	Relational
Transaction Count	Large	Medium	Small	Small
Transaction Size	Small	Medium	Medium	Large
Transaction Time	Short	Medium	Medium	Long
DB Size in GB	10-400	100-800	100-800	800-80,000
Data Modeling	Trad. ERD	Trad. ERD	N/A	Dimensional
Normalization	3–5 NF	3 NF	N/A	0 NF

source: Bert Scalzo. Oracle DBA Guide to Data Warehousing and Star Schemas.

Typically:

- One large repository for entire company
- Dedicated hard- and software
 - Enterprise-grade DBMS
 - Often: database appliances (e.g., Teradata, Oracle Exadata, IBM Netezza, ...)

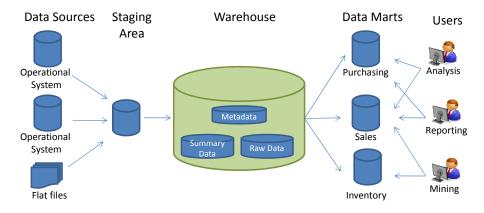
Goal:

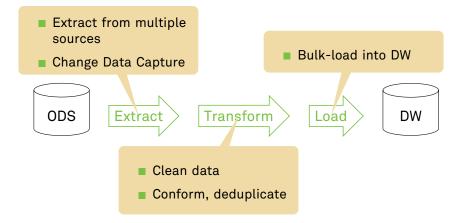
Single source of truth for analysis and reporting

Requires data cleansing and conflict resolution

- 240 CPU cores, up to 12 TB RAM per rack
- 44.8 TB "Exadata Smart Flash Cache"
- up to 672 TB per rack raw disk capacity (300 TB usable)
- InfiniBand 40 Gb/s interconnect
- data load rate: 20 TB/hour

Full Data Warehouse Architecture



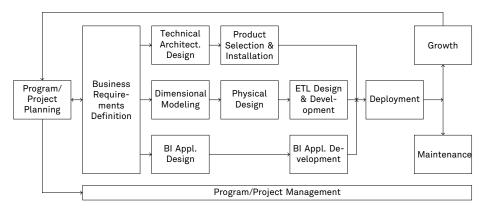

image source: Wolf-Tilo Balke. Data Warehousing & Mining Techniques.

Variants of the full data warehouse architecture:

- **Independent data marts** (no central warehouse)
 - Populate data marts directly from sources
 - Like several "mini warehouses"
 - Redundancy, no "single source of truth"
- 2 Logical data marts (no explicit, physical data marts)
 - Data mart just a logical view on full warehouse
 - Easier to provide integrated, consistent view across the enterprise
- → Data marts (and warehouse) might also reside at different geographic locations.

Data Warehouse Architecture

Data is periodically brought from the ODS to the data warehouse.


ightarrow This is also referred to as **ETL Process**.

Business analysts:

- Explore data to discover information
- Use for decision making
 - ightarrow "Decision Support System (DSS)"

Consequences:

- Workloads and access patterns not known in advance
- For exploration, data representation must be easy to understand (even by business analysts)
- Design and usage driven by **data**, not applications

∕ Kimball *et al.* The Data Warehouse Lifecycle Toolkit.