
Data Warehousing

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner · Data Warehousing ·Winter 2015/16 1

Part IV

Modelling Your Data

© Jens Teubner · Data Warehousing ·Winter 2015/16 40

Business Process Measurements

Want to store information about business processes.
→ Store “business processmeasurement events”

Example: Retail sales
→ Could store information like:

date/time, product, store number,
promotion, customer, clerk, sales
dollars, sales units, …

→ Implies a level of detail, or grain.

Observe: These stored data have different flavors:
Ones that refer to other entities, e.g., to describe the context of
the event (e.g., product, store, clerk) (; dimensions)
Ones that look more like “measurement values” (sales dollars,
sales units) (; facts or measures)

© Jens Teubner · Data Warehousing ·Winter 2015/16 41

Business Process Measurements Events

A flat table view of the events could look like

State City Quarter Sales Amount

California Los Angeles Q1/2013 910
California Los Angeles Q2/2013 930
California Los Angeles Q3/2013 925
California Los Angeles Q4/2013 940
California San Francisco Q1/2013 860
California San Francisco Q2/2013 885
California San Francisco Q3/2013 890
California San Francisco Q4/2013 910
...

...
...

...

© Jens Teubner · Data Warehousing ·Winter 2015/16 42

Analysis

Business people are used to analyzing such data using pivot tables
in spreadsheet software.

© Jens Teubner · Data Warehousing ·Winter 2015/16 43

OLAP Cubes

Data cubes are alternative views on such data.

product

cl
er
k

da
te

Facts: points in the
k-dimensional space
Aggregates on sides and
edges of the cube would
make this a “k-dimensional
pivot table”.

© Jens Teubner · Data Warehousing ·Winter 2015/16 44

OLAP Cubes for Analytics

More advanced analyses: “slice and dice” the cube.

product

cl
er
k

da
te

Specify range(s) along each
dimension
Aggregate over facts within
these ranges.

→ Dimensions to define range
→ Aggregatemeasures

Advantage: Easy to understand
→ Users are analysts, not IT experts; want to do ad hoc analyses

© Jens Teubner · Data Warehousing ·Winter 2015/16 45

Facts/Measures↔ Dimensions

Of the event table attributes, use some as dimensions and some as
measures to aggregate.

Facts/measures:
Fact: performance measure
Typically continuously valued, almost always numeric
They support sensible aggregation:

additive facts: Can be summed across any dimension
semi-additive facts: Can be summed across some, but not
all dimensions
E.g., account balance (can sum across customers, but not
across dates)
non-additive facts: Cannot be meaningfully summarized
E.g., item price, cost per unit, exchange rate

© Jens Teubner · Data Warehousing ·Winter 2015/16 46

Facts/Measures↔ Dimensions

Dimensions:

Typical criterion for grouping

Many dimensions support some form of hierarchy
→ E.g., country→ state→ region→ city

Sometimes: more than one natural hierarchy

→ E.g., dates (year
quarter month day

week day
)

© Jens Teubner · Data Warehousing ·Winter 2015/16 47

Star Schema

Date Key (FK)
City Key (FK)
Product Key (FK)
Customer Key (FK)
Clerk Key (FK)
Unit Price
Sales Quantity

Retail Sales FactDate Key (PK)
...

Date Dimension

City Key (PK)
...

City Dimension

Product Key (PK)
...

Product Dimension

Customer Key (PK)
...

Customer Dimension

Clerk Key (PK)
...

Clerk Dimension

Rather than a flat table, use a star schema for dimensional
modelling in a relational database.

→ How will “slice and dice” queries look like on such a schema?

© Jens Teubner · Data Warehousing ·Winter 2015/16 48

Four-Step Design Process

1 Select the business process
E.g., start with a high impact, high feasibility business process;
↗ slide 38

2 Declare the grain
Specify what exactly an individual fact table row represents.
Examples:

One row per scan of a product in a sales transaction
One row per line item of a bill
One row per boading pass scanned at an airport gates
One row per daily snapshot of the inventory levels for each
item in the warehouse

If in doubt, use the smallest grain.

© Jens Teubner · Data Warehousing ·Winter 2015/16 49

Four-Step Design Process

3 Identify the dimensions

Choose group-by criteria
The “who, what, where, when, why, and how” associated
with the event.
Grain declaration↔ set of dimensions

4 Identify the facts

What is the process measuring?
Most (useful) facts are additive

© Jens Teubner · Data Warehousing ·Winter 2015/16 50

Identify the Dimensions

Remember the enterprise data warehouse busmatrix?

Underwriting Transactions

Policy Premium Billing

Agents’ Commissions

Claims Transactions

Da
te

Po
lic
y
H
ol
de
r

Co
ve
ra
ge

Co
ve
re
d
Ite
m

Ag
en
t

Po
lic
y

Cl
ai
m

Cl
ai
m
an
t

Pa
ye
e

" " " " " "

" " " " " "

" " " " " "

" " " " " " " " "

→ Rows: business processes
→ Columns: dimensions

© Jens Teubner · Data Warehousing ·Winter 2015/16 51

Four-Step Design Process

Example: Retail sales

� Grain size?
� Dimensions?
� Facts?

© Jens Teubner · Data Warehousing ·Winter 2015/16 52

More on Dimensions—Product Dimension

E.g., product dimension

Possible attributes for product dimension table:

Product Key (PK)
Product Name
Brand
Category
SKU Number (NK)

Package Type
Package Size
Weight
…

Keys in dimension tables:
Do not use operational keys (“natural keys”, NK) to identify
dimension tuples; use surrogate keys instead.
May want to store natural key as additional dimension attribute.
� Why?

© Jens Teubner · Data Warehousing ·Winter 2015/16 53

More on Dimensions—Date Dimension

If you’re looking for dimensions, date is always a good guess.

Possible attributes:

Date Key (PK)
Day of Month
Month Name
Calendar Year

Day of Week
Week Number in Year
Calendar Quarter
…

� Huh?
→ Why such a redundancy?
→ Why have a ‘date’ table at all?

© Jens Teubner · Data Warehousing ·Winter 2015/16 54

Redundancy in Dimensions

Redundancy is convenient.
E.g., aggregate by week, without any date calculations

Many functions on dates not supported by SQL

Query results are more meaningful when they contain, e.g.,
‘Monday’ rather than 1.

Redundancywon’t hurt.
There at most 366 days per year
→ Your date dimension tablewill remain small.

Same argument holds true for most types of dimensions.

No consistency problems as in transactional systems

© Jens Teubner · Data Warehousing ·Winter 2015/16 55

Redundancy in Dimensions

In fact, redundancy is often used aggressively.

E.g., date dimension

Fiscal Month
Fiscal Year
Fiscal Week
Holiday Indicator

Full Date as String
SQL Date Stamp
Calendar Year-Month
…

E.g., product dimension

Category
Sub Category
Department Number
Department Description

Package Type
Color
…

© Jens Teubner · Data Warehousing ·Winter 2015/16 56

More on Dimensions—Flags and Indicators

Size of dimension tables is not usually a problem.
→ Store flags and indicators as textual attributes.
E.g.,

‘Monday’, ‘Tuesday’, … instead of 1, 2, …
‘Non-Alcoholic’ and ‘Alcoholic’ instead of 0 and 1

� Advantages?

Flags become self-explaining
→ Did we start counting weekdays with 0 or 1?
→ Did 0/false stand for ‘alcoholic’ or ‘non-alcoholic’?

© Jens Teubner · Data Warehousing ·Winter 2015/16 57

Normalizing / Snowflaking

Some designers feel they should normalize.

Product Key (PK)
Product Name
Brand
Category (FK)

...

Product Dimension
Category Key (PK)
Category Name
Category Descr
Department (FK)

...

Category Dimension
Department Key (PK)
Department Number
Department Name

...

Department Dimension

This is also referred to as snowflaking.

� Consequences?

→ Snowflaking is generally not a good idea.
→ More generally, normalization (as in the “Information Systems”

course) is not a goal in DWmodelling.

© Jens Teubner · Data Warehousing ·Winter 2015/16 58

OLAP Cubes and SQL

Remember the idea of pivot tables?

� How can we express such functionality using SQL?

© Jens Teubner · Data Warehousing ·Winter 2015/16 59

OLAP Cubes and SQL—Dicing and Aggregation

Start situation: flat table

SELECT SUM (sales.quantity)
FROM sales_flat AS sales

WHERE sales.state = 'California'
AND QUARTER (sales.date) = 3

With a star schema:

SELECT SUM (sales.quantity)
FROM sales_fact AS sales, date_dimension AS d,

store_dimension AS store
WHERE sales.date_key = d.date_key

AND sales.store_key = store.store_key
AND store.state = 'California'
AND d.quarter_of_cal_year = 3

© Jens Teubner · Data Warehousing ·Winter 2015/16 60

OLAP Cubes and SQL—Grouping

Can also group by one or more criteria:

SELECT store.state, d.quarter_of_cal_year,
SUM (sales.quantity)

FROM sales_fact AS sales, date_dimension AS d,
store_dimension AS store

WHERE sales.date_key = d.date_key
AND sales.store_key = store.store_key

GROUP BY store.state, d.quarter_of_cal_year

� Can we build a pivot table from that?

© Jens Teubner · Data Warehousing ·Winter 2015/16 61

OLAP Cubes and SQL—CUBE/ROLLUP
Modern SQL dialects offer functionality to group atmultiple criteria
at the same time.

SELECT store.state, d.quarter_of_cal_year, SUM (…)
FROM sales_fact AS sales, date_dimension AS d, …

...
GROUP BY CUBE (store.state, d.quarter_of_cal_year)

Effect:

STORE_CITY QUARTER_OF_CAL_YEAR SUM_QTY
----------------- ------------------- ---------
- 3 192159
- 4 287972
- - 1051150
Austin - 208001
Houston - 210481
Austin 3 38542
Austin 4 56734
Houston 3 38385

© Jens Teubner · Data Warehousing ·Winter 2015/16 62

OLAP Cubes and SQL—CUBE/ROLLUP

CUBE (a, b, c):
Group by all subsets of {a, b, c}
→ (), (a), (b), (c), (a, b), (a, c), (b, c), (a, b, c)

ROLLUP (a, b, c):
Group by all prefixes of {a, b, c}
→ (), (a), (a, b), (a, b, c)

GROUPING SETS (…):
Explicitly list all desired grouping sets, e.g.,

GROUP BY GROUPING SETS ((a, b),
(b, c),
(a, b, c))

Can also combine them, e.g., GROUP BY CUBE (a, b), ROLLUP (c, d)

© Jens Teubner · Data Warehousing ·Winter 2015/16 63

OLAP Cubes and SQL—CUBE/ROLLUP

Data analysis is an explorative task.

Typical scenario:
1 Make observation (e.g., an exceptionally high/low value)

2 Investigate deeper (“Which city was responsible for the sales
increase in that state?”)
→ Refine grouping used before.

3 Repeat

The operation in Step 2 is also called drill down. The opposite
operation (from fine to coarser grain) is called rollup.

→ CUBE/ROLLUP readily contain the information needed for drill
down/rollup.

© Jens Teubner · Data Warehousing ·Winter 2015/16 64

Null Values

Example:
Weight stored as measure within a sales fact table.
→ Some events may not have an associated weight.

� How can we represent such absent measures?

Store the value/number 0?

d
→ Might have undesired effect with aggregate functions like

MIN (), AVG (), etc.

Use a null value?

u
→ Most aggregate functions do “the right thing” with

attributes. Typically, this is what you want.

© Jens Teubner · Data Warehousing ·Winter 2015/16 65

Null Values

Example: Information about promotions realized as a dimension

Date Key (FK)...
Promotion Key (FK)...

Retail Sales Fact
Promotion Key (PK)
Description

...

Promotion Dimension

What about sales where we don’t have an associated promotion?

Null value in ‘Promotion Key (FK)’? No!d
→ � What would happen during a join with tuples where

‘Promotion Key (FK)’ carries a null value?

Instead: Insert explicit tuple into ‘Promotion Dimension’, e.g.
“Not Applicable”.u

© Jens Teubner · Data Warehousing ·Winter 2015/16 66

Null Values

Sometimes, there are multiple flavors of “Not Applicable”.

E.g., originally you might not have tracked promotions in your data
warehouse. Once you add the new dimension, you end up with

1 old data where you have no information about promotions,
2 new data, where you know the sale happened without any
promotion.

→ If you don’t represent absent values as NULL, those cases can
trivially be represented as “Unknown”, “No Promotion”, …
dimension tuples.

© Jens Teubner · Data Warehousing ·Winter 2015/16 67

Role Playing Dimensions

Consider an ‘Order’ business process.

Dimensions:

Product
Customer
Handling Agent
Shipping Method

Order Date
Requested Shipping Date
…

Two ‘Date’ Dimensions

Both ‘Date’ dimensions have the same value domain.
→ Implement as just one dimension table?
→ Tools might get confused about this.

�
Trick:
→ Use same physical ‘Date’ table, but create multiple logical

views (‘Order Date’ view; ‘Requested Shipping Date’ view; etc.)

© Jens Teubner · Data Warehousing ·Winter 2015/16 68

Degenerate Dimensions

For some dimensions, there are no sensible attributes to store.

E.g., transaction number on your sales receipt

→ Not much information to store for each transaction
(beyond what’s already stored as fact entries)

→ Yet, the transaction number is useful
Which products are often bought together?

Thus:
Store the plain transaction number in the fact table
Like a dimension, but no information can be found behind
reference.
We call this a degenerate dimension

© Jens Teubner · Data Warehousing ·Winter 2015/16 69

Dealing with Updates

We haven’t yet talked about updates.

Fortunately, …
DWworkloads are read-mostly; update performance not critical
ETL is the only updating process
→ Update complexity less of an issue

Unfortunately, …
Updates still have to be dealt with
Data warehouses contain historic data
→ May have to keep track of changes

© Jens Teubner · Data Warehousing ·Winter 2015/16 70

Dealing with Updates—Type 0

Type 0: “Retain Original” or “Passive Method”

Once loaded, some dimension attributes can never change
e.g., ‘in stock since’, ‘hire date’, ‘original credit score’

Such attributes may be labeled “original”

→ Type 0 attributes are static.

© Jens Teubner · Data Warehousing ·Winter 2015/16 71

Dealing with Updates—Type 1

Type 1: “Overwrite”

Similar to a normalized schema, overwrite old attribute values.
E.g., move ‘IntelliKidz’ software from ‘Education’ to ‘Strategy’
department:

Product Dimension
Prod Key SKU Description Department

12345 ABC922-Z IntelliKidz Education

↓
Product Dimension

Prod Key SKU Description Department
12345 ABC922-Z IntelliKidz Strategy

→ No keys or fact table entries are modified.

© Jens Teubner · Data Warehousing ·Winter 2015/16 72

Dealing with Updates—Type 1

� Pros and cons of this strategy?

, Updates are easy to implement
/ History of prior attribute values gets lost.

→ Historic sales performance of ‘Strategy’ suddenly
improves from this.

/ Some systems pre-compute aggregate values. Such systems
will have to re-compute their aggregates.

Type 1 is a good mechanism to implement corrections in
existing data.
If previous values are not needed, simplicity of Type 1 may be
appealing.

© Jens Teubner · Data Warehousing ·Winter 2015/16 73

Dealing with Updates—Type 2

Type 2: “Add New Row”

Don’t overwrite, but create a new dimension row

Product Dimension
Prod Key SKU Description Department Since Until

12345 ABC922-Z IntelliKidz Education 1/1/12 12/31/99

↓
Product Dimension

Prod Key SKU Description Department Since Until
12345 ABC922-Z IntelliKidz Education 1/1/12 2/28/13
63726 ABC922-Z IntelliKidz Strategy 3/1/13 12/31/99

→ Old fact entries (still) point to old values, new to new.
→ Use addl. columns to track changes explicitly.

© Jens Teubner · Data Warehousing ·Winter 2015/16 74

Dealing with Updates—Type 2

Effective and expiration dates:
Explicitly store date of attribute change2

Possibly store additional information
→ Is this dimension row current?
→ What is the key of the current dimension row?
→ …

May simplify ETL task, too

Surrogate keys:
Observe that Type 2 updates can only work with surrogate keys!

→ E.g., ‘SKU’ is no longer key in the above example

→ Type 2 is generally a good choice

2Use ‘12/31/99’ to avoid trouble with null values.
© Jens Teubner · Data Warehousing ·Winter 2015/16 75

Dealing with Updates—Type 3

Type 3: “Add New Attribute”

Store current/previous information as attributes

Product Dimension
Prod Key SKU Description Department

12345 ABC922-Z IntelliKidz Education

↓
Product Dimension

Prod Key SKU Description Department Prior Dept.
12345 ABC922-Z IntelliKidz Strategy Education

→ Typical usage scenario: company reorganization
→ Don’t use for attributes that change unpredictably!

© Jens Teubner · Data Warehousing ·Winter 2015/16 76

Dealing with Updates—Type 4

Type 4: “Add Mini-Dimension”

Let’s think about Type 2 again:
→ What if changes are more frequent?

E.g., demographics information associated with customers
age band (21–25; 26–30; 31–35; …)
income level (< €20,000; € 20,000–€24,999; …)
purchase frequency (‘low’, ‘medium’, ‘high’)

Problem: Profile updates can blow up dimension table by factors

© Jens Teubner · Data Warehousing ·Winter 2015/16 77

Dealing with Updates—Type 4

Trick: Move volatile information to separate dimension, e.g.,

Demographics “Mini” Dimension
Demogr Key Age Band Income Level Purchase Frequency

1 21–25 <€20,000 low
2 21–25 <€20,000 medium
3 21–25 <€20,000 high
4 21–25 €20,000–€24,999 low
5 21–25 €20,000–€24,999 medium
6 21–25 €20,000–€24,999 high
...

...
...

...

→ ‘Customer Dimension’ no longer grows with updates.
→ ‘Demographics Dimension’ stays small (even under updates).

© Jens Teubner · Data Warehousing ·Winter 2015/16 78

Again: Query Patterns

Analysis task: Relate customer calls to number of items sold.

product description units sold calls received

Footronic 08-15 417 38
Star Gizmo 42 976 296

→ This analysis relates two business processes to one another.

� Can this analysis be expressed using SQL?

1 Aggregate over ‘Sales’ process and group by product
2 Aggregate over ‘Customer Call’ process and group by product

3 Combine the two using a join over products.

© Jens Teubner · Data Warehousing ·Winter 2015/16 79

Drilling Across Fact Tables

Combining business processes in such a way is called drill across.

The join in Step 3 assumes that products used in both business
processes can successfully be compared (and find matches).
→ We say that the product dimensions must be conformed.

Case 1: Use same dimension tables
Remember the enterprise data warehouse bus matrix?
→ Create one dim. table per column, one fact table per row.

Conformed dimension tables must hold union of all values
referenced by any fact table

© Jens Teubner · Data Warehousing ·Winter 2015/16 80

Drilling Across Fact Tables

�
Case 1 (typically) requires that grain sizes of fact tables match.

Case 2: Rollup conformed dimension with attribute subset
Coarser grain usually means that only a subset of the attributes
applies.
Remaining columnsmust still conform
→ Use same column labels
→ Ensure same spelling of all attribute values

Case 3: Shrunken conformed dimension with row subset
Not all dimension rows may be relevant to all business
processes
E.g., copy only relevant subsets to each department

© Jens Teubner · Data Warehousing ·Winter 2015/16 81

Fact Table Types

All examples discussed so far assumed a transactional fact table.
→ Record business events, such as selling, shipping, stocking an

items.

Suppose we want to keep an inventory.
→ Several transaction types will affect the inventory, e.g.,

receive a product
return product to vendor (because of a defect)
place product in shelve
pick product from shelve
move product to a different shelve
ship product to customer
receive customer returns
…

© Jens Teubner · Data Warehousing ·Winter 2015/16 82

Modelling Inventory Transaction Types

Variant 1: Generic ‘Inventory Transaction’ fact table:

Date Key (FK)
Product Key (FK)
Warehouse Key (FK)
TX Type Key (FK)
TX Number (DD)
Quantity

Inventory TX FactDate Key (PK)
...

Date Dimension

Warehouse Key (PK)

...

Warehouse Dimension

Product Key (PK)
...

Product Dimension

TX Type Key (PK)
TX Type Description
TX Type Group

...

TX Type Dimension

© Jens Teubner · Data Warehousing ·Winter 2015/16 83

Modelling Inventory Transaction Types

Variant 2: One fact table per transaction type:

Date Key (FK)
Product Key (FK)
Warehouse Key (FK)
Customer Key (FK)
TX Number (DD)
Quantity

Inventory TX FactDate Key (PK)
...

Date Dimension

Warehouse Key (PK)

...

Warehouse Dimension

Product Key (PK)
...

Product Dimension

Customer Key (PK)
...

Customer Dimension

� Pros/cons?

© Jens Teubner · Data Warehousing ·Winter 2015/16 84

Periodic Snapshots

For planning, inventory levelsmay be more relevant.
→ Transactions give us such informations only indirectly.

Instead: Periodic Snapshot Fact

Four-step dimensional design process:

1 Business process: Periodic snapshotting of inventory

2 Grain: daily, weekly, hourly, … inventory levels

3 Dimensions: e.g., date, warehouse, product
→ not: customer, promotion, …

4 Facts: e.g., quantity on hand

© Jens Teubner · Data Warehousing ·Winter 2015/16 85

Semi-Additive Facts

Facts in periodic snapshot fact tables are usually semi-additive:
Can aggregate across some dimensions.
→ e.g., total value of in-stock items

But cannot aggregate across others, expecially date/time.
→ e.g., sum of inventory levels over one month makes no sense

� Averages over snapshots make sense. But be careful to phrase
queries correctly.

Average over total warehouse value?

© Jens Teubner · Data Warehousing ·Winter 2015/16 86

Accumulating Snapshot Fact Tables

Transaction fact table:
Centered around buying/selling/moving stock items

Periodic snapshot fact table:
Centered aroundwarehouse inventory level.

Accumulating snapshot fact table:
Centered around individual product item/lot.

Idea:
One fact table row per product item/lot.
Store whereabouts of each item/lot as dimensions.

© Jens Teubner · Data Warehousing ·Winter 2015/16 87

Inventory Accumulating Snapshot Fact Table

Date Received Key (FK)
Date Inspected Key (FK)
Date Stocked Key (FK)
Date Shipped Key (FK)
Warehouse Key (FK)
Product Key (FK)
Vendor Key (FK)
Product Lot Number (DD)
Quantity Received
Quantity Inspected
Quantity Stocked
Quantity Shipped
Quantity Damaged

Inventory Accum. Fact
Date Rcvd Key (PK)

...

Date Rcvd Dimension

Date Insp Key (PK)
...

Date Insp Dimension

Date Stocked Key (PK)
...

Date Stocked Dimension

Warehouse Key (PK)
...

Warehouse Dimension

Product Key (PK)
...

Product Dimension

Vendor Key (PK)
...

Vendor Dimension

Role Playing Dimensions

© Jens Teubner · Data Warehousing ·Winter 2015/16 88

Inventory Accumulating Snapshot Fact Table

Update fact table as lot moves through value chain:

Inventory Accumulating Fact
Date Rcvd Date Insp Date Stocked · · · Qty Rcvd Qty Insp · · ·
20140214 0 0 · · · 42 – · · ·

↓

Inventory Accumulating Fact
Date Rcvd Date Insp Date Stocked · · · Qty Rcvd Qty Insp · · ·
20140214 20140215 0 · · · 42 40 · · ·

↓

Inventory Accumulating Fact
Date Rcvd Date Insp Date Stocked · · · Qty Rcvd Qty Insp · · ·
20140214 20140215 20140215 · · · 42 40 · · ·

© Jens Teubner · Data Warehousing ·Winter 2015/16 89

Fact Table Types

We’ve seen three fact table types:
transaction fact table
periodic snapshot fact table
accumulating snapshot fact table

All three are complementary.
→ Observe how they are designed around different processes.

© Jens Teubner · Data Warehousing ·Winter 2015/16 90

	Modelling Your Data

