Data Warehousing

Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner · Data Warehousing · Winter 2015/16

Part IV

Modelling Your Data

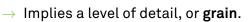
Business Process Measurements

Want to store information about **business processes**.

 $\rightarrow \,$ Store "business process measurement events"

Example: Retail sales

→ Could store information like: date/time, product, store number, promotion, customer, clerk, sales dollars, sales units, ...



- **Observe:** These stored data have different flavors:
 - Ones that refer to other entities, e.g., to describe the context of the event (e.g., product, store, clerk)
 (~> dimensions)
 - Ones that look more like "measurement values" (sales dollars, sales units)
 (~ facts or measures)

A flat table view of the events could look like

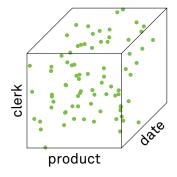
State	City	Quarter	Sales Amount
California	Los Angeles	Q1/2013	910
California	Los Angeles	Q2/2013	930
California	Los Angeles	Q3/2013	925
California	Los Angeles	Q4/2013	940
California	San Francisco	Q1/2013	860
California	San Francisco	Q2/2013	885
California	San Francisco	Q3/2013	890
California	San Francisco	Q4/2013	910
:	:	:	:
-	-	-	-

Analysis

Business people are used to analyzing such data using **pivot tables** in **spreadsheet software**.

	A Home Layou	t Tables	Charts	Sma	rtArt	Formulas	Dat	a PivotTable	Review
	C4 📫	🕄 💿 (* fx	02/201	3					
-	A	B	C	D	E	F	8	Pivot I a	ble Builder
1		Repor	rt Filter						Q Search fields
2									
3	Sum of Sales Amount	Column Labels 💌					Field	d name	
4	Row Labels	Q1/2013	Q2/2013	Q3/2013	Q4/2013	Grand Total		State	
5	Austin	510		535	505	2045		City	
6	Dallas	595	610	615	605	2425			
7	Houston	550	605	555	585	2295		Quarter	
8	Los Angeles	910	930	925	940	3705		Sales Amount	
9	San Francisco	860	885	890	910	3545			
10	Grand Total	3425	3525	3520	3545	14015			
11								Drag fields	between areas
12								Drug neius	
13							Y	Report Filter	Column Labels
14 15									Quarter
15							-		, daniel
10									
17							-		
10									
20									
21									
22							13	Row Labels	∑ Values
23									
24								City 👔	Sum of Sa
25									

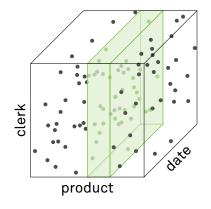
Data cubes are alternative views on such data.



- Facts: points in the k-dimensional space
- Aggregates on sides and edges of the cube would make this a "k-dimensional pivot table".

OLAP Cubes for Analytics

More advanced analyses: "slice and dice" the cube.



- Specify range(s) along each dimension
- Aggregate over facts within these ranges.
- → **Dimensions** to define range
- Aggregate measures

Advantage: Easy to understand

 $\rightarrow~$ Users are analysts, not IT experts; want to do ad~hoc analyses

Of the event table attributes, use some as **dimensions** and some as **measures** to aggregate.

Facts/measures:

- Fact: performance measure
- Typically continuously valued, almost always numeric
- They support sensible aggregation:
 - additive facts: Can be summed across any dimension
 - semi-additive facts: Can be summed across some, but not all dimensions

E.g., account balance (can sum across customers, but not across dates)

non-additive facts: Cannot be meaningfully summarized E.g., item price, cost per unit, exchange rate

Dimensions:

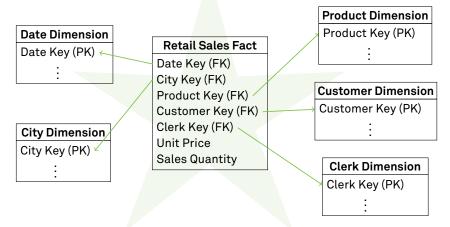
- Typical criterion for grouping
- Many dimensions support some form of hierarchy

 $\rightarrow~\textit{E.g.}, \textit{country} \rightarrow \textit{state} \rightarrow \textit{region} \rightarrow \textit{city}$

Sometimes: more than one natural hierarchy

$$ightarrow$$
 E.g., dates (year $\stackrel{
ightarrow$ quarter $ightarrow$ month $ightarrow$ day $ightarrow$ week $ightarrow$ day

Rather than a flat table, use a **star schema** for dimensional modelling in a **relational database**.



ightarrow How will "slice and dice" queries look like on such a schema?

Four-Step Design Process

1 Select the business process

E.g., start with a high impact, high feasibility business process; *∧* slide 38

2 Declare the grain

Specify what exactly an individual fact table row represents. Examples:

- One row per scan of a product in a sales transaction
- One row per line item of a bill
- One row per boading pass scanned at an airport gates
- One row per daily snapshot of the inventory levels for each item in the warehouse

If in doubt, use the smallest grain.

Identify the dimensions

- Choose group-by criteria
- The "who, what, where, when, why, and how" associated with the event.
- Grain declaration ↔ set of dimensions

4 Identify the facts

- What is the process measuring?
- Most (useful) facts are additive

Identify the Dimensions

Remember the enterprise data warehouse bus matrix?

	0	oto Dou	Control de	Uverage	drefed/tem	Sent	C. C.	CL	Paimant Paimant	-766
Underwriting Transactions	~	~	~	~	~	~				
Policy Premium Billing	~	~	~	~	~	~				
Agents' Commissions	~	~	~	~	~	~				
Claims Transactions	~	~	~	~	~	~	~	~	~	

4

- \rightarrow **Rows:** business processes
- → **Columns:** dimensions

Example: Retail sales

ER-900 SERIES

DATE 30/11/2012 FRI TIME 11:55

OPEN FOOD	£7.89
OPEN NON FOOD	£0.99
OPEN CONFEC	£1.50
OPEN TOBACCO	£5.25
TOTAL	£15.63
CASH	£15.63

THANK YOU PLEASE CALL AGAIN

CLERK	1	000063	00000

E.g., product dimension

Possible attributes for product dimension table:

- Product Key (PK)
- Product Name
- Brand
- Category
- SKU Number (NK)
- Keys in dimension tables:
 - Do not use operational keys ("natural keys", NK) to identify dimension tuples; use surrogate keys instead.
 - May want to store natural key as additional dimension attribute.
 Show Why?

Package Type

Package Size

Weight

If you're looking for dimensions, **date** is always a good guess. Possible attributes:

- Date Key (PK)
- Day of Month
- Month Name
- Calendar Year

- Day of Week
- Week Number in Year
- Calendar Quarter

...

🕲 Huh?

- ightarrow Why such a redundancy?
- ightarrow Why have a 'date' table at all?

Redundancy is convenient.

- *E.g.*, aggregate by week, without any date calculations
- Many functions on dates not supported by SQL
- Query results are more meaningful when they contain, e.g., 'Monday' rather than 1.

Redundancy won't hurt.

- There at most 366 days per year
 - ightarrow Your date dimension table will remain small.
- Same argument holds true for most types of dimensions.
- No consistency problems as in transactional systems

Redundancy in Dimensions

In fact, redundancy is often used aggressively.

- E.g., date dimension
 - Fiscal Month
 - Fiscal Year
 - Fiscal Week
 - Holiday Indicator
- E.g., product dimension
 - Category
 - Sub Category
 - Department Number
 - Department Description

- Full Date as String
- SQL Date Stamp
- Calendar Year-Month
- **...**

- Package Type
- Color

· ···

Size of dimension tables is not usually a problem.

 $\rightarrow~$ Store flags and indicators as **textual attributes**.

E.g.,

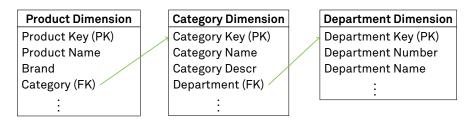
- 'Monday', 'Tuesday', ... instead of 1, 2, ...
- 'Non-Alcoholic' and 'Alcoholic' instead of 0 and 1

Advantages?

- Flags become self-explaining
 - $ightarrow\,$ Did we start counting weekdays with 0 or 1?
 - $ightarrow \,$ Did 0/false stand for 'alcoholic' or 'non-alcoholic'?

Normalizing/Snowflaking

Some designers feel they should normalize.



This is also referred to as **snowflaking**.

Consequences?

- \rightarrow Snowflaking is generally **not** a good idea.
- $\rightarrow\,$ More generally, normalization (as in the "Information Systems" course) is **not** a goal in DW modelling.

Remember the idea of pivot tables?

4								
3	Sum of Sales Amount		Column Labels	•				
4	Row Labels	•	Q1/2013		Q2/2013	Q3/2013	Q4/2013	Grand Total
5	Austin		5	10	495	535	505	2045
6	Dallas		5	95	610	615	605	2425
7	Houston		5	50	605	555	585	2295
8	Los Angeles		9	10	930	925	940	3705
9	San Francisco		8	60	885	890	910	3545
10	Grand Total		34	25	3525	3520	3545	14015
11	Î							

How can we express such functionality using SQL?

OLAP Cubes and SQL—Dicing and Aggregation

Start situation: flat table

SELECT SUM(sales.quantity)
FROM sales_flat AS sales
WHERE sales.state = 'California'
AND QUARTER(sales.date) = 3

With a **star schema**:

```
SELECT SUM(sales.quantity)
FROM sales_fact AS sales, date_dimension AS d,
    store_dimension AS store
WHERE sales.date_key = d.date_key
AND sales.store_key = store.store_key
AND store.state = 'California'
AND d.quarter_of_cal_year = 3
```

Can also group by one or more criteria:

```
SELECT store.state, d.quarter_of_cal_year,
        SUM(sales.quantity)
FROM sales_fact AS sales, date_dimension AS d,
        store_dimension AS store
WHERE sales.date_key = d.date_key
        AND sales.store_key = store.store_key
        GROUP BY store.state, d.quarter_of_cal_year
```

Can we build a pivot table from that?

OLAP Cubes and SQL—CUBE/ROLLUP

Modern SQL dialects offer functionality to group at **multiple** criteria at the same time.

```
SELECT store.state, d.quarter_of_cal_year, SUM (...)
FROM sales_fact AS sales, date_dimension AS d, ...
:
GROUP BY CUBE (store.state, d.quarter_of_cal_year)
```

Effect:

STORE_CITY	QUARTER_OF_CAL_YEAR	SUM_QTY
_	3	192159
-	4	287972
-	-	1051150
Austin	-	208001
Houston	-	210481
Austin	3	38542
Austin	4	56734
Houston	3	38385

OLAP Cubes and SQL—CUBE/ROLLUP

```
CUBE(a,b,c):
```

```
    ■ Group by all subsets of {a, b, c}
    → (), (a), (b), (c), (a, b), (a, c), (b, c), (a, b, c)
```

ROLLUP(a,b,c):

Group by all prefixes of $\{a, b, c\}$ \rightarrow (), (a), (a, b), (a, b, c)

GROUPING SETS (...):

Explicitly list all desired grouping sets, e.g.,

```
GROUP BY GROUPING SETS ((a, b),
(b, c),
(a, b, c))
```

Can also combine them, e.g., GROUP BY CUBE (a, b), ROLLUP (c, d)

Data analysis is an **explorative task**.

Typical scenario:

- Make observation (e.g., an exceptionally high/low value)
- Investigate deeper ("Which city was responsible for the sales increase in that state?")
 - \rightarrow **Refine** grouping used before.
- 3 Repeat

The operation in Step 2 is also called **drill down**. The opposite operation (from fine to coarser grain) is called **rollup**.

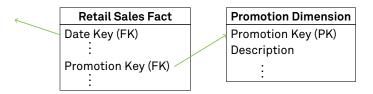
 $\rightarrow\,$ CUBE/ROLLUP readily contain the information needed for drill down/rollup.

Example:

- Weight stored as measure within a sales fact table.
 - ightarrow Some events may not have an associated weight.
- How can we represent such absent measures?
 - Store the value/number 0?

Use a null value?

Example: Information about promotions realized as a dimension



What about sales where we don't have an associated promotion?

- Null value in 'Promotion Key (FK)'? No! 71
 - $\rightarrow @$ What would happen during a join with tuples where 'Promotion Key (FK)' carries a null value?
- Instead: Insert explicit tuple into 'Promotion Dimension', e.g.
 "Not Applicable".

Sometimes, there are multiple flavors of "Not Applicable".

E.g., originally you might not have tracked promotions in your data warehouse. Once you add the new dimension, you end up with

- 1 old data where you have **no information** about promotions,
- 2 new data, where you know the sale happened without any promotion.
- → If you don't represent absent values as NULL, those cases can trivially be represented as "Unknown", "No Promotion", ... dimension tuples.

Role Playing Dimensions

Consider an 'Order' business process.

Dimensions:

- Product
- Customer
- Handling Agent
- Shipping Method

Both 'Date' dimensions have the same value domain.

- ightarrow Implement as just one dimension table?
- ightarrow Tools might get confused about this.

Trick:

→ Use same physical 'Date' table, but create multiple logical views ('Order Date' view; 'Requested Shipping Date' view; etc.)

For some dimensions, there are no sensible attributes to store.

- E.g., transaction number on your sales receipt
 - $\rightarrow\,$ Not much information to store for each transaction (beyond what's already stored as fact entries)
 - ightarrow Yet, the transaction number is **useful**
 - Which products are often bought together?

Thus:

- Store the plain transaction number in the fact table
- Like a dimension, but no information can be found behind reference.
- We call this a degenerate dimension

We haven't yet talked about **updates**.

Fortunately, ...

- DW workloads are **read-mostly**; update performance not critical
- ETL is the only updating process
 - ightarrow Update complexity less of an issue

Unfortunately, ...

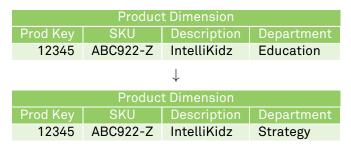
- Updates still have to be dealt with
- Data warehouses contain historic data
 - ightarrow May have to **keep track** of changes

Type 0: "Retain Original" or "Passive Method"

- Once loaded, some dimension attributes can never change
 e.g., 'in stock since', 'hire date', 'original credit score'
- Such attributes may be labeled "original"
- ightarrow Type 0 attributes are **static**.

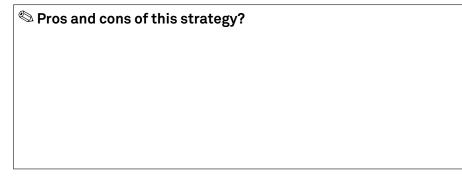
Type 1: "Overwrite"

- Similar to a normalized schema, **overwrite** old attribute values.
- E.g., move 'IntelliKidz' software from 'Education' to 'Strategy' department:



ightarrow No keys or fact table entries are modified.

Dealing with Updates—Type 1



- Type 1 is a good mechanism to implement corrections in existing data.
- If previous values are not needed, simplicity of Type 1 may be appealing.

Dealing with Updates—Type 2

Type 2: "Add New Row"

Don't overwrite, but create a **new dimension row**

Product Dimension									
Prod Key	SKU	Description	Department	Since	Until				
12345	ABC922-Z	IntelliKidz	Education	1/1/12	12/31/99				
	\downarrow								
	Product Dimension								
Prod Key	SKU	Description	Department	Since	Until				
12345	ABC922-Z	IntelliKidz	Education	1/1/12	2/28/13				
63726	ABC922-Z	IntelliKidz	Strategy	3/1/13	12/31/99				

- ightarrow Old fact entries (still) point to old values, new to new.
- $\rightarrow~$ Use addl. columns to track changes explicitly.

Dealing with Updates—Type 2

Effective and expiration dates:

- Explicitly store date of attribute change²
- Possibly store additional information
 - ightarrow Is this dimension row current?
 - ightarrow What is the key of the current dimension row?

ightarrow ...

May simplify ETL task, too

Surrogate keys:

- Observe that Type 2 updates can only work with surrogate keys!
 - ightarrow *E.g.*, 'SKU' is no longer key in the above example
- $ightarrow \,$ Type 2 is generally a good choice

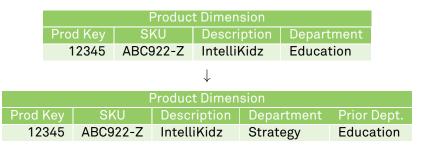
²Use '12/31/99' to avoid trouble with null values.

[©] Jens Teubner · Data Warehousing · Winter 2015/16

Dealing with Updates—Type 3

Type 3: "Add New Attribute"

Store current/previous information as attributes



- ightarrow Typical usage scenario: company reorganization
- ightarrow Don't use for attributes that change unpredictably!

- Type 4: "Add Mini-Dimension"
- Let's think about Type 2 again:
 - ightarrow What if changes are more frequent?
- E.g., demographics information associated with customers
 - age band (21–25; 26–30; 31–35; ...)
 - income level (< € 20,000; € 20,000–€ 24,999; ...)
 - purchase frequency ('low', 'medium', 'high')

Problem: Profile updates can blow up dimension table by factors

Trick: Move volatile information to separate dimension, e.g.,

Demographics "Mini" Dimension				
Demogr Key	Age Band	Income Level	Purchase Frequency	
1	21–25	<€20,000	low	
2	21-25	<€20,000	medium	
3	21-25	<€20,000	high	
4	21-25	€20,000-€24,999	low	
5	21-25	€20,000-€24,999	medium	
6	21-25	€20,000-€24,999	high	
:	:	:	:	

- ightarrow 'Customer Dimension' no longer grows with updates.
- ightarrow 'Demographics Dimension' stays small (even under updates).

Analysis task: Relate customer calls to number of items sold.

product description	units sold	calls received
Footronic 08-15	417	38
Star Gizmo 42	976	296

 \rightarrow This analysis relates **two business processes** to one another.

Can this analysis be expressed using SQL?

Combining business processes in such a way is called **drill across**.

The join in Step **B** assumes that products used in both business processes can **successfully be compared** (and find matches).

 $\rightarrow\,$ We say that the product dimensions must be conformed.

Case 1: Use same dimension tables

- Remember the enterprise data warehouse bus matrix?
 - $ightarrow\,$ Create one dim. table per column, one fact table per row.
- Conformed dimension tables must hold union of all values referenced by any fact table

Case 1 (typically) requires that **grain sizes** of fact tables match.

Case 2: Rollup conformed dimension with attribute subset

- Coarser grain usually means that only a subset of the attributes applies.
- Remaining columns must still conform
 - ightarrow Use same column labels
 - ightarrow Ensure same spelling of all attribute values
- Case 3: Shrunken conformed dimension with row subset
 - Not all dimension rows may be relevant to all business processes
 - *E.g.*, copy only relevant subsets to each department

All examples discussed so far assumed a **transactional fact table**.

 $\rightarrow\,$ Record business events, such as selling, shipping, stocking an items.

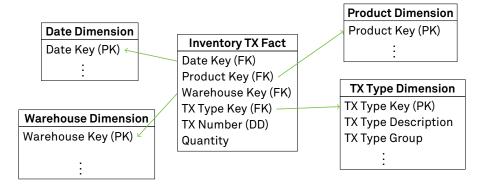
Suppose we want to keep an **inventory**.

- ightarrow Several transaction types will affect the inventory, e.g.,
 - receive a product
 - return product to vendor (because of a defect)
 - place product in shelve
 - pick product from shelve
 - move product to a different shelve
 - ship product to customer
 - receive customer returns

...

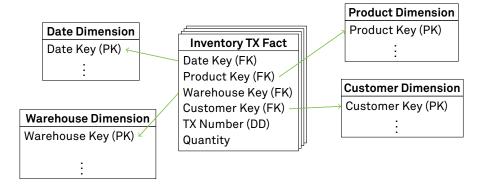
Modelling Inventory Transaction Types

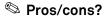
Variant 1: Generic 'Inventory Transaction' fact table:



Modelling Inventory Transaction Types

Variant 2: One fact table per transaction type:





For planning, **inventory levels** may be more relevant.

 $\rightarrow\,$ Transactions give us such informations only indirectly.

Instead: Periodic Snapshot Fact

Four-step dimensional design process:

- **1 Business process: Periodic snapshotting** of inventory
- **2** Grain: daily, weekly, hourly, ... inventory levels
- **3 Dimensions:** *e.g.*, date, warehouse, product
 - \rightarrow **not:** customer, promotion, ...
- 4 Facts: e.g., quantity on hand

Facts in periodic snapshot fact tables are usually **semi-additive**:

- Can aggregate across **some** dimensions.
 - ightarrow e.g., total value of in-stock items
- But cannot aggregate across others, expecially date/time.
 - $ightarrow\,$ e.g., sum of inventory levels over one month makes no sense

Averages over snapshots make sense. But be careful to phrase queries correctly.

Average over total warehouse value?

Transaction fact table:

Centered around buying/selling/moving stock items

Periodic snapshot fact table:

Centered around warehouse inventory level.

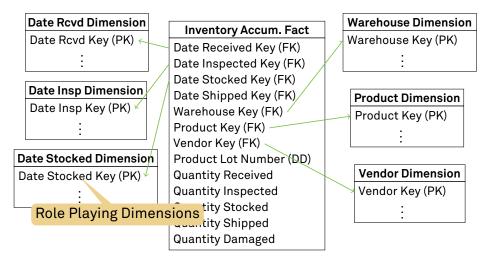
Accumulating snapshot fact table:

Centered around individual product item/lot.

Idea:

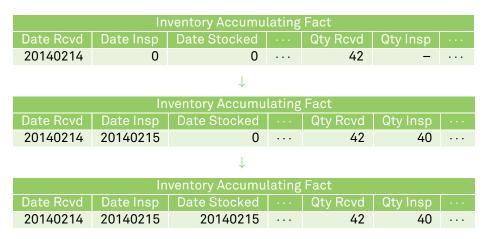
- One fact table row per **product item/lot**.
- Store whereabouts of each item/lot as dimensions.

Inventory Accumulating Snapshot Fact Table



Inventory Accumulating Snapshot Fact Table

Update fact table as lot moves through value chain:



We've seen three fact table types:

- transaction fact table
- periodic snapshot fact table
- accumulating snapshot fact table

All three are **complementary**.

ightarrow Observe how they are designed around different processes.