Data Warehousing

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner - Data Warehousing - Winter 2015/16 1

Part VII

MapReduce et al.

© Jens Teubner - Data Warehousing - Winter 2015/16

Scaling Up Data Warehouse Systems

Growing expectations toward Data Warehouses:
m increasing data volumes (“Big Data”)
m increasing complexity of analyses

Problems:

= OLAP queries are multi-dimensional queries

— “Curse of Dimensionality:” indexes become ineffective
— Indexes can’t help to fight growing query complexity
— Workloads become scan heavy.

m Scaling up a server becomes expensive

© Jens Teubner - Data Warehousing - Winter 2015/16

Curse of Dimensionality

N=50’000, image database, k=10

’g 100000 F Scan ;
= R*-ree -

5 X-tree e PR
© VA-File o o e

2 10000 | e]
P 9"/0',{;

Z o

S

()] -

2 1000

|_

°©

(0]

3

g 100 | - ;
w +

0 5 10 15 20 25 30 35 40 45
Number of dimensions in vectors

© Jens Teubner - Data Warehousing - Winter 2015/16 194

Parallel Query Evaluation

Scans can be parallelized, however:

User
i
|0zip=44227| |Uzip=44227| |Uzip:44227|

Caoc] [am] Caic
— parallel hardware (e.g., graphics processors)
— cluster systems

© Jens Teubner - Data Warehousing - Winter 2015/16 195

OLAP Using GPUs

E.g., Jedox
, OLAP Acc
(uses NVIDIA Tesla nge;;tor

In-GPU- -Memory

Moderne GP\J—Modu\e pestehen aus tausenden Prozessore'\nheiten und
zeigen gerade in komplexen und para\\e\\sterbaren Berechnungen ihren
Pefformanzvorte'\\ gegenuber (pUs. Die pafa\\e\ \Jerarbe\tung erhoht die
Geschwmd\gke\t yon 7ugriffen und Datenana\ysen signifi
ders wenn es sich um Berechnungen mit konso\'\dierten Zellen im OLAP-

Datenwurfe\ nandelt.

um ze\tmtenswen Datentransfer vom Hauptspe\cher auf die GPU ZU mi-
nimieren, setzt Jedox auf innovative Ln- -GPU- _Memory’ —Techno\og'\e:
per JedoxX GPU Accelerator nalt die 7elldaten der wiirfel vollstandig im

source: GPU- Spe\cher, 5o dass \ed\ghch Anfragen und Ergebmsse Zwischen Py
Jedox Whit und GPY {ipertragen n werden missen. Fur den Nutzer \aufen die Anwen-
e Pape,— rch i und alle wichtigen Daten werden

{ erwendet wer

© Jens Teubner - Data War

usi :
sing - Winter 2015/16

196

Parallel Databases

E.g., Teradata Database:

'\'RAD\T\ONAL “ PARALLEL” DATABASE TERADATA DATABASE

\nitial Query \nitial Query

pmEE R0 gEEE
Pl

| |

|

Query
“Replication” _f/ parallelism

d Ml
‘gerialize .

process Bottlenecks - céig‘cz‘:ie:n gumuuus 3]
(typ‘\ca\\y sorts, l L

aggregations.
and '1oins)

Ba\anced

(\T\T\l |
11” performance iw

Final Result

source:
Teradata White Paper

Final Merge

Final Result

© Jens Teu
bner -
r - Data Warehousing - Winter 20
r2015/16

197

Scalability Challenges

Challenges:

= Robustness:

m More components — higher risk of failure
m Failure of single component might take whole system
off-line.

= Scalability/Elasticity:

m Provision for peak load?
m Use resources otherwise when DW not at peak load?
= Add resources later (when business grows)?

m Cost:

» (Reliable) large installations tend to become expensive.
(There’s a relatively small market for very large systems.)

© Jens Teubner - Data Warehousing - Winter 2015/16

Scalability in Web Search

Search engines have faced similar challenges very early.

Task: generate inverted files

data warehouses
are cool

docy

their data
doc,

cool guys distribute I

© Jens Teubner - Data Warehousing - Winter 2015/16

term nt | “posting list”
are 1 | docq:3

cool 2 | docq:4,docy:1
data 2 | docq:1,docy:5
distribute 1 | docy:3

guys 1 | docy:2

their 1 | docy:a
warehouses | 1 | docs:2

199

Inverted File Generation

Idea: Break up index generation into two parts:

For each document, extract terms.

Collect terms into groups and emit an index entry per group.

E.g.,

1 foreach document doc do

2 pos « 1;

3 | tokens < parse(doc);

4 | foreach word in tokens do
5 emit (word, doc.id:pos);
6 L pos < pos + 1;

7 collect (key, (values...)) pairs;

8 foreach (key, (values)) do

9
10
11
12
13

14

count «+ 0;

pList < ();

foreach v € values do
pList.append (v);

L count + count + 1;

_emit (key,count, pList);

© Jens Teubner - Data Warehousing - Winter 2015/16

Inverted File Generation

Observations: (for parallel execution)
m For part [, documents can be partitioned arbitrarily over
nodes.

m For part [, all postings of one term must be collocated on the
same node (postings for different terms may be on different
nodes).

= To establish collocation, data may have to be moved
(“shuffled”) across nodes.

© Jens Teubner - Data Warehousing - Winter 2015/16 201

Distributed Index Generation

input
—
(partitioned)

result
—_—
(partitioned)

© Jens Teubner - Data Warehousing - Winter 2015/16 202

Generalization (— “MapReduce”)

The application pattern turns out to be highly versatile.
Only replace foreach bodies:

m lines2-6: f1 :: a — [(5,7)] — “Mapper”

m lines8-14:f, :: (B,[y]) — 9§ — “Reducer”

Shuffling (line 7) combines [(3,)] (“list of key/value pairs”) into a
list of (3, [7]) (“pairs of key and list of values”).

— Shuffling (combining) is generic.

MapReduce?® is a framework for distributed computing, where f; and
f, can be instantiated by the user.

®Dean and Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI 2004.
© Jens Teubner - Data Warehousing - Winter 2015/16 203

Example: Webserver Log File Analysis

E.g., Webserver log file analysis
Task: For each client IP, report total traffic (in bytes).

® Mapper and Reducer implementations?

© Jens Teubner - Data Warehousing - Winter 2015/16

204

MapReduce Illustrated

N
by @kerzol on Twitter

|

© Jens Teubner - Data Warehousing - Winter 2015/16 205

MapReduce

The MapReduce framework...
= ...decides on a number of Mappers and Reducers to instantiate,
m ...decides the partitioning of of data and computation,
m ..moves data as necessary and implements shuffling;

m ...considers cluster topology, system load, etc.,
m ...interfaces with a distributed file system (“Google File Syst.”).

Apache Hadoop provides an open-source implementation of the
MapReduce concept; also comes with the “Hadoop Distributed File
System, HDFS.”

© Jens Teubner - Data Warehousing - Winter 2015/16

“The idea seems straightforward. Why all the fuss?”

Remember the challenges we stated?
— Risk of failures; elasticity; cost

MapReduce was designed for large clusters of cheap machines.
— Think of thousands of machines.
— Failures are frequent (and have to be dealt with).
— This is why MapReduce has become popular.

© Jens Teubner - Data Warehousing - Winter 2015/16 207

Failure Tolerance?

Trick:
= Mapper and Reducer must be pure functions.
— Their output depends only on their input.
— No side effects.

m Computation can be done anywhere, repeated if necessary.

MapReduce runtime:
= Monitor job execution.
m Job does not finish within expected time?

— Restart on different node.

— Might end up processing a task unit twice — discard all
results but one.

— Also used to improve performance (in case of “stragglers”).

© Jens Teubner - Data Warehousing - Winter 2015/16

Performance: Grep

E.g., scan 10'° 100-byte words for three-character pattern.

= 1800 machines

m each 2 x 2GHz

m each 2 x 160GB IDE HDD
m Gigabit Ethernet

m paper from 2004

30000

20000

10000

Input (MB/s)

O———F———T1 T 717
20 40 60 80 100
Seconds

— Leverage aggregate disk bandwidth.
— This is what we need for OLAP, too.

© Jens Teubner - Data Warehousing - Winter 2015/16 209

Performance: Sort

B 20000 —
—_ 20000 Daone 20000 — Done Dagne
Q
E 15000 - 15000 4 15000 -
H 10000 10000 4 10000
5 5000+ 5000 5000
° N\
0 T T 0 T T TV T T
500 1000 500 1000 500 1000
20000 — 20000 — 20000 —
2
g 15000 15000 — 15000
3 10000~ 10000 — 10000
€ 000 5000 - /\ 5000 A
=
a2, rf,\ /\"I‘\ : o i\ : R , :/LI/'\ :
500 1000 500 1000 V500 1000
20000 20000 20000
é 15000 15000 15000 -
2 10000 10000 10000
£ 5000 5000 4 5000
S M
° ML : 0 " - o AN 1/\%«\ .
500 1000 500 1000
Seconds Seconds Seconds
(a) Normal execution (b) No backup tasks () 200 tasks killed

Jens Teubner - Data Wi sing - Winter 2015/16 210

MapReduce for Data Warehousing

MapReduce is not a database.
— No tables, tuples, rows, schemas, indexes, etc.

Rather, MapReduce is based on files.
— Typically kept in a distributed file system.

This is unfortunate:
= No schema information to optimize, validate, etc.
m No indexes (or other means to improve physical representation).

This is good:
m Start analyzing immediately; don’t wait for index creation, etc.
= May ease ad-hoc analyses.

© Jens Teubner - Data Warehousing - Winter 2015/16 211

Beyond the Basic ldea

While the original MapReduce is proprietary to Google, Hadoop is
widely used in industry and research.

m Java-based

— Can run on heterogeneous platforms, cloud systems, etc.
= Integration with other Apache technology

— Hadoop Distributed File System (HDFS), HBase, etc.

m Can hook into more functions than just Mapper and Reducer

— e.g., pre-aggregate between map and shuffle
— modify partitioning, etc.

= Many interfaces Hadoop «» database/data warehouse

© Jens Teubner - Data Warehousing - Winter 2015/16 212

Hadoop and Petabyte Sort Benchmark

Challenge: sort 1 TB of 100-byte records.
Hardware:
m 3800 nodes, 2 x 4 x 2.5GHz per node
= 4 SATA disks, 8 GB RAM per node

Results:
GBytes Nodes Maps Reduces Repl. Time
500 1406 8000 2600 1 59 sec
1,000 1460 8000 2700 1 62 sec
100,000 3452 190,000 10,000 2 173 min
1,000,000 3658 80,000 20,000 2 975min

© Jens Teubner - Data Warehousing - Winter 2015/16

Hadoop and Petabyte Sort Benchmark

Terabyte Task Timeline

B0
a
] = wame
¥ somo s
! = mege
300 Satutle
= mosgs

o
13 % 7 %1003 1S17 KW 31 30 25 3T 19 5L 00 3% 57 41 48 &5 A7 48 5050 5%

SRz

© Jens Teubner - Data Warehousing - Winter 2015/16 214

Hadoop and Petabyte Sort Benchmark

Petabyte Task Timeline

© Jens Teubner - Data Warehousing - Winter 2015/16 215

MapReduce <> Databases: Load Times

30000

25000

20000

15000

seconds

10000

5000

Pavlo et al.. A Comparison of Approaches
to Large-Scale Data Analysis. SIGMOD 2009.

25 Nodes 50 Nodes 100 Nodes

[I vertica Ll DBMS—X[__] Hadoop |

— Schema and physical data organization make loading slower on
the databases.

© Jens Teubner - Data Warehousing - Winter 2015/16

MapReduce <> Databases: Grep Benchmark

1500

1250

1000

750

seconds

500

250

Pavlo et al.. A Comparison of Approaches
to Large-Scale Data Analysis. SIGMOD 2009.

25 Nodes 50 Nodes 100 Nodes

[I veriica [I] DBMS-X] Hadoop |

— MapReduce leaves result as collection of files; collecting into
single result costs addl. time.

© Jens Teubner - Data Warehousing - Winter 2015/16 217

MapReduce <+ Databases: Aggregation

1800 1400,
1600 1200]
1400
1000
1200
@ P
S 1000 8 80
8 8
g 800 $ 600
600
400
400
200 200
0 1Nodes 10 Nodes 25Nodes 50 Nodes 100 Nodes 0 1Nodes 10Nodes 25Nodes 50Nodes 100 Nodes
[l Vertica I DBMS-X[_— Hadoop [l Vertica [DBMS-X[_—] Hadoop
Figure 7: Aggregation Task Results (2.5 million Groups) Figure 8: Aggregation Task Results (2,000 Groups)

— Databases limited by communication cost, which is lower for
smaller group counts.

© Jens Teubner - Data Warehousing - Winter 2015/16

Pavlo et al.. A Comparison of Approaches
to Large-Scale Data Analysis. SIGMOD 2009.

MapReduce <> Databases: Join

1800
1600
1400 —
1200
1000

seconds

800
600
400

—

8
!

Nodes 25 Nodes 50 Nodes 100 Nodes

200

< 28.0
<313
<29.2
<294
<~ 85.0
<319

Pavlo et al.. A Comparison of Approaches
to Large-Scale Data Analysis. SIGMOD 2009.

<215
<157

of<—28.2

1 Nodes 1

‘ Il Vertica I DBMS-X[| Hadoop ‘

— Joins are rather complex to formulate in MapReduce.
— Repartitioning incurs high communication overhead.
—» Joins can be accelerated using indexes.

© Jens Teubner - Data Warehousing - Winter 2015/16 219

MapReduce «» Databases

Persistent data <> data read ad-hoc:
m Overhead for schema design, loading, indexing, etc.
— Cost might amortize only after several queries/analyses.
m Databases feature support for transactions.
— Not needed for read-only workloads.

Language: SQL « Java/C++/...:
= Write a new MapReduce program for each and every analysis?
m User-defined functionality in SQL?
— E.g., similarity measures, statistics functions, etc.

= Debug SQL or MapReduce job?

Is there a good middle ground?

© Jens Teubner - Data Warehousing - Winter 2015/16 220

Apache Pig

Idea:

m Data processing language that sits in-between SQL and
MapReduce.
— Declarative (“SQL-like”; ~ allow for optimization, easy
re-use and maintenance)
— Procedural-style, rich data model (~ programmers feel
comfortable)

m Pig programs are compiled into MapReduce (Hadoop) jobs.

© Jens Teubner - Data Warehousing - Winter 2015/16 221

Pig Latin Example

S = LOAD 'sailors.csv' USING PigStorage(',')
AS (sid:int, name:chararray, rating-int ace-int)-
B = LOAD 'boats.csv' USING PigStorage(','SChenuaon'the'ﬂy
AS (bid:int, name:chararray, color:chararray);
R = LOAD 'reserves.csv' USING PigStorage(',"')
AS (sid:int, bid:int, day:chararray);
—-- SELECT S.sid, R.day
- FROM Sailors AS S, Reserves AS R
-- WHERE S.sid = R.sid AND R.bid = 101
programming style:
A = FILTER R BY (bid == 101); sequence of assignments
B = JOIN S BY sid, A by sid; -~ data flow
X = FOREACH B GENERATE S::sid, A::day AS day;

STORE X into 'result.csv';

© Jens Teubner - Data Warehousing - Winter 2015/16 222

Pig Latin Data Model

Pig Latin features a fairly rich data model:
atoms:
— e.g., 'foo', 42
tuples: sequence of fields of any data type
— e.g.,('foo',42)
— access by field name or position, tuples can be nested

bag: collection of tuples (possibly with duplicates)

('foo',42) }

&8 { (17, ('hello’, 'world'))

map: collection of key — value mappings

- o { s ot { (05000) }

age — 20

© Jens Teubner - Data Warehousing - Winter 2015/16 223

Pig Latin Data Model

= Pig Latin’s data types can be arbitrarily nested*
m Contrast to TNF data model in relational databases

— Avoid joins, which MapReduce can’t do too well.
— Allow for sound data model, including grouping, etc.
— Easier integration with user-defined functions

“Keys for map types must be atomic, though (for efficiency reasons).
© Jens Teubner - Data Warehousing - Winter 2015/16 224

Pig Latin Operators: FILTER

kids = FILTER users BY (age < 18);

—» Comparison operators: ==, eq, !=, neq, AND, ...
—» Can use user-defined functions arbitrarily.

X Implementation in MapReduce?

© Jens Teubner - Data Warehousing - Winter 2015/16 225

Pig Latin Operators: FOREACH

FOREACH Sailors GENERATE
sid AS sailorlId,
name AS sailorName,
(rating, age) AS sailorInfo;

— Apply some processing (e.g., item re-structuring) to every item
of a data set (~ projection in Relational Algebra)

— No loop dependence! — parallel execution
(XQuery’s FLWOR expressions provide a similar form of iteration.)

© Jens Teubner - Data Warehousing - Winter 2015/16 226

Pig Latin Operators: GROUP

sales_by_cust = GROUP sales BY customerName;

— returns a bag (“relation”) with two fields: group key and bag of
tuples with that key value.

m First field is named group
» Second field is named by variable (“alias” in Pig
terminology) used in the GROUP statement (here: sales)

X Implementation in MapReduce?

© Jens Teubner - Data Warehousing - Winter 2015/16 227

Pig Latin Operators: COGROUP

Group items from multiple data sets:

0 = LOAD 'owner.csv' USING PigStorage(',')
AS (owner:chararray, pet:chararray);
— {(Alice, turtle), (Alice,goldfish), (Alice, cat),(Bob,dog), (Bob, cat)}

F = LOAD 'friend.csv' USING PigStorage(',')
AS (person:chararray, friend:chararray);
— {(Cindy, Alice), (Mark, Alice), (Paul,Bob), (Paul, Jane)}

X = COGROUP 0 BY owner, F BY friend;
(Alice,turtle)
Alice,{ (Alice,goldfish) ,{
(Alice, cat)

N (Bob7{ ggzz:izg },{ (Paul, Bob) })

(Jane,{},{ (Paul, Jane) }) y

(Cindy, Alice)
(Mark, Alice)

© Jens Teubner - Data Warehousing - Winter 2015/16

Pig Latin Operators: JOIN

join_result = JOIN results BY queryString,
revenue BY queryString;

— Equi-joins only.
D Implementation in MapReduce?

— Cross product between fields 1 and 2 of COGROUP result.

temp = COGROUP results BY queryString;
revenue BY queryString;

join_result = FOREACH temp GENERATE
FLATTEN (results), FLATTEN (revenue);

© Jens Teubner - Data Warehousing - Winter 2015/16 229

Pig Latin: More Operators

Many additional operators ease common data analysis tasks, e.g.,
= LOAD/STORE
(Not surprisingly, Pig works well together with HDFS.)
m UNION
m CROSS
= ORDER
m DISTINCT

© Jens Teubner - Data Warehousing - Winter 2015/16 230

Pig Latin: Debugging

Pig Latin was also designed with the development and analysis
workflow in mind.

— Interactive use of Pig (“grunt”).

— Can run Pig programs locally (without Hadoop).

— Commands to examine expression results.

= DUMP: Write (intermediate) result to storage.

m DESCRIBE: Print schema of an (intermediate) result.

m EXPLAIN: Print execution plan.

m ILLUSTRATE: View step-by-step execution of a plan; show
representative examples of (intermediate) result data.

© Jens Teubner - Data Warehousing - Winter 2015/16 231

	MapReduce et al.

