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Part VII

MapReduce et al.
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Scaling Up Data Warehouse Systems

Growing expectations toward Data Warehouses:
m increasing data volumes (“Big Data”)
m increasing complexity of analyses

Problems:

= OLAP queries are multi-dimensional queries

— “Curse of Dimensionality:” indexes become ineffective
— Indexes can’t help to fight growing query complexity
— Workloads become scan heavy.

m Scaling up a server becomes expensive
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Curse of Dimensionality
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Parallel Query Evaluation

Scans can be parallelized, however:

User
i
|0zip=44227| |Uzip=44227| |Uzip:44227|

Caoc]  [am]  Caic
— parallel hardware (e.g., graphics processors)
— cluster systems
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OLAP Using GPUs
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Parallel Databases

E.g., Teradata Database:
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Scalability Challenges

Challenges:

= Robustness:

m More components — higher risk of failure
m Failure of single component might take whole system
off-line.

= Scalability/Elasticity:

m Provision for peak load?
m Use resources otherwise when DW not at peak load?
= Add resources later (when business grows)?

m Cost:

» (Reliable) large installations tend to become expensive.
(There’s a relatively small market for very large systems.)
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Scalability in Web Search

Search engines have faced similar challenges very early.

Task: generate inverted files

data warehouses
are cool

docy

their data
doc,

cool guys distribute I
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term nt | “posting list”
are 1 | docq:3

cool 2 | docq:4,docy:1
data 2 | docq:1,docy:5
distribute 1 | docy:3

guys 1 | docy:2

their 1 | docy:a
warehouses | 1 | docs:2
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Inverted File Generation

Idea: Break up index generation into two parts:

For each document, extract terms.

Collect terms into groups and emit an index entry per group.

E.g.,

1 foreach document doc do

2 pos « 1;

3 | tokens < parse(doc);

4 | foreach word in tokens do
5 emit (word, doc.id:pos);
6 L pos < pos + 1;

7 collect (key, (values...)) pairs;

8 foreach (key, (values)) do

9
10
11
12
13

14

count «+ 0;

pList < ();

foreach v € values do
pList.append (v);

L count + count + 1;

_emit (key,count, pList);
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Inverted File Generation

Observations: (for parallel execution)
m For part [, documents can be partitioned arbitrarily over
nodes.

m For part [, all postings of one term must be collocated on the
same node (postings for different terms may be on different
nodes).

= To establish collocation, data may have to be moved
(“shuffled”) across nodes.
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Distributed Index Generation
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Generalization (— “MapReduce”)

The application pattern turns out to be highly versatile.
Only replace foreach bodies:

m lines2-6: f1 :: a — [(5,7)] — “Mapper”

m lines8-14:f, :: (B,[y]) — 9§ — “Reducer”

Shuffling (line 7) combines [(3, )] (“list of key/value pairs”) into a
list of (3, [7]) (“pairs of key and list of values”).

— Shuffling (combining) is generic.

MapReduce?® is a framework for distributed computing, where f; and
f, can be instantiated by the user.

®Dean and Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI 2004.
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Example: Webserver Log File Analysis

E.g., Webserver log file analysis
Task: For each client IP, report total traffic (in bytes).

® Mapper and Reducer implementations?
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MapReduce Illustrated

N
by @kerzol on Twitter

|
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MapReduce

The MapReduce framework...
= ...decides on a number of Mappers and Reducers to instantiate,
m ...decides the partitioning of of data and computation,
m ..moves data as necessary and implements shuffling;

m ...considers cluster topology, system load, etc.,
m ...interfaces with a distributed file system (“Google File Syst.”).

Apache Hadoop provides an open-source implementation of the
MapReduce concept; also comes with the “Hadoop Distributed File
System, HDFS.”
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“The idea seems straightforward. Why all the fuss?”

Remember the challenges we stated?
— Risk of failures; elasticity; cost

MapReduce was designed for large clusters of cheap machines.
— Think of thousands of machines.
— Failures are frequent (and have to be dealt with).
— This is why MapReduce has become popular.
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Failure Tolerance?

Trick:
= Mapper and Reducer must be pure functions.
— Their output depends only on their input.
— No side effects.

m Computation can be done anywhere, repeated if necessary.

MapReduce runtime:
= Monitor job execution.
m Job does not finish within expected time?

— Restart on different node.

— Might end up processing a task unit twice — discard all
results but one.

— Also used to improve performance (in case of “stragglers”).
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Performance: Grep

E.g., scan 10'° 100-byte words for three-character pattern.

= 1800 machines

m each 2 x 2GHz

m each 2 x 160GB IDE HDD
m Gigabit Ethernet

m paper from 2004
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— Leverage aggregate disk bandwidth.
— This is what we need for OLAP, too.
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Performance: Sort
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MapReduce for Data Warehousing

MapReduce is not a database.
— No tables, tuples, rows, schemas, indexes, etc.

Rather, MapReduce is based on files.
— Typically kept in a distributed file system.

This is unfortunate:
= No schema information to optimize, validate, etc.
m No indexes (or other means to improve physical representation).

This is good:
m Start analyzing immediately; don’t wait for index creation, etc.
= May ease ad-hoc analyses.
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Beyond the Basic ldea

While the original MapReduce is proprietary to Google, Hadoop is
widely used in industry and research.

m Java-based

— Can run on heterogeneous platforms, cloud systems, etc.
= Integration with other Apache technology

— Hadoop Distributed File System (HDFS), HBase, etc.

m Can hook into more functions than just Mapper and Reducer

— e.g., pre-aggregate between map and shuffle
— modify partitioning, etc.

= Many interfaces Hadoop «» database/data warehouse
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Hadoop and Petabyte Sort Benchmark

Challenge: sort 1 TB of 100-byte records.
Hardware:
m 3800 nodes, 2 x 4 x 2.5GHz per node
= 4 SATA disks, 8 GB RAM per node

Results:
GBytes Nodes Maps Reduces Repl. Time
500 1406 8000 2600 1 59 sec
1,000 1460 8000 2700 1 62 sec
100,000 3452 190,000 10,000 2 173 min
1,000,000 3658 80,000 20,000 2 975min
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Hadoop and Petabyte Sort Benchmark

Terabyte Task Timeline
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Hadoop and Petabyte Sort Benchmark

Petabyte Task Timeline
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MapReduce <> Databases: Load Times
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— Schema and physical data organization make loading slower on
the databases.
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MapReduce <> Databases: Grep Benchmark
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— MapReduce leaves result as collection of files; collecting into
single result costs addl. time.
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MapReduce <+ Databases: Aggregation
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— Databases limited by communication cost, which is lower for
smaller group counts.
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MapReduce <> Databases: Join

1800
1600
1400 —
1200
1000

seconds

800
600
400

—

8
!

Nodes 25 Nodes 50 Nodes 100 Nodes

200

< 28.0
<313
<29.2
<294
<~ 85.0
<319

Pavlo et al.. A Comparison of Approaches
to Large-Scale Data Analysis. SIGMOD 2009.

<215
<157

of<—28.2

1 Nodes 1

‘ Il Vertica I DBMS-X[ | Hadoop ‘

— Joins are rather complex to formulate in MapReduce.
— Repartitioning incurs high communication overhead.
—» Joins can be accelerated using indexes.
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MapReduce «» Databases

Persistent data <> data read ad-hoc:
m Overhead for schema design, loading, indexing, etc.
— Cost might amortize only after several queries/analyses.
m Databases feature support for transactions.
— Not needed for read-only workloads.

Language: SQL « Java/C++/...:
= Write a new MapReduce program for each and every analysis?
m User-defined functionality in SQL?
— E.g., similarity measures, statistics functions, etc.

= Debug SQL or MapReduce job?

Is there a good middle ground?
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Apache Pig

Idea:

m Data processing language that sits in-between SQL and
MapReduce.
— Declarative (“SQL-like”; ~ allow for optimization, easy
re-use and maintenance)
— Procedural-style, rich data model (~ programmers feel
comfortable)

m Pig programs are compiled into MapReduce (Hadoop) jobs.
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Pig Latin Example

S = LOAD 'sailors.csv' USING PigStorage(',')
AS (sid:int, name:chararray, rating-int ace-int)-
B = LOAD 'boats.csv' USING PigStorage(','SChenuaon'the'ﬂy
AS (bid:int, name:chararray, color:chararray);
R = LOAD 'reserves.csv' USING PigStorage(',"')
AS (sid:int, bid:int, day:chararray);
—-- SELECT S.sid, R.day
- FROM Sailors AS S, Reserves AS R
-- WHERE S.sid = R.sid AND R.bid = 101
programming style:
A = FILTER R BY (bid == 101); sequence of assignments
B = JOIN S BY sid, A by sid; -~ data flow
X = FOREACH B GENERATE S::sid, A::day AS day;

STORE X into 'result.csv';
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Pig Latin Data Model

Pig Latin features a fairly rich data model:
atoms:
— e.g., 'foo', 42
tuples: sequence of fields of any data type
— e.g.,('foo',42)
— access by field name or position, tuples can be nested

bag: collection of tuples (possibly with duplicates)

('foo',42) }

&8 { (17, ('hello’, 'world'))

map: collection of key — value mappings

- o { s ot { (05000 ) }

age — 20
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Pig Latin Data Model

= Pig Latin’s data types can be arbitrarily nested*
m Contrast to TNF data model in relational databases

— Avoid joins, which MapReduce can’t do too well.
— Allow for sound data model, including grouping, etc.
— Easier integration with user-defined functions

“Keys for map types must be atomic, though (for efficiency reasons).
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Pig Latin Operators: FILTER

kids = FILTER users BY (age < 18);

—» Comparison operators: ==, eq, !=, neq, AND, ...
—» Can use user-defined functions arbitrarily.

X Implementation in MapReduce?
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Pig Latin Operators: FOREACH

FOREACH Sailors GENERATE
sid AS sailorlId,
name AS sailorName,
( rating, age ) AS sailorInfo;

— Apply some processing (e.g., item re-structuring) to every item
of a data set (~ projection in Relational Algebra)

— No loop dependence! — parallel execution
(XQuery’s FLWOR expressions provide a similar form of iteration.)
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Pig Latin Operators: GROUP

sales_by_cust = GROUP sales BY customerName;

— returns a bag (“relation”) with two fields: group key and bag of
tuples with that key value.

m First field is named group
» Second field is named by variable (“alias” in Pig
terminology) used in the GROUP statement (here: sales)

X Implementation in MapReduce?
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Pig Latin Operators: COGROUP

Group items from multiple data sets:

0 = LOAD 'owner.csv' USING PigStorage(',')
AS (owner:chararray, pet:chararray);
— {(Alice, turtle), (Alice,goldfish), (Alice, cat),(Bob,dog), (Bob, cat)}

F = LOAD 'friend.csv' USING PigStorage(',')
AS (person:chararray, friend:chararray);
— {(Cindy, Alice), (Mark, Alice), (Paul,Bob), (Paul, Jane)}

X = COGROUP 0 BY owner, F BY friend;
(Alice,turtle)
Alice,{ (Alice,goldfish) ,{
(Alice, cat)

N (Bob7{ ggzz:izg },{ (Paul, Bob) })

(Jane,{},{ (Paul, Jane) }) y

(Cindy, Alice)
(Mark, Alice)
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Pig Latin Operators: JOIN

join_result = JOIN results BY queryString,
revenue BY queryString;

— Equi-joins only.
D Implementation in MapReduce?

— Cross product between fields 1 and 2 of COGROUP result.

temp = COGROUP results BY queryString;
revenue BY queryString;

join_result = FOREACH temp GENERATE
FLATTEN (results), FLATTEN (revenue);
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Pig Latin: More Operators

Many additional operators ease common data analysis tasks, e.g.,
= LOAD/STORE
(Not surprisingly, Pig works well together with HDFS.)
m UNION
m CROSS
= ORDER
m DISTINCT
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Pig Latin: Debugging

Pig Latin was also designed with the development and analysis
workflow in mind.

— Interactive use of Pig (“grunt”).

— Can run Pig programs locally (without Hadoop).

— Commands to examine expression results.

= DUMP: Write (intermediate) result to storage.

m DESCRIBE: Print schema of an (intermediate) result.

m EXPLAIN: Print execution plan.

m ILLUSTRATE: View step-by-step execution of a plan; show
representative examples of (intermediate) result data.

© Jens Teubner - Data Warehousing - Winter 2015/16 231



	MapReduce et al.

