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Part VII

MapReduce et al.
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Scaling Up Data Warehouse Systems

Growing expectations toward Data Warehouses:
increasing data volumes (“Big Data”)
increasing complexity of analyses

Problems:
OLAP queries aremulti-dimensional queries
→ “Curse of Dimensionality:” indexes become ineffective
→ Indexes can’t help to fight growing query complexity
→ Workloads become scan heavy.

Scaling up a server becomes expensive
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Curse of Dimensionality
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Parallel Query Evaluation

Scans can be parallelized, however:

User
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→ parallel hardware (e.g., graphics processors)
→ cluster systems
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OLAP Using GPUs

E.g., Jedox OLAP Accelerator
(uses NVIDIA Tesla GPUs):

JEDOX GPU ACCELERATOR 

Aktuelle Umfragen des Analystenhauses BARC haben ergeben, dass man-

gelnde Geschwindigkeit bei Datenabfragen eines der meistgenannten 

Anwenderprobleme bezüglich Business Intelligence- und Performance 

Management-Lösungen darstellt. Unzureichende Reaktionszeiten bei 

stetig wachsenden Datenaufkommen limitieren die Performanz von 

BI-Applikationen. So bleiben wichtige Geschäftspotenziale ungenutzt, 

da das langwierige Erstellen von Prognosen, Simulationen und Berichten 

wertvolle Arbeitszeit beansprucht und unternehmenskritische Entschei-

dungen nicht schnell genug getroff en werden können. 

Gerade in schnelllebigen Branchen, wie etwa Finanzen, Handel, Invest-

mentbanking oder dem Aktiengeschäft, müssen komplexe Planungssze-

narien sowie Ad-hoc- und What if-Analysen nahezu in Echtzeit durchge-

führt werden. Denn je schneller Kenngrößen vorliegen, umso agiler kann 

ein Unternehmen reagieren. Somit steigt gleichzeitig auch die Anwender-

freundlichkeit eines BI-Systems. 

Jedox GPU Accelerator

Jedox hat frühzeitig auf den Performance-Vorteil gesetzt und einen inte-

grierten multidimensionalen In-Memory OLAP-Server als Herzstück seiner 

BI- & PM-Lösung entwickelt. Doch mit dem OLAP Accelerator auf Basis 

innovativer GPU-Technologie geht Jedox noch einen Schritt weiter: GPUs 

(Graphics Processing Units) sind ursprünglich als Grafi kkarten entwickelte 

Coprozessoren, die durch intelligente Programmierung auch für rechenin-

tensive Business-Anwendungen verwendet werden können.

Jedox ist weltweit der erste Anbieter von BI- & PM-Softwarelösungen, 

der die Leistung von GPUs für komplexe mehrdimensionale Berech-

nungen nutzbar macht. Für seinen GPU Accelerator setzt Jedox dabei 

auf die Rechenkraft modernster NVIDIA® Tesla™ GPUs, wie sie im High-

Performance-Computing eingesetzt werden. Mit dieser hochperforman-

ten GPU-Komponente kann die Verarbeitungsgeschwindigkeit des Jedox 

In-Memory GPU-Servers, je nach Datenmodell, nochmals um bis zu 20x 

erhöht werden. 

In-GPU-Memory

Moderne GPU-Module bestehen aus tausenden Prozessoreinheiten und 

zeigen gerade in komplexen und parallelisierbaren Berechnungen ihren 

Performanzvorteil gegenüber CPUs. Die parallele Verarbeitung erhöht die 

Geschwindigkeit von Zugriff en und Datenanalysen signifi kant, beson-

ders wenn es sich um Berechnungen mit konsolidierten Zellen im OLAP-

Datenwürfel handelt.

Um zeitintensiven Datentransfer vom Hauptspeicher auf die GPU zu mi-

nimieren, setzt Jedox auf innovative „In-GPU-Memory“-Technologie: 

Der Jedox GPU Accelerator hält die Zelldaten der Würfel vollständig im 

GPU-Speicher, so dass lediglich Anfragen und Ergebnisse zwischen CPU 

und GPU übertragen werden müssen. Für den Nutzer laufen die Anwen-

dungen dadurch deutlich schneller und alle wichtigen Daten werden 

sofort bereitgestellt. Zudem können auch mehrere GPUs verwendet wer-

den, um so für noch kürzere Abfragezeiten und einen größeren GPU-

Speicher für besonders große Datenwürfel zu sorgen.

Schnelle Ergebnisse für agile Entscheidungen

Mit dem Jedox GPU Accelerator haben Anwender eine noch bessere 

Sicht auf die Grundpfeiler der Unternehmenssteuerung: Stakeholder im 

Planungsprozess können detaillierte Alternativszenarien mit fl exiblen 

What-if Analysen prüfen und sofort als Entscheidung in die Vorgabe-

systeme übertragen. Zudem erlaubt es die besonders schnelle Abfragezeit 

des GPU Accelerators etwa, dass Portfolio-Risikobewertungen in Echtzeit 

durchgespielt werden können. Durch die schnelle und hochleistungsfä-

hige Datenverarbeitung der Jedox GPU-Komponente können produzie-

rende Unternehmen unmittelbar auf Veränderungen der Rohstoff preise 

reagieren. Auch Prozesse in der Beschaff ungslogistik sowie Verfügbar-

keitsberechnungen, etwa im Online-Handel, können effi  zienter gesteuert 

werden.  

Erleben Sie den Performance-Boost: Der Jedox GPU Accelerator nutzt 

die Rechenkraft modernster NVIDIA® Tesla™ Grafi kkarten, wie sie im 

High-Performance-Computing eingesetzt werden und kann auf die-

se Weise die hohe Verarbeitungsgeschwindigkeit des In-Memory OLAP-

Servers nochmals steigern. Für diese hocheff ektive Lösung erhielt Jedox 

2013 die Auszeichnung „Cool Vendor“ des weltweit größten Analysten-

hauses Gartner.

ZÜNDEN SIE DEN DATENTURBO!

Jedox AG | Bismarckallee 7a | D–79098 Freiburg im Breisgau | Tel +49 (761) 15147-0 | Fax +49 (761) 15147-10 | www.jedox.com | info@jedox.com

FACTSHEET FOCUS

JEDOX SOFTWARE MODULES

SOURCE SYSTEMS

Jedox Excel 

Add-in

Jedox 
Web

Jedox 
Mobile

3rd Party 

Tools

GPU 

Accelerator
Jedox OLAP Server

ODBO 
XMLA

Jedox ETL
Jedox SAP 

Connector

ERP, CRM, 

SCM

RDB, DWH, 

Flat Files
SAP/R3 SAP BI/BW

source:
Jedox White Paper
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Parallel Databases

E.g., Teradata Database:

TERADATA SOLUTION TECHNICAL OVERVIEW

DATA

WAREHOUSING

02.14 EB 3025

6

will result in faster query processing. The larger the data 

volume and the more complex the queries, the bigger the 

payoff from using parallel processing. It’s also important 

to note that the most efficient way to distribute the play-

ing cards (or data) is to distribute them evenly among the 

four people (or parallelized units of work). 

Parallelism allows ad-hoc queries to be performed as 

efficiently as possible, as opposed to a single person, or 

large query, becoming a bottleneck because they were 

given more cards or a particular set of cards where the 

work must be performed sequentially. (See Figure 1.)

KEY DEFINITIONS

Teradata Database was designed for parallelism. Its 

patented architecture allows complex decision support 

workloads to be broken down into small tasks and distrib-

uted to multiple parallel software processors, known as 

virtual processors, within the database. We refer to this 

virtual processor as an Access Module Processor (AMP). 

Each AMP owns a portion of the database. Multiple AMPs 

reside on a single processor node. Therefore, Teradata 

Database doesn’t rely on the hardware platform for 

parallelism, scalability, reliability, or availability. These 

capabilities are inherent in the database architecture  

and are independent of the hardware configuration. 

The AMP is one of two types of virtual processors (VPROC). 

The second type of VPROC is the Parsing Engine (PE), 

which breaks up a request or query into manageable 

pieces and distributes the work to the AMPs for process-

ing. Multiple PEs can also exist on a single node. 

Teradata Database’s ability to run multiple AMPs and 

PEs on a single node is enabled by the Parallel Database 

Extensions (PDE). PDEs provide the infrastructure that 

enables Teradata Database’s parallelism to work within the 

Linux operating system. The PDE layer allows Teradata 

Database to perform independently of the operating sys-

tem. Teradata Database is Teradata Database, regardless 

of the operating system or hardware platform. 

Further ensuring independence of the AMP’s database 

processing from the hardware it runs on is the optional 

Teradata Virtual Storage. Teradata Virtual Storage 

enables a variety of storage devices to be used to store 

data owned by each AMP, and ensures that the data 

are placed on the most appropriate physical storage. 

Initial Query

Query

“Replication”

“Serialized”

Process Bottlenecks

(typically sorts,

aggregations,

and joins)

Final Merge

Final Result

Final Result
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Execution
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TRADITIONAL “PARALLEL” DATABASE TERADATA DATABASE

Figure 1. Traditional Parallel Database versus Teradata 

Database.

“We were in need of a highly 

scalable system – not only in 

the number of concurrent users 

or queries, but in the amount 

of data as well. Teradata gave 

us the possibility to overcome 

the limits we had before. 

The combination of Teradata 

industry experience with internal 

business expertise creates 

solutions that empower us to 

respond to challenges of the 

very competitive market.”

Jaroslaw Bartosik, Leader of the Business 

Intelligence Competency Center, Polkomtel S.A.

source:
Teradata White Paper
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Scalability Challenges

Challenges:

Robustness:
More components→ higher risk of failure
Failure of single component might take whole system
off-line.

Scalability/Elasticity:
Provision for peak load?
Use resources otherwise when DW not at peak load?
Add resources later (when business grows)?

Cost:
(Reliable) large installations tend to become expensive.
(There’s a relatively small market for very large systems.)
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Scalability in Web Search

Search engines have faced similar challenges very early.

Task: generate inverted files

data warehouses
are cool
doc1

cool guys distribute
their data
doc2

term cnt “posting list”
are 1 doc1:3
cool 2 doc1:4, doc2:1
data 2 doc1:1, doc2:5
distribute 1 doc2:3
guys 1 doc2:2
their 1 doc2:4
warehouses 1 doc1:2
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Inverted File Generation

Idea: Break up index generation into two parts:

1 For each document, extract terms.

2 Collect terms into groups and emit an index entry per group.

E.g.,

1 foreach document doc do
2 pos← 1;
3 tokens← parse (doc);
4 foreach word in tokens do
5 emit ⟨word,doc.id:pos⟩;
6 pos← pos+ 1;

7 collect ⟨key, (values . . . )⟩ pairs;

8 foreach ⟨key, (values)⟩ do
9 count← 0;
10 pList← ();
11 foreach v ∈ values do
12 pList.append (v);
13 count← count+ 1;

14 emit ⟨key, count,pList⟩;
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Inverted File Generation

Observations: (for parallel execution)

For part 1 , documents can be partitioned arbitrarily over
nodes.
For part 2 , all postings of one termmust be collocated on the
same node (postings for different terms may be on different
nodes).
To establish collocation, data may have to bemoved
(“shuffled”) across nodes.

© Jens Teubner · Data Warehousing ·Winter 2015/16 201



Distributed Index Generation

input

(partitioned)

■ ■
terms
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entries
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terms
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terms
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result

(partitioned)
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Generalization (→ “MapReduce”)

The application pattern turns out to be highly versatile.

Only replace foreach bodies:

lines 2–6: f1 :: α→ [⟨β, γ⟩] → “Mapper”

lines 8–14: f2 :: ⟨β, [γ]⟩ → δ → “Reducer”

Shuffling (line 7) combines [⟨β, γ⟩] (“list of key/value pairs”) into a
list of ⟨β, [γ]⟩ (“pairs of key and list of values”).
→ Shuffling (combining) is generic.

MapReduce3 is a framework for distributed computing, where f1 and
f2 can be instantiated by the user.

3Dean and Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI 2004.
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Example: Webserver Log File Analysis

E.g., Webserver log file analysis

Task: For each client IP, report total traffic (in bytes).

� Mapper and Reducer implementations?
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MapReduce Illustrated

by @kerzol on Twitter
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MapReduce

The MapReduce framework…
…decides on a number of Mappers and Reducers to instantiate,
…decides the partitioning of of data and computation,
…moves data as necessary and implements shuffling;

…considers cluster topology, system load, etc.,
…interfaces with a distributed file system (“Google File Syst.”).

Apache Hadoop provides an open-source implementation of the
MapReduce concept; also comes with the “Hadoop Distributed File
System, HDFS.”
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So What?

“The idea seems straightforward. Why all the fuss?”

Remember the challenges we stated?
→ Risk of failures; elasticity; cost

MapReduce was designed for large clusters of cheapmachines.
→ Think of thousands of machines.
→ Failures are frequent (and have to be dealt with).
→ This is why MapReduce has become popular.
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Failure Tolerance?

Trick:
Mapper and Reducer must be pure functions.
→ Their output depends only on their input.
→ No side effects.

Computation can be done anywhere, repeated if necessary.

MapReduce runtime:
Monitor job execution.
Job does not finish within expected time?
→ Restart on different node.
→ Might end up processing a task unit twice→ discard all

results but one.
→ Also used to improve performance (in case of “stragglers”).
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Performance: Grep

E.g., scan 1010 100-byte words for three-character pattern.

1800 machines
each 2× 2GHz
each 2× 160GB IDE HDD
Gigabit Ethernet
paper from 2004

Counter* uppercase;
uppercase = GetCounter("uppercase");

map(String name, String contents):
for each word w in contents:
if (IsCapitalized(w)):
uppercase->Increment();

EmitIntermediate(w, "1");

The counter values from individual worker machines
are periodically propagated to the master (piggybacked
on the ping response). The master aggregates the counter
values from successful map and reduce tasks and returns
them to the user code when the MapReduce operation
is completed. The current counter values are also dis-
played on the master status page so that a human can
watch the progress of the live computation. When aggre-
gating counter values, the master eliminates the effects of
duplicate executions of the same map or reduce task to
avoid double counting. (Duplicate executions can arise
from our use of backup tasks and from re-execution of
tasks due to failures.)
Some counter values are automatically maintained
by the MapReduce library, such as the number of in-
put key/value pairs processed and the number of output
key/value pairs produced.
Users have found the counter facility useful for san-
ity checking the behavior of MapReduce operations. For
example, in some MapReduce operations, the user code
may want to ensure that the number of output pairs
produced exactly equals the number of input pairs pro-
cessed, or that the fraction of German documents pro-
cessed is within some tolerable fraction of the total num-
ber of documents processed.

5 Performance

In this section we measure the performance of MapRe-
duce on two computations running on a large cluster of
machines. One computation searches through approxi-
mately one terabyte of data looking for a particular pat-
tern. The other computation sorts approximately one ter-
abyte of data.
These two programs are representative of a large sub-
set of the real programswritten by users of MapReduce –
one class of programs shuffles data from one representa-
tion to another, and another class extracts a small amount
of interesting data from a large data set.

5.1 Cluster Configuration
All of the programs were executed on a cluster that
consisted of approximately 1800 machines. Each ma-
chine had two 2GHz Intel Xeon processors with Hyper-
Threading enabled, 4GB of memory, two 160GB IDE
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Figure 2: Data transfer rate over time

disks, and a gigabit Ethernet link. The machines were
arranged in a two-level tree-shaped switched network
with approximately 100-200 Gbps of aggregate band-
width available at the root. All of the machines were
in the same hosting facility and therefore the round-trip
time between any pair of machines was less than a mil-
lisecond.
Out of the 4GB of memory, approximately 1-1.5GB
was reserved by other tasks running on the cluster. The
programs were executed on a weekend afternoon, when
the CPUs, disks, and network were mostly idle.

5.2 Grep

The grep program scans through 1010 100-byte records,
searching for a relatively rare three-character pattern (the
pattern occurs in 92,337 records). The input is split into
approximately 64MB pieces (M = 15000), and the en-
tire output is placed in one file (R = 1).
Figure 2 shows the progress of the computation over
time. The Y-axis shows the rate at which the input data is
scanned. The rate gradually picks up as more machines
are assigned to this MapReduce computation, and peaks
at over 30 GB/s when 1764 workers have been assigned.
As the map tasks finish, the rate starts dropping and hits
zero about 80 seconds into the computation. The entire
computation takes approximately 150 seconds from start
to finish. This includes about a minute of startup over-
head. The overhead is due to the propagation of the pro-
gram to all worker machines, and delays interacting with
GFS to open the set of 1000 input files and to get the
information needed for the locality optimization.

5.3 Sort

The sort program sorts 1010 100-byte records (approxi-
mately 1 terabyte of data). This program is modeled after
the TeraSort benchmark [10].
The sorting program consists of less than 50 lines of
user code. A three-line Map function extracts a 10-byte
sorting key from a text line and emits the key and the

To appear in OSDI 2004 8

→ Leverage aggregate disk bandwidth.
→ This is what we need for OLAP, too.
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Performance: Sort
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Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).
As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.
Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.
Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.
The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

To appear in OSDI 2004 9
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MapReduce for Data Warehousing

MapReduce is not a database.
→ No tables, tuples, rows, schemas, indexes, etc.

Rather, MapReduce is based on files.
→ Typically kept in a distributed file system.

This is unfortunate:
No schema information to optimize, validate, etc.
No indexes (or other means to improve physical representation).

This is good:
Start analyzing immediately; don’t wait for index creation, etc.
May ease ad-hoc analyses.
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Beyond the Basic Idea

While the original MapReduce is proprietary to Google, Hadoop is
widely used in industry and research.

Java-based
→ Can run on heterogeneous platforms, cloud systems, etc.

Integration with other Apache technology
→ Hadoop Distributed File System (HDFS), HBase, etc.

Can hook into more functions than just Mapper and Reducer
→ e.g., pre-aggregate between map and shuffle
→ modify partitioning, etc.

Many interfaces Hadoop↔ database/data warehouse
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Hadoop and Petabyte Sort Benchmark

Challenge: sort 1 TB of 100-byte records.

Hardware:
3800 nodes, 2× 4× 2.5GHz per node
4 SATA disks, 8GB RAM per node

Results:

GBytes Nodes Maps Reduces Repl. Time

500 1406 8000 2600 1 59 sec
1,000 1460 8000 2700 1 62 sec

100,000 3452 190,000 10,000 2 173min
1,000,000 3658 80,000 20,000 2 975min
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Hadoop and Petabyte Sort Benchmark
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Hadoop and Petabyte Sort Benchmark
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MapReduce↔ Databases: Load Times
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Figure 1: Load Times – Grep Task Data Set
(535MB/node)
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Figure 2: Load Times – Grep Task Data Set
(1TB/cluster)
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Figure 3: Load Times – UserVisits Data Set
(20GB/node)

Since Hadoop needs a total of 3TB of disk space in order to store
three replicas of each block in HDFS, we were limited to running
this benchmark only on 25, 50, and 100 nodes (at fewer than 25
nodes, there is not enough available disk space to store 3TB).
4.2.1 Data Loading
We now describe the procedures used to load the data from the

nodes’ local files into each system’s internal storage representation.

Hadoop: There are two ways to load data into Hadoop’s distributed
file system: (1) use Hadoop’s command-line file utility to upload
files stored on the local filesystem into HDFS or (2) create a custom
data loader program that writes data using Hadoop’s internal I/O
API. We did not need to alter the input data for our MR programs,
therefore we loaded the files on each node in parallel directly into
HDFS as plain text using the command-line utility. Storing the data
in this manner enables MR programs to access data using Hadoop’s
TextInputFormat data format, where the keys are line num-
bers in each file and their corresponding values are the contents of
each line. We found that this approach yielded the best performance
in both the loading process and task execution, as opposed to using
Hadoop’s serialized data formats or compression features.

DBMS-X: The loading process in DBMS-X occurs in two phases.
First, we execute the LOAD SQL command in parallel on each node
in the cluster to read data from the local filesystem and insert its
contents into a particular table in the database. We specify in this
command that the local data is delimited by a special character, thus
we did not need to write a custom program to transform the data
before loading it. But because our data generator simply creates
random keys for each record on each node, the system must redis-
tribute the tuples to other nodes in the cluster as it reads each record
from the input files based on the target table’s partitioning attribute.
It would be possible to generate a “hash-aware” version of the data
generator that would allow DBMS-X to just load the input files on
each node without this redistribution process, but we do not believe
that this would improve load times very much.
Once the initial loading phase is complete, we then execute an

administrative command to reorganize the data on each node. This
process executes in parallel on each node to compress data, build
each table’s indexes, and perform other housekeeping.

Vertica: Vertica also provides a COPY SQL command that is is-
sued from a single host and then coordinates the loading process on
multiple nodes in parallel in the cluster. The user gives the COPY
command as input a list of nodes to execute the loading operation
for. This process is similar to DBMS-X: on each node the Vertica
loader splits the input data files on a delimiter, creates a new tuple
for each line in an input file, and redistributes that tuple to a dif-

ferent node based on the hash of its primary key. Once the data is
loaded, the columns are automatically sorted and compressed ac-
cording to the physical design of the database.

Results&Discussion: The results for loading both the 535MB/node
and 1TB/cluster data sets are shown in Figures 1 and 2, respectively.
For DBMS-X, we separate the times of the two loading phases,
which are shown as a stacked bar in the graphs: the bottom seg-
ment represents the execution time of the parallel LOAD commands
and the top segment is the reorganization process.
The most striking feature of the results for the load times in

535MB/node data set shown in Figure 1 is the difference in perfor-
mance of DBMS-X compared to Hadoop and Vertica. Despite issu-
ing the initial LOAD command in the first phase on each node in par-
allel, the data was actually loaded on each node sequentially. Thus,
as the total of amount of data is increased, the load times also in-
creased proportionately. This also explains why, for the 1TB/cluster
data set, the load times for DBMS-X do not decrease as less data
is stored per node. However, the compression and housekeeping on
DBMS-X can be done in parallel across nodes, and thus the execu-
tion time of the second phase of the loading process is cut in half
when twice as many nodes are used to store the 1TB of data.
Without using either block- or record-level compression, Hadoop

clearly outperforms both DBMS-X and Vertica since each node is
simply copying each data file from the local disk into the local
HDFS instance and then distributing two replicas to other nodes
in the cluster. If we load the data into Hadoop using only a sin-
gle replica per block, then the load times are reduced by a factor
of three. But as we will discuss in Section 5, the lack of multiple
replicas often increases the execution times of jobs.

4.2.2 Task Execution
SQL Commands: A pattern search for a particular field is sim-
ply the following query in SQL. Neither SQL system contained an
index on the field attribute, so this query requires a full table scan.

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

MapReduce Program: The MR program consists of just a Map
function that is given a single record already split into the appro-
priate key/value pair and then performs a sub-string match on the
value. If the search pattern is found, the Map function simply out-
puts the input key/value pair to HDFS. Because no Reduce function
is defined, the output generated by each Map instance is the final
output of the program.

Results & Discussion: The performance results for the three sys-
tems for this task is shown in Figures 4 and 5. Surprisingly, the
relative differences between the systems are not consistent in the
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→ Schema and physical data organization make loading slower on
the databases.
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MapReduce↔ Databases: Grep Benchmark
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Figure 4: Grep Task Results – 535MB/node Data Set
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Figure 5: Grep Task Results – 1TB/cluster Data Set

two figures. In Figure 4, the two parallel databases perform about
the same, more than a factor of two faster in Hadoop. But in Fig-
ure 5, both DBMS-X and Hadoop perform more than a factor of
two slower than Vertica. The reason is that the amount of data pro-
cessing varies substantially from the two experiments. For the re-
sults in Figure 4, very little data is being processed (535MB/node).
This causes Hadoop’s non-insignificant start-up costs to become the
limiting factor in its performance. As will be described in Section
5.1.2, for short-running queries (i.e., queries that take less than a
minute), Hadoop’s start-up costs can dominate the execution time.
In our observations, we found that takes 10–25 seconds before all
Map tasks have been started and are running at full speed across the
nodes in the cluster. Furthermore, as the total number of allocated
Map tasks increases, there is additional overhead required for the
central job tracker to coordinate node activities. Hence, this fixed
overhead increases slightly as more nodes are added to the cluster
and for longer data processing tasks, as shown in Figure 5, this fixed
cost is dwarfed by the time to complete the required processing.
The upper segments of each Hadoop bar in the graphs represent

the execution time of the additional MR job to combine the output
into a single file. Since we ran this as a separate MapReduce job,
these segments consume a larger percentage of overall time in Fig-
ure 4, as the fixed start-up overhead cost again dominates the work
needed to perform the rest of the task. Even though the Grep task is
selective, the results in Figure 5 show how this combine phase can
still take hundreds of seconds due to the need to open and combine
many small output files. Each Map instance produces its output in
a separate HDFS file, and thus even though each file is small there
are many Map tasks and therefore many files on each node.
For the 1TB/cluster data set experiments, Figure 5 shows that all

systems executed the task on twice as many nodes in nearly half the
amount of time, as one would expect since the total amount of data
was held constant across nodes for this experiment. Hadoop and
DBMS-X performs approximately the same, since Hadoop’s start-
up cost is amortized across the increased amount of data processing
for this experiment. However, the results clearly show that Vertica
outperforms both DBMS-X and Hadoop. We attribute this to Ver-
tica’s aggressive use of data compression (see Section 5.1.3), which
becomes more effective as more data is stored per node.

4.3 Analytical Tasks
To explore more complex uses of both types of systems, we de-

veloped four tasks related to HTML document processing. We first
generate a collection of random HTML documents, similar to that
which a web crawler might find. Each node is assigned a set of

600,000 unique HTML documents, each with a unique URL. In
each document, we randomly generate links to other pages set us-
ing a Zipfian distribution.
We also generated two additional data sets meant to model log

files of HTTP server traffic. These data sets consist of values de-
rived from the HTML documents as well as several randomly gen-
erated attributes. The schema of these three tables is as follows:
CREATE TABLE Documents (

url VARCHAR(100)
PRIMARY KEY,

contents TEXT );

CREATE TABLE Rankings (
pageURL VARCHAR(100)

PRIMARY KEY,
pageRank INT,
avgDuration INT );

CREATE TABLE UserVisits (
sourceIP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT );

Our data generator created unique files with 155 million UserVis-
its records (20GB/node) and 18 million Rankings records (1GB/node)
on each node. The visitDate, adRevenue, and sourceIP fields are
picked uniformly at random from specific ranges. All other fields
are picked uniformly from sampling real-world data sets. Each data
file is stored on each node as a column-delimited text file.

4.3.1 Data Loading
We now describe the procedures for loading the UserVisits and

Rankings data sets. For reasons to be discussed in Section 4.3.5,
only Hadoop needs to directly load the Documents files into its in-
ternal storage system. DBMS-X and Vertica both execute a UDF
that processes the Documents on each node at runtime and loads
the data into a temporary table. We account for the overhead of
this approach in the benchmark times, rather than in the load times.
Therefore, we do not provide results for loading this data set.

Hadoop: Unlike the Grep task’s data set, which was uploaded di-
rectly into HDFS unaltered, the UserVisits and Rankings data sets
needed to be modified so that the first and second columns are sep-
arated by a tab delimiter and all other fields in each line are sepa-
rated by a unique field delimiter. Because there are no schemas in
the MR model, in order to access the different attributes at run time,
the Map and Reduce functions in each task must manually split the
value by the delimiter character into an array of strings.
We wrote a custom data loader executed in parallel on each node

to read in each line of the data sets, prepare the data as needed,
and then write the tuple into a plain text file in HDFS. Loading
the data sets in this manner was roughly three times slower than
using the command-line utility, but did not require us to write cus-
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→ MapReduce leaves result as collection of files; collecting into
single result costs addl. time.
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MapReduce↔ Databases: Aggregation
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Figure 7: Aggregation Task Results (2.5 million Groups)
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Figure 8: Aggregation Task Results (2,000 Groups)

the query coordinator, which outputs results to the user. The results
in Figure 7 illustrate that the two DBMSs perform about the same
for a large number of groups, as their runtime is dominated by the
cost to transmit the large number of local groups and merge them
at the coordinator. For the experiments using fewer nodes, Vertica
performs somewhat better, since it has to read less data (since it
can directly access the sourceIP and adRevenue columns), but it
becomes slightly slower as more nodes are used.
Based on the results in Figure 8, it is more advantageous to use

a column-store system when processing fewer groups for this task.
This is because the two columns accessed (sourceIP and adRev-
enue) consist of only 20 bytes out of the more than 200 bytes per
UserVisits tuple, and therefore there are relatively few groups that
need to be merged so communication costs are much lower than in
the non-variant plan. Vertica is thus able to outperform the other
two systems from not reading unused parts of the UserVisits tuples.
Note that the execution times for all systems are roughly consis-

tent for any number of nodes (modulo Vertica’s slight slow down as
the number of nodes increases). Since this benchmark task requires
the system to scan through the entire data set, the run time is always
bounded by the constant sequential scan performance and network
repartitioning costs for each node.

4.3.4 Join Task
The join task consists of two sub-tasks that perform a complex

calculation on two data sets. In the first part of the task, each sys-
tem must find the sourceIP that generated the most revenue within
a particular date range. Once these intermediate records are gener-
ated, the system must then calculate the average pageRank of all the
pages visited during this interval. We use the week of January 15-
22, 2000 in our experiments, which matches approximately 134,000
records in the UserVisits table.
The salient aspect of this task is that it must consume two data

different sets and join them together in order to find pairs of Rank-
ing and UserVisits records with matching values for pageURL and
destURL. This task stresses each system using fairly complex op-
erations over a large amount of data. The performance results are
also a good indication on how well the DBMS’s query optimizer
produces efficient join plans.

SQLCommands: In contrast to the complexity of the MR program
described below, the DBMSs need only two fairly simple queries to
complete the task. The first statement creates a temporary table and
uses it to store the output of the SELECT statement that performs
the join of UserVisits and Rankings and computes the aggregates.

Once this table is populated, it is then trivial to use a second query
to output the record with the largest totalRevenue field.

SELECT INTO Temp sourceIP,
AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)
AND Date(‘2000-01-22’)

GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp

ORDER BY totalRevenue DESC LIMIT 1;

MapReduce Program: Because the MR model does not have an
inherent ability to join two or more disparate data sets, the MR pro-
gram that implements the join task must be broken out into three
separate phases. Each of these phases is implemented together as a
single MR program in Hadoop, but do not begin executing until the
previous phase is complete.

Phase 1 – The first phase filters UserVisits records that are outside
the desired data range and then joins the qualifying records with
records from the Rankings file. The MR program is initially given
all of the UserVisits and Rankings data files as input.
Map Function: For each key/value input pair, we determine its

record type by counting the number of fields produced when split-
ting the value on the delimiter. If it is a UserVisits record, we
apply the filter based on the date range predicate. These qualify-
ing records are emitted with composite keys of the form (destURL,
K1), whereK1 indicates that it is a UserVisits record. All Rankings
records are emitted with composite keys of the form (pageURL,
K2), whereK2 indicates that it is a Rankings record. These output
records are repartitioned using a user-supplied partitioning function
that only hashes on the URL portion of the composite key.
Reduce Function: The input to the Reduce function is a single

sorted run of records in URL order. For each URL, we divide its
values into two sets based on the tag component of the composite
key. The function then forms the cross product of the two sets to
complete the join and outputs a new key/value pair with the sour-
ceIP as the key and the tuple (pageURL, pageRank, adRevenue) as
the value.

Phase 2 – The next phase computes the total adRevenue and aver-
age pageRank based on the sourceIP of records generated in Phase
1. This phase uses a Reduce function in order to gather all of the
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→ Databases limited by communication cost, which is lower for
smaller group counts.
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MapReduce↔ Databases: Join
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Figure 9: Join Task Results
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Figure 10: UDF Aggregation Task Results

records for a particular sourceIP on a single node. We use the iden-
tity Map function in the Hadoop API to supply records directly to
the split process [1, 8].
Reduce Function: For each sourceIP, the function adds up the

adRevenue and computes the average pageRank, retaining the one
with the maximum total ad revenue. Each Reduce instance outputs
a single record with sourceIP as the key and the value as a tuple of
the form (avgPageRank, totalRevenue).

Phase 3 – In the final phase, we again only need to define a sin-
gle Reduce function that uses the output from the previous phase to
produce the record with the largest total adRevenue. We only exe-
cute one instance of the Reduce function on a single node to scan
all the records from Phase 2 and find the target record.
Reduce Function: The function processes each key/value pair

and keeps track of the record with the largest totalRevenue field.
Because the Hadoop API does not easily expose the total number
records that a Reduce instance will process, there is no way for
the Reduce function to know that it is processing the last record.
Therefore, we override the closing callback method in our Reduce
implementation so that the MR program outputs the largest record
right before it exits.

Results & Discussion: The performance results for this task is dis-
played in Figure 9. We had to slightly change the SQL used in 100
node experiments for Vertica due to an optimizer bug in the system,
which is why there is an increase in the execution time for Vertica
going from 50 to 100 nodes. But even with this increase, it is clear
that this task results in the biggest performance difference between
Hadoop and the parallel database systems. The reason for this dis-
parity is two-fold.
First, despite the increased complexity of the query, the perfor-

mance of Hadoop is yet again limited by the speed with which the
large UserVisits table (20GB/node) can be read off disk. The MR
program has to perform a complete table scan, while the parallel
database systems were able to take advantage of clustered indexes
on UserVisits.visitDate to significantly reduce the amount of data
that needed to be read. When breaking down the costs of the dif-
ferent parts of the Hadoop query, we found that regardless of the
number of nodes in the cluster, phase 2 and phase 3 took on aver-
age 24.3 seconds and 12.7 seconds, respectively. In contrast, phase
1, which contains the Map task that reads in the UserVisits and
Rankings tables, takes an average of 1434.7 seconds to complete.
Interestingly, it takes approximately 600 seconds of raw I/O to read
the UserVisits and Rankings tables off of disk and then another 300

seconds to split, parse, and deserialize the various attributes. Thus,
the CPU overhead needed to parse these tables on the fly is the lim-
iting factor for Hadoop.
Second, the parallel DBMSs are able to take advantage of the fact

that both the UserVisits and the Rankings tables are partitioned by
the join key. This means that both systems are able to do the join
locally on each node, without any network overhead of repartition-
ing before the join. Thus, they simply have to do a local hash join
between the Rankings table and a selective part of the UserVisits
table on each node, with a trivial ORDER BY clause across nodes.

4.3.5 UDF Aggregation Task
The final task is to compute the inlink count for each document

in the dataset, a task that is often used as a component of PageR-
ank calculations. Specifically, for this task, the systems must read
each document file and search for all the URLs that appear in the
contents. The systems must then, for each unique URL, count the
number of unique pages that reference that particular URL across
the entire set of files. It is this type of task that the MR is believed
to be commonly used for.
We make two adjustments for this task in order to make pro-

cessing easier in Hadoop. First, we allow the aggregate to include
self-references, as it is non-trivial for a Map function to discover
the name of the input file it is processing. Second, on each node
we concatenate the HTML documents into larger files when storing
them in HDFS. We found this improved Hadoop’s performance by
a factor of two and helped avoid memory issues with the central
HDFS master when a large number of files are stored in the system.

SQL Commands: To perform this task in a parallel DBMS re-
quires a user-defined function F that parses the contents of each
record in the Documents table and emits URLs into the database.
This function can be written in a general-purpose language and is
effectively identical to the Map program discussed below. With this
function F, we populate a temporary table with a list of URLs and
then can execute a simple query to calculate the inlink count:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Despite the simplicity of this proposed UDF, we found that in
practice it was difficult to implement in the DBMSs.
For DBMS-X, we translated the MR program used in Hadoop

into an equivalent C program that uses the POSIX regular expres-
sion library to search for links in the document. For each URL
found in the document contents, the UDF returns a new tuple (URL,
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→ Joins are rather complex to formulate in MapReduce.
→ Repartitioning incurs high communication overhead.
→ Joins can be accelerated using indexes.
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MapReduce↔ Databases

Persistent data↔ data read ad-hoc:
Overhead for schema design, loading, indexing, etc.
→ Cost might amortize only after several queries/analyses.

Databases feature support for transactions.
→ Not needed for read-only workloads.

Language: SQL↔ Java/C++/…:
Write a newMapReduce program for each and every analysis?
User-defined functionality in SQL?
→ E.g., similarity measures, statistics functions, etc.

Debug SQL or MapReduce job?

Is there a goodmiddle ground?

© Jens Teubner · Data Warehousing ·Winter 2015/16 220



Apache Pig

Idea:
Data processing language that sits in-between SQL and
MapReduce.
→ Declarative (“SQL-like”; ; allow for optimization, easy

re-use and maintenance)
→ Procedural-style, rich data model (; programmers feel

comfortable)

Pig programs are compiled into MapReduce (Hadoop) jobs.
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Pig Latin Example

S = LOAD 'sailors.csv' USING PigStorage(',')
AS (sid:int, name:chararray, rating:int, age:int);

B = LOAD 'boats.csv' USING PigStorage(',')schema on-the-fly
AS (bid:int, name:chararray, color:chararray);

R = LOAD 'reserves.csv' USING PigStorage(',')
AS (sid:int, bid:int, day:chararray);

-- SELECT S.sid, R.day
-- FROM Sailors AS S, Reserves AS R
-- WHERE S.sid = R.sid AND R.bid = 101

A = FILTER R BY (bid == 101);
B = JOIN S BY sid, A by sid;
X = FOREACH B GENERATE S::sid, A::day AS day;

programming style:
sequence of assignments; data flow

STORE X into 'result.csv';
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Pig Latin Data Model

Pig Latin features a fairly rich data model:

atoms:
→ e.g., 'foo', 42

tuples: sequence of fields of any data type
→ e.g., ('foo', 42)
→ access by field name or position, tuples can be nested

bag: collection of tuples (possibly with duplicates)

→ e.g.,
{

('foo', 42)
(17, ('hello', 'world'))

}
map: collection of key→ valuemappings

→ e.g.,

 'fan of'→
{

('lakers')
('iPod')

}
age→ 20


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Pig Latin Data Model

Pig Latin’s data types can be arbitrarily nested4

Contrast to 1NF data model in relational databases
→ Avoid joins, which MapReduce can’t do too well.
→ Allow for sound datamodel, including grouping, etc.
→ Easier integration with user-defined functions

4Keys for map types must be atomic, though (for efficiency reasons).
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Pig Latin Operators: FILTER

kids = FILTER users BY (age < 18);

→ Comparison operators: ==, eq, !=, neq, AND, …
→ Can use user-defined functions arbitrarily.

� Implementation in MapReduce?
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Pig Latin Operators: FOREACH

FOREACH Sailors GENERATE
sid AS sailorId,
name AS sailorName,
( rating, age ) AS sailorInfo;

→ Apply some processing (e.g., item re-structuring) to every item
of a data set (; projection in Relational Algebra)

→ No loop dependence! → parallel execution
(XQuery’s FLWOR expressions provide a similar form of iteration.)
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Pig Latin Operators: GROUP

sales_by_cust = GROUP sales BY customerName;

→ returns a bag (“relation”) with two fields: group key and bag of
tuples with that key value.

First field is named group
Second field is named by variable (“alias” in Pig
terminology) used in the GROUP statement (here: sales)

� Implementation in MapReduce?
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Pig Latin Operators: COGROUP

Group items frommultiple data sets:

O = LOAD 'owner.csv' USING PigStorage(',')
AS (owner:chararray, pet:chararray);

→ {(Alice, turtle) , (Alice, goldfish) , (Alice, cat) , (Bob, dog) , (Bob, cat)}
F = LOAD 'friend.csv' USING PigStorage(',')

AS (person:chararray, friend:chararray);
→ {(Cindy, Alice) , (Mark, Alice) , (Paul, Bob) , (Paul, Jane)}
X = COGROUP O BY owner, F BY friend;

→



Alice,

 (Alice, turtle)
(Alice, goldfish)

(Alice, cat)

 ,

{
(Cindy, Alice)
(Mark, Alice)

}
(

Bob,
{

(Bob, dog)
(Bob, cat)

}
,
{

(Paul, Bob)
})

(
Jane, {} ,

{
(Paul, Jane)

})


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Pig Latin Operators: JOIN

join_result = JOIN results BY queryString,
revenue BY queryString;

→ Equi-joins only.

� Implementation in MapReduce?

→ Cross product between fields 1 and 2 of COGROUP result.

temp = COGROUP results BY queryString;
revenue BY queryString;

join_result = FOREACH temp GENERATE
FLATTEN (results), FLATTEN (revenue);
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Pig Latin: More Operators

Many additional operators ease common data analysis tasks, e.g.,

LOAD/STORE
(Not surprisingly, Pig works well together with HDFS.)
UNION
CROSS
ORDER
DISTINCT
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Pig Latin: Debugging

Pig Latin was also designed with the development and analysis
workflow in mind.

→ Interactive use of Pig (“grunt”).
→ Can run Pig programs locally (without Hadoop).
→ Commands to examine expression results.

DUMP: Write (intermediate) result to storage.
DESCRIBE: Print schema of an (intermediate) result.
EXPLAIN: Print execution plan.
ILLUSTRATE: View step-by-step execution of a plan; show
representative examples of (intermediate) result data.
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