Data Warehousing

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner - Data Warehousing - Winter 2015/16 1

Part VI

ETL Process

© Jens Teubner - Data Warehousing - Winter 2015/16

ETL Overview

In most DW systems, the most complex part is the ETL process.

= Extract from multiple

sources m Map to DW schema
m Change Data Capture » aggregate, convert
.. Conform .
@ Extract) | Cléan Transform |E)Ed> m
= Clean, normalize = (Bulk-) load into DW

= deduplicate

m correct errors

© Jens Teubner - Data Warehousing - Winter 2015/16

ETL Process Types

When do we run the ETL process?

ETL

N

Initial Load Propagate Changes

Periodic Refresh Periodic Delta Online Propagation

© Jens Teubner - Data Warehousing - Winter 2015/16

ETL Process Types

Considerations:
= Overhead on data warehouse and source sides.
— E.g., online propagation puts a permanent burden on both
sides; cannot benefit from bulk loading mechanisms
= Data Staleness
— Frequent updates reduce staleness, but increase overhead.

m Debugging, Failure Handling

— With online/stream-based mechanisms, it may be more
difficult to track down problems.

m Different process for different flavors of data?

— E.g., periodic refresh may work well for small (dimension)
tables.

© Jens Teubner - Data Warehousing - Winter 2015/16 163

Change Data Capture

Detecting changes is a challenge:

= Audit Columns (e.g., “last modified” time stamp)

> Set time stamps or “new” flags on every row update & How?
— Unset “new” flags on every load into the DW. & Why?

m Full Diff
— Keep old snapshot and diff it with current version.
— Thorough, will detect any change
— Resource-intensive: need to move and scan large volumes
— Optimization: Hashes/checksums to speed up comparison

m Database Log Scraping

— The database’s write-ahead log contains all change inform.
—» Scraping the log may get messy, though.
— Variant: create a message stream ODS — DW

© Jens Teubner - Data Warehousing - Winter 2015/16 164

Data Cleansing

After extraction, data has to be normalized and cleaned.

e Sty

Sweetlegal 202 North Redmond 425-444-5555
Investments Inc

r, ABC Groceries Amphitheatre Mountain 4081112222
Corp Pkwy View

r3 Cable television One Oxford Dr Cambridge 617-123-4567
services

S T R N

Sweet legal 202 N Redmond
Invesments Inc.

s, ABC Groceries Amphitheetre Mountain
Corpn. Parkway View

s3 Cable Services One Oxford Dr Cambridge 6171234567

© Jens Teubner - Data Warehousing - Winter 2015/16 165

Data Cleansing/ Normalization Tasks

Problem:
= Real-world data is messy.
m Consistency rules in the OLTP system?

— Alot of data is still entered by people.
— Data warehouses serve as an integration platform.

Typical cleaning and normalization tasks:
m Correct spelling errors.
m ldentify record matches and duplicates.
m Resolve conflicts and inconsistencies.
= Normalize (“conform”) data.

© Jens Teubner - Data Warehousing - Winter 2015/16

Primitive Operations for Cleansing

Similarity Join
— Bring together similar data
—+ For record matching and deduplication
Clustering
— Putitems into groups, based on “similarity”
— E.g., pre-processing for deduplication
Parsing
— E.g., source table has an ‘address’ column; whereas target

table has ‘street’, ‘zip’, and ‘city’ columns

— Might have to identify pieces of a string to normalize (e.g.,
"Road" — "Rd")

© Jens Teubner - Data Warehousing - Winter 2015/16

Similarity Join / Deduplication

Process of finding duplicates:

Duplicates

Algorithm to Calculate
choose candidate sim(c, ,c,)

pairs (c,,c,) using similarity

among R xR measure

Apply
similarity
thresholds

Non-
duplicates

© Jens Teubner - Data Warehousing - Winter 2015/16 168

What is the “similarity” of two strings s; and s,?
Edit Distance
ed(s1,s7): shortest edit sequence that transforms s into s;

insert ab — axb
delete axb — ab
replace axb — ayb
transpose axyb — ayxb

E.g. sy = "Sweet"; s = "Sweat"

— Levenshtein distance (insert, delete, replace allowed): Q>
— Longest Common Subsequence (LCS) distance (insert,
delete allowed) &

© Jens Teubner - Data Warehousing - Winter 2015/16 169

Jaccard Similarity

Intuition: similarity of two sets S; and S,

. size of intersection _ [S11 Sy
size of union |IS1USy|

Sets? String s; — set S;?

Trick: Determine g-grams of s;
— g-gram: all substrings of size q
— qgrams("Sweet") = {Sw,we, ee, et}
| {Sw,we,ee, et} N {Sw,we,ea,at} | | {Sw,we} |
| {Szw, we1, ee,et} U {Sw,we,ea,at}| - | {Sw, we, ee,et,ea, at} |

6 3

© Jens Teubner - Data Warehousing - Winter 2015/16

170

Soundex

Phonetic algorithm to index words by sound:

1. Retain first letter of word.
2. Replace following letters with numbers (drop other letters):

b, f, p,Vv — 1
¢, g,k q,s,x%,2 — 2
d, t — 3
L — 4
m, n)
r — b

3. Drop letters where preceding letter yielded same number.
4. Collect three numbers, fill with O if necessary.

—» soundex("Sweet") = S300;
soundex("Robert") = soundex("Rupert") = R163.

© Jens Teubner - Data Warehousing - Winter 2015/16 171

Similarity Join—Naive Strategy

= Compare every record
with every other

m Here: Dedupliation
(R X~ R)

m & Cost?

© Jens Teubner - Data Warehousing - Winter 2015/16 172

Similarity Join—Blocking

m Partition data into

blocks
= Compare only within
blocks
» Q Cost?
Assume n records and
b blocks:
b %(E‘”
()
2 2
£(%-n)

© Jens Teubner - Data Warehousing - Winter 2015/16 173

Similarity Join—Blocking

Observations:
m Must partition such that duplicates appear in same partition.
— Risk of missing duplicates.

Strategies:
m Use (prefix of) the ZIP code

—» Assume no typo in the ZIP code and customer has not
moved across ZIP code ranges.

m Use first character of last name
—» Again, assume no typo there.

@ Typically leads to uneven partition sizes.

© Jens Teubner - Data Warehousing - Winter 2015/16 A

Similarity Join—Blocking

Refinement:
m Run multiple passes of the similarity join.

— Use different partitioning key in each pass.
— Assume duplicates agree in at least one partitioning key.

© Jens Teubner - Data Warehousing - Winter 2015/16 175

Similarity Join—Sorted Neighborhood

Assign a sort key to
each record.
Sort accordingly.

Slide window of size w
across sorted list and
join within.

Number of comparisons:

w-1)-(n-%)

© Jens Teubner - Data Warehousing - Winter 2015/16 176

Similarity Join—Sorted Neighborhood

Observations:
= Need good sorting criterion
— Choose characters with low probability of errors

Example:
= Sort by

m First 3 consonants of last name
m First letter of last name
m First 2 digits of ZIP code.

(It is more likely to err in a vowel than in a consonant.)
Also:

m Multi-pass processing can be beneficial also here.

© Jens Teubner - Data Warehousing - Winter 2015/16 177

Detecting Conflicts / Inconsistencies

Data screening system:

Column screens: Test data within a column
— Correct value ranges, value formatting, null values?

Structure screens: Relationship across columns

—+ Foreign key relationships?
— Combination of columns is a valid postal address?

Business rule screens: Data plausible according to business
rules?
— E.g., customer status X requires N years of loyalty, M EUR
total revenue, etc.

© Jens Teubner - Data Warehousing - Winter 2015/16

Cleansing: Tool Support

Lots of tools support typical cleaning tasks:

= Commercial offerings:

m SAP Business Objects

m IBM InfoSphere Data Stage

m Oracle Data Quality and Oracle Data Profiling
= Open source tools:

m Eobjects DataCleaner, Talend Open Profiler

— Explore and profile source data
= Analyze key properties, missing values, distributions, etc.

— Rules for common filtering and normalization tasks

m Regular expressions for phone numbers, credit card
numbers, etc.
m Convert dates, phone numbers, addresses, etc.

© Jens Teubner - Data Warehousing - Winter 2015/16 179

Schema Integration

Tools also help with schema integration.

— Different source systems, types, and schemas must be
integrated.

— Infer mapping between schemas (automatically)?

Tools:

= Compare table and attribute names; consider synonyms and
homonyms

= Infer data types/formats and mapping rules
~~ Techniques similar to similarity joins and deduplication.

Still:
m Often a lot of manual work needed.

© Jens Teubner - Data Warehousing - Winter 2015/16

What to do with detected errors/problems?
m Fix automatically if possible
m Otherwise: report the error — How/Where?

“Trick:” Error event schema
— Star schema for the “error” business event

Date Dimension Screen Dimension

Date Key (PK) «_| Error Event Fact Screen Key (PK)
. \ Error Evt Key (PK))
: Date Key (FK) :

Batch Dimension / Batch Key (FK)

Batch Key (PK) | Screen Key (FK)
) y Severity Score

S Advantage?

© Jens Teubner - Data Warehousing - Winter 2015/16

Data Transformation

— T
R

S—

— > | |staging— cube
source 2| table 2
p/

Source — Staging Table:
m Tool depends on data source (database, XML, flat files, etc.)
— e.g., SQL, XQuery, Perl, awk, etc.
m Often:

— Extract to flat file (e.g., CSV)
— Then bulk-load into staging table

—|

© Jens Teubner - Data Warehousing - Winter 2015/16

Dimension and Fact Tables

Complete load process will involve fact and dimension tables.

foreign key .
m Dependency fact ———— dimension.

m Thus: Load dimension table(s) first.

~ All dimension keys available when fact table row is
inserted.

© Jens Teubner - Data Warehousing - Winter 2015/16 183

Slowly Changing Dimensions—Type 1

Data updated/inserted in source database:

: — A913-G Mega Dirill Tools
I A922-Z IntelliKidz Strate
A922-Z IntelliKidz Education gy

A944-V Frizz Master Cooking

Type 1 (“Overwrite”) strategy in data warehouse:

Product Dimension

Prod Key

10468 A913-G Mega Dirill Tools
12345 A922-Z IntelliKidz Education
1

Prod Key
10468 A913-G Mega Drill Tools
12345 A922-Z IntelliKidz Strategy
46729 A944-V Frizz Master Cooking

© Jens Teubner - Data Warehousing - Winter 2015/16 184

Slowly Changing Dimensions—Type 1

For every source row t:
Search in dimension table by operational key (“natural key”).
If found, compare existing dimension row with t.
— Apply changes to dimension row if necessary.
If not found, insert new row in dimension table.
— Create a new surrogate key.

source
rowt

not
found

lookup dim row

with SKU=t.SKU found

identical

compare t
with dim row

ignore

different
update dim row

create new dim row
(with new Prod Key)

© Jens Teubner - Data Warehousing - Winter 2015/16

Slowly Changing Dimensions—Type 2

Type 2 Dimensions: Keep a History of Changes

— Create a new dimension row for every change.
— Mark validity with since/until fields.

Product Dimension

ProdKey

10468 A913-G Mega Drill
12345 A922-Z IntelliKidz
63726 A922-Z IntelliKidz
46729 A944-V Frizz Master

—+ Current value is the one with until=12/31/99’ (or oo, ..

Alternative:

Tools
Education
Strategy
Cooking

2/4/12
1/1/12
3/1/13
3/1/13

12/31/99
2/28/13

12/31/99
12/31/99

)

m Boolean valid field (true for current version, false for old versions)

© Jens Teubner - Data Warehousing - Winter 2015/16

186

Slowly Changing Dimensions—Type 2

source
rowt

lookup dim row
with SKU=t.SKU

not and until="12/31/99’

found

found

compare t identical

with dim row

ignore

different
update dim row
set until=today() — 1
I

1l 7
create new dim row (with new Prod Key)
set since=today() and until="12/31/99’

© Jens Teubner - Data Warehousing - Winter 2015/16

Slowly Changing Dimensions

Notes:
m Types 1/2 may also be mixed
— Keep history for only some columns.

Single-row operations (lookup, update, create) may be expensive.
— Cache lookup results (also for later fact loading)
“> Implementation?
— Merge tuple creation into single data flow.
— bulk-load inserts

— Use dedicated syntax (such as SQL Server’s MERGE statement)

© Jens Teubner - Data Warehousing - Winter 2015/16

Loading Data

Tricks to load data fast:

Turn off logging

— Databases maintain a write-ahead log to implement failure

tolerance mechanisms.

— Row-by-row logging causes huge overhead.
Pre-sort data

— Depending on system, may speed up index construction.

— Additional benefit: may result in better physical layout
Truncate table first

— Makes (not) logging and failure tolerance even easier.

© Jens Teubner - Data Warehousing - Winter 2015/16

Loading Data

Enable “fast mode”
— If data is prepared properly, database may use faster
parsing mechanisms
Make sure data is correct
—» Transformation, field truncation, error reporting may slow
down bulk-loading significantly
[Temporarily disable integrity control
— Avoid checking during load, but do it in bulk, too.

© Jens Teubner - Data Warehousing - Winter 2015/16

Example: Bulk Loading and B-Tree Indexes

Building a B*-tree is particularly easy when the input is sorted.

]

]
]

= Build B*-tree bottom-up and left-to-right.
m Create a parent for every 2d + 1 unparented nodes.

m If data is not sorted already, database will typically sort it
before loading/re-building the index.

© Jens Teubner - Data Warehousing - Winter 2015/16

	ETL Process

