
Data Warehousing

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner · Data Warehousing ·Winter 2015/16 1

Part VI

ETL Process

© Jens Teubner · Data Warehousing ·Winter 2015/16 160

ETL Overview

In most DW systems, the most complex part is the ETL process.

ODS Extract Conform
Clean Transform Load DW

Extract from multiple
sources

Change Data Capture

Clean, normalize

deduplicate

correct errors

Map to DW schema

aggregate, convert

(Bulk-) load into DW

© Jens Teubner · Data Warehousing ·Winter 2015/16 161

ETL Process Types

When do we run the ETL process?

ETL

Initial Load Propagate Changes

Periodic Refresh Periodic Delta Online Propagation

© Jens Teubner · Data Warehousing ·Winter 2015/16 162

ETL Process Types

Considerations:
Overhead on data warehouse and source sides.
→ E.g., online propagation puts a permanent burden on both

sides; cannot benefit from bulk loadingmechanisms

Data Staleness
→ Frequent updates reduce staleness, but increase overhead.

Debugging, Failure Handling
→ With online/stream-based mechanisms, it may be more

difficult to track down problems.

Different process for different flavors of data?
→ E.g., periodic refresh may work well for small (dimension)

tables.

© Jens Teubner · Data Warehousing ·Winter 2015/16 163

Change Data Capture

Detecting changes is a challenge:

Audit Columns (e.g., “last modified” time stamp)
→ Set time stamps or “new” flags on every row update� How?
→ Unset “new” flags on every load into the DW.� Why?

Full Diff
→ Keep old snapshot and diff it with current version.
→ Thorough, will detect any change
→ Resource-intensive: need tomove and scan large volumes
→ Optimization: Hashes/checksums to speed up comparison

Database Log Scraping
→ The database’s write-ahead log contains all change inform.
→ Scraping the log may get messy, though.
→ Variant: create amessage stream ODS→ DW

© Jens Teubner · Data Warehousing ·Winter 2015/16 164

Data Cleansing

After extraction, data has to be normalized and cleaned.

Name Street CIty Phone
r1 Sweetlegal

Investments Inc
202 North Redmond 425-444-5555

r2 ABC Groceries
Corp

Amphitheatre
Pkwy

Mountain
View

4081112222

r3 Cable television
services

One Oxford Dr Cambridge 617-123-4567

Name Street CIty Phone
s1 Sweet legal

Invesments Inc.
202 N Redmond

s2 ABC Groceries
Corpn.

Amphitheetre
Parkway

Mountain
View

s3 Cable Services One Oxford Dr Cambridge 6171234567

© Jens Teubner · Data Warehousing ·Winter 2015/16 165

Data Cleansing /Normalization Tasks

Problem:
Real-world data ismessy.
Consistency rules in the OLTP system?
→ A lot of data is still entered by people.
→ Data warehouses serve as an integration platform.

Typical cleaning and normalization tasks:
Correct spelling errors.
Identify recordmatches and duplicates.
Resolve conflicts and inconsistencies.
Normalize (“conform”) data.

© Jens Teubner · Data Warehousing ·Winter 2015/16 166

Primitive Operations for Cleansing

1 Similarity Join
→ Bring together similar data
→ For record matching and deduplication

2 Clustering
→ Put items into groups, based on “similarity”
→ E.g., pre-processing for deduplication

3 Parsing
→ E.g., source table has an ‘address’ column; whereas target

table has ‘street’, ‘zip’, and ‘city’ columns
→ Might have to identify pieces of a string to normalize (e.g.,

“Road” → “Rd”)

© Jens Teubner · Data Warehousing ·Winter 2015/16 167

Similarity Join /Deduplication

Process of finding duplicates:
1.1. DATA QUALITY 3

Duplicates

Calculate�
sim(c1�,c2)�

using�similarity�
measure

R:
?

Algorithm�to�
choose�candidate�

pairs�(c1,c2)�
among R x R

Apply�
similarity�
thresholds

measure

NonͲ
duplicates

among�R�x�R

Figure 1.1: A prototypical duplicate detection process

The process of duplicate detection is usually embedded in the more broadly defined process of
data cleansing, which not only removes duplicates but performs various other steps, such as address
normalization or constraint verification, to improve the overall data quality. In the sections of this
chapter, we give an overview of this field of data quality beyond duplicates. We then motivate many
causes for inadvertent duplicate creations. Finally, we present several use cases to display the various
areas in which duplicate detection plays an important role in an overall information management
environment.

1.1 DATA QUALITY
Information and data quality are wide and active research and development areas, both from an
information system and a database perspective. They are used synonymously. Broadly, data quality
is defined by Tayi and Ballou [1998] as “fitness for use”, which is usually broken down into a set of
quality dimensions.An in-depth coverage of the topic is given in the book by Batini and Scannapieco
[2006].Here we briefly cover the main issues of data quality with a particular focus of duplicates.First,
we mention several pertinent quality dimensions and then cover various aspects of data cleansing,
which are usually performed before duplicate detection.

1.1.1 DATA QUALITY DIMENSIONS
In their seminal paper, Wang and Strong [1996] elicit fifteen quality dimensions from ques-
tionnaires given to data consumers in the industry; many other classifications are discussed by
Batini and Scannapieco [2006]. These widely cited dimensions are categorized as intrinsic (believ-
ability, accuracy,objectivity, reputation), contextual (value-added, relevancy, timeliness, completeness,
appropriate amount of data), representational (interpretability, ease of understanding, representa-
tional consistency, concise representation), and accessibility (accessibility, access security). Obviously,
some of the dimensions are highly subjective, and others are not related to duplicates. Duplicate de-

© Jens Teubner · Data Warehousing ·Winter 2015/16 168

“Similarity”

What is the “similarity” of two strings s1 and s2?

1 Edit Distance
ed(s1, s2): shortest edit sequence that transforms s1 into s2

insert ab → axb
delete axb → ab
replace axb → ayb

transpose axyb → ayxb

E.g. s1 = “Sweet”; s2 = “Sweat”
→ Levenshtein distance (insert, delete, replace allowed):�
→ Longest Common Subsequence (LCS) distance (insert,

delete allowed)�

© Jens Teubner · Data Warehousing ·Winter 2015/16 169

“Similarity”

2 Jaccard Similarity
Intuition: similarity of two sets S1 and S2

→ size of intersection
size of union =

|S1 ∩ S2|
|S1 ∪ S2|

Sets? String si → set Si?

Trick: Determine q-grams of si
→ q-gram: all substrings of size q
→ qgrams(“Sweet”) = {Sw, we, ee, et}

→ | {Sw, we, ee, et} ∩ {Sw, we, ea, at} |
| {Sw, we, ee, et} ∪ {Sw, we, ea, at} |

=
| {Sw, we} |

| {Sw, we, ee, et, ea, at} |

=
2
6
=
1
3

© Jens Teubner · Data Warehousing ·Winter 2015/16 170

“Similarity”

3 Soundex
Phonetic algorithm to index words by sound:
1. Retain first letter of word.
2. Replace following letters with numbers (drop other letters):

b, f, p, v → 1
c, g, j, k, q, s, x, z → 2
d, t → 3
l → 4
m, n → 5
r → 6

3. Drop letters where preceding letter yielded same number.
4. Collect three numbers, fill with 0 if necessary.

→ soundex(“Sweet”) = S300;
soundex(“Robert”) = soundex(“Rupert”) = R163.

© Jens Teubner · Data Warehousing ·Winter 2015/16 171

Similarity Join—Naïve Strategy

Compare every record
with every other
Here: Dedupliation
(R 1≈ R)
� Cost?

2.2. COMPLEXITY ANALYSIS 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20r1 r2 r3 r4 r 5 r6 r7 r8 r9 r 1 r1 r1 r1 r1 r1 r 1 r 1 r 1 r 1 r 2

r1

r2

r3r3

r4

r5

r6r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

Figure 2.2: Matrix of duplicate candidates

Clearly, the quadratic time complexity described above is impractical for efficient duplicate
detection on large databases. For instance, consider a small movie database with one million movie
candidates. This would require approximately 5 × 1011 pairwise comparisons. Assuming a compar-
ison can be done in 0.1 ms, the time for duplicate detection would roughly take one and a half years!
Therefore, approaches to improve runtime have been devised. They all have in common that they
aim at reducing the number of pairwise comparisons. We discuss these algorithms in more detail
in Chapter 4. In practice, the number of comparisons performed can be reduced by up to 99%,
compared to the number of comparisons necessary when using the naive, quadratic algorithm that
compares all candidates with each other.

So far, we have discussed the theoretical runtime complexity that is dominated by the number
of pairwise candidate comparisons. Another dimension to consider is the cost of disk accesses
necessary to read the data from disk and to write the result back to disc. Each algorithm for duplicate
detection devises its own strategy to minimize I/O cost. As we have seen, duplicate detection can be
viewed as a special type of join. In the database literature, approaches to minimize I/O cost of joins
is abundant, and we observe that duplicate detection algorithms use similar ideas to sort-merge-join
or hash join.

© Jens Teubner · Data Warehousing ·Winter 2015/16 172

Similarity Join—Blocking

Partition data into
blocks
Compare onlywithin
blocks
� Cost?
Assume n records and
b blocks:

b ·
n
b(

n
b−1)
2

=
n(nb−1)

2

= 1
2

(
n2
b − n

)

44 4. DUPLICATE DETECTION ALGORITHMS

assuming all partitions are of equal size.Table 4.1 (see page 48) gives an overview of the computational
complexity of the different methods compared to the exhaustive approach of comparing all pairs of
records.

Figure 4.1 repeats the matrix from Figure 2.2 (p. 17). Assume that records 1 – 20 are sorted
by the partitioning key, both horizontally and vertically. The candidate pairs after partitioning are
shaded. Clearly, there are much fewer candidates than before, namely only 47 compared to the
complete matrix with 190 pairs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20r1 r2 r3 r4 r5 r6 r7 r8 r9 r1 r1 r1 r1 r1 r1 r1 r1 r1 r1 r2

r1

r2

r3r3

r4

r5

r6r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

Figure 4.1: Matrix of duplicate candidates with blocking algorithm.

An important decision for the blocking method is the choice of a good partitioning predicate,
which determines the number and size of the partitions. They should be chosen in a manner that
potential duplicates appear in the same partition. For example, for CRM applications a typical
partitioning is by zip code or by the first few digits of zip codes. The underlying assumption is that
duplicates have the same zip code, i.e., there is no typo in the zip code and the customer has not
moved from one zip code to another. If two duplicate records have the same zip code, they appear
in the same partition and thus can be recognized as duplicates. Other partitionings might be by last
name or some fixed-sized prefix of them, by street name, by employer, etc. In general, partitions of
roughly the same and predictable size are preferable. For instance, partitioning by the first letter of

© Jens Teubner · Data Warehousing ·Winter 2015/16 173

Similarity Join—Blocking

Observations:
Must partition such that duplicates appear in same partition.
→ Risk ofmissing duplicates.

Strategies:
Use (prefix of) the ZIP code
→ Assume no typo in the ZIP code and customer has not

moved across ZIP code ranges.

Use first character of last name
→ Again, assume no typo there.� Typically leads to uneven partition sizes.

© Jens Teubner · Data Warehousing ·Winter 2015/16 174

Similarity Join—Blocking

Refinement:
Runmultiple passes of the similarity join.
→ Use different partitioning key in each pass.
→ Assume duplicates agree in at least one partitioning key.

© Jens Teubner · Data Warehousing ·Winter 2015/16 175

Similarity Join—Sorted Neighborhood

1 Assign a sort key to
each record.

2 Sort accordingly.
3 Slide window of size w
across sorted list and
join within.

Number of comparisons:

(w− 1) ·
(
n− w

2

)

46 4. DUPLICATE DETECTION ALGORITHMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20r1 r2 r3 r4 r5 r6 r7 r8 r9 r1 r1 r1 r1 r1 r 1 r 1 r 1 r1 r 1 r 2

r1

r2

r3r3

r4

r5

r6r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

Figure 4.2: Matrix of duplicate candidates with the Sorted-Neighborhood algorithm.

As opposed to the blocking method, SNM requires a transitive closure step not only due to the
nature of the similarity measure but also because duplicates appear in different partitions/windows:
Figure 4.3 shows a situation where two duplicate pairs are found within different windows and only
the transitive closure produces the complete set of duplicate pairs. Records r3, r3’, and r3” are all
duplicates, but r3 and r3” never appear within the same window of size 4. Only the transitive closure
using their mutual duplicity with r3’ reveals that they too are duplicates.

r1 r2 r3 r4 r5 r3‘ r7 r3‘‘ r9 r10 r11 r12 r13 r14 r15

Figure 4.3: Transitive closure for SNM even after a single pass.

As for the blocking method, there is a chance that the sorting characters contain errors. To
avoid mis-sorts, multi-pass variants of SNM produce multiple keys and perform the sorting and
windowing multiple times. As with the blocking method, the transitive closure is finally calculated.
The Multipass Sorted-Neighborhood method is summarized here:

1. Choose set of keys K .

© Jens Teubner · Data Warehousing ·Winter 2015/16 176

Similarity Join—Sorted Neighborhood

Observations:
Need good sorting criterion
→ Choose characters with low probability of errors

Example:
Sort by

First 3 consonants of last name
First letter of last name
First 2 digits of ZIP code.

(It is more likely to err in a vowel than in a consonant.)

Also:
Multi-pass processing can be beneficial also here.

© Jens Teubner · Data Warehousing ·Winter 2015/16 177

Detecting Conflicts / Inconsistencies

Data screening system:

1 Column screens: Test data within a column
→ Correct value ranges, value formatting, null values?

2 Structure screens: Relationship across columns
→ Foreign key relationships?
→ Combination of columns is a valid postal address?

3 Business rule screens: Data plausible according to business
rules?
→ E.g., customer status X requires N years of loyalty,M EUR

total revenue, etc.

© Jens Teubner · Data Warehousing ·Winter 2015/16 178

Cleansing: Tool Support

Lots of tools support typical cleaning tasks:

Commercial offerings:
SAP Business Objects
IBM InfoSphere Data Stage
Oracle Data Quality and Oracle Data Profiling

Open source tools:
Eobjects DataCleaner, Talend Open Profiler

→ Explore and profile source data
Analyze key properties, missing values, distributions, etc.

→ Rules for common filtering and normalization tasks
Regular expressions for phone numbers, credit card
numbers, etc.
Convert dates, phone numbers, addresses, etc.

© Jens Teubner · Data Warehousing ·Winter 2015/16 179

Schema Integration

Tools also help with schema integration.
→ Different source systems, types, and schemas must be

integrated.
→ Infermapping between schemas (automatically)?

Tools:
Compare table and attribute names; consider synonyms and
homonyms
Infer data types/formats and mapping rules

; Techniques similar to similarity joins and deduplication.

Still:
Often a lot ofmanual work needed.

© Jens Teubner · Data Warehousing ·Winter 2015/16 180

Error Events

What to do with detected errors/problems?
Fix automatically if possible
Otherwise: report the error→ How/Where?

“Trick:” Error event schema
→ Star schema for the “error” business event

Error Evt Key (PK)
Date Key (FK)
Batch Key (FK)
Screen Key (FK)
Severity Score

Error Event FactDate Key (PK)
...

Date Dimension

Batch Key (PK)
...

Batch Dimension

Screen Key (PK)
...

Screen Dimension

� Advantage?
© Jens Teubner · Data Warehousing ·Winter 2015/16 181

Data Transformation

source 1

source 2

staging
table 1

staging
table 2

OLAP
cube

Source→ Staging Table:
Tool depends on data source (database, XML, flat files, etc.)
→ e.g., SQL, XQuery, Perl, awk, etc.

Often:
→ Extract to flat file (e.g., CSV)
→ Then bulk-load into staging table

© Jens Teubner · Data Warehousing ·Winter 2015/16 182

Dimension and Fact Tables

Complete load process will involve fact and dimension tables.

Dependency fact
foreign key

dimension.
Thus: Load dimension table(s) first.
; All dimension keys available when fact table row is

inserted.

© Jens Teubner · Data Warehousing ·Winter 2015/16 183

Slowly Changing Dimensions—Type 1

Data updated/inserted in source database:

Products
SKU Description Dept

A913-G Mega Drill Tools
A922-Z IntelliKidz Education

→

Products
SKU Description Dept

A913-G Mega Drill Tools
A922-Z IntelliKidz Strategy
A944-V Frizz Master Cooking

Type 1 (“Overwrite”) strategy in data warehouse:
Product Dimension

Prod Key SKU Description Department
10468 A913-G Mega Drill Tools
12345 A922-Z IntelliKidz Education

↓
Product Dimension

Prod Key SKU Description Department
10468 A913-G Mega Drill Tools
12345 A922-Z IntelliKidz Strategy
46729 A944-V Frizz Master Cooking

© Jens Teubner · Data Warehousing ·Winter 2015/16 184

Slowly Changing Dimensions—Type 1

For every source row t:
1 Search in dimension table by operational key (“natural key”).
2 If found, compare existing dimension row with t.

→ Apply changes to dimension row if necessary.
3 If not found, insert new row in dimension table.

→ Create a new surrogate key.

lookup dim row
with SKU=t.SKU

compare t
with dim row

ignore

update dim row
create new dim row
(with new Prod Key)

source
row t

found

identical

different

not
found

© Jens Teubner · Data Warehousing ·Winter 2015/16 185

Slowly Changing Dimensions—Type 2

Type 2 Dimensions: Keep a History of Changes

→ Create a new dimension row for every change.
→ Mark validity with since/until fields.

Product Dimension
Prod Key SKU Description Department Since Until

10468 A913-G Mega Drill Tools 2/4/12 12/31/99
12345 A922-Z IntelliKidz Education 1/1/12 2/28/13
63726 A922-Z IntelliKidz Strategy 3/1/13 12/31/99
46729 A944-V Frizz Master Cooking 3/1/13 12/31/99

→ Current value is the one with until=‘12/31/99’ (or∞, …)

Alternative:
Boolean valid field (true for current version, false for old versions)

© Jens Teubner · Data Warehousing ·Winter 2015/16 186

Slowly Changing Dimensions—Type 2

lookup dim row
with SKU=t.SKU

and until=’12/31/99’

compare t
with dim row

ignore

update dim row
set until=today()− 1

create new dim row (with new Prod Key)
set since=today() and until=’12/31/99’

source
row t

found

identical

different

not
found

© Jens Teubner · Data Warehousing ·Winter 2015/16 187

Slowly Changing Dimensions

Notes:
Types 1/2 may also be mixed
→ Keep history for only some columns.

Single-row operations (lookup, update, create) may be expensive.
→ Cache lookup results (also for later fact loading)
� Implementation?

→ Merge tuple creation into single data flow.
→ bulk-load inserts

→ Use dedicated syntax (such as SQL Server’s MERGE statement)

© Jens Teubner · Data Warehousing ·Winter 2015/16 188

Loading Data

Tricks to load data fast:

1 Turn off logging
→ Databases maintain awrite-ahead log to implement failure

tolerancemechanisms.
→ Row-by-row logging causes huge overhead.

2 Pre-sort data
→ Depending on system, may speed up index construction.
→ Additional benefit: may result in better physical layout

3 Truncate table first
→ Makes (not) logging and failure tolerance even easier.

© Jens Teubner · Data Warehousing ·Winter 2015/16 189

Loading Data

4 Enable “fast mode”
→ If data is prepared properly, database may use faster

parsingmechanisms

5 Make sure data is correct
→ Transformation, field truncation, error reporting may slow

down bulk-loading significantly

6 Temporarily disable integrity control
→ Avoid checking during load, but do it in bulk, too.

© Jens Teubner · Data Warehousing ·Winter 2015/16 190

Example: Bulk Loading and B-Tree Indexes

Building a B+-tree is particularly easy when the input is sorted.

. . .

. . .

. . .

Build B+-tree bottom-up and left-to-right.
Create a parent for every 2d+ 1 unparented nodes.
If data is not sorted already, database will typically sort it
before loading/re-building the index.

© Jens Teubner · Data Warehousing ·Winter 2015/16 191

	ETL Process

