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Part XII

Search
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Search

Ever-increasing amounts of data are available electronically.

These data have varying degrees of structure.

structured

information

un-structured

information

(R)DBMS unstructured text

XML

social graphs

text with
markup

web pages

How can we efficiently store and access such un-structured data?

→ success of search engines ; “search”
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Boolean Queries

Let’s start with what we have. . .

E.g., four documents

Tropical fish in-

clude fish found

in tropical envi-

ronments around

the world, in-

cluding both

freshwater

and salt water

species.

doc1

Fishkeepers of-

ten use the term

tropical fish to

refer only those

requiring fresh

water, with salt-

water tropical

fish referred to

as marine fish.

doc2

Tropical fish are

popular aquar-

ium fish, due to

their often bright

coloration.

doc3

In freshwater

fish, this col-

oration typically

derives from iri-

descence, while

salt water fish

are generally pig-

mented.

doc4

Say we’re interested in “freshwater fish.”

→ Two search terms: “freshwater” and “fish”
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Boolean Queries

Query in SQL-style notation:

SELECT *

FROM Documents AS D

WHERE D.content CONTAINS ’freshwater’

AND D.content CONTAINS ’fish’

Idea:

Index to look up term → document.
→ There will be an index entry for every word in every document.

� Execution strategy for the above query?
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Boolean Queries

Discussion:

Returns all documents that contain both search terms.

→ This may be more than we want.

Google: about 21 million pages with “freshwater” and “fish!”

Returns nothing else.

→ This may be less than we want.

doc2 and doc3 may be relevant for us, too.

Returns documents in no specific order.

→ But some documents might be more relevant than others.

→ ORDER BY won’t help!

Boolean Query: (exact match retrieval)

A predicate precisely tells whether a document belongs to the result.

Ranked Query:

Results are ranked according to their relevance (to the query).
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Ranking

Goal: Rank documents higher that are closer to the query’s intention.

→ Extract features from each document.

→ Use feature vector and query to compute a score.

Tropical fish include

fish found in tropical

environments around

the world, including

both freshwater and

salt water species.

document

9.7 fish

4.2 tropical

22.1 tropical fish

8.2 freshwater

2.3 species

topical features

14 incoming links

3 days since last upd.

quality features

“tropical fish”

query

ranking

function

303.01

document score
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Ranking

Idea:

Compute similarity between query and document.

Similarity:

Define a set of features to use for ranking.

→ each term in the collection is one feature

→ possible features: document size/age, page rank, etc.

For each document compute a feature vector di

→ e.g., yes/no features; term count; etc.

For the query compute a feature vector q.

Measure similarity of the two vectors.
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Vector Space Model

Two vectors are similar if the angle between them is small.

feature1

feature2

feature3

d1

d2

q
Cosine between di and q:

cos(di ,q) =

∑
j dij · qj√∑

j d
2
ij ·
∑

j q
2
j

(j iterates over all features/terms;

i is the document in question)

→ “vector space model”
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Ranking Model

Ignoring the normalization term: sim(di ,q) =
∑

j dijqj .

→ Multiply corresponding feature values, then sum up.

Tropical fish in-

clude fish found

in tropical envi-

ronments around

the world, includ-

ing both freshwa-

ter and salt water

species.

document

9.7 fish

4.2 tropical

22.1 tropical fish

8.2 freshwater

2.3 species

topical features

14 incoming links

3 days last upd.

quality features

“tropical fish”

query

fish 5.2

tropical 3.4

tropical fish 9.9

chichlids 1.2

barbs 0.7

topical features

incoming links 1.2

days last upd. 0.9

quality features

303.01
document score

� What does this mean for an implementation?
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tf /idf Ranking

What are good features (and their values)?

Topical Features:

Each term in the collection (; vocabulary) is one feature.

Feature Value:

A document with multiple occurrences of ‘foo’ is likely more

relevant to queries that contain ‘foo’.

→ term frequency tf as a feature value.

tf doc,foo =
number of occurrences of ‘foo’ in doc

number of words in doc

→ Normalize to account for different document sizes.
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tf /idf Ranking

Terms that occur in many documents are less discriminating.

→ inverse document frequency idf :

idf foo = log
number of documents in the collection

number of documents that contain ‘foo’

→ idf is a property of the term, not the document!

Combine to obtain feature value dij (document i , term j):

dij = tf ij · idf j .

Do the same thing for query features qj .
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tf /idf Ranking

tf /idf weights essentially come from intuition and experiments.

→ No formal basis for the formulas above.

Alternative Formulations:

Boolean “frequencies”:

tf ij =

{
1 when term j occurs in document i

0 otherwise

Use logarithm rather than raw count:

tf ij = log(fij) + 1

(add 1 to ensure non-zero weights)

Give benefit for words that occur in titles, etc.
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Quality Features

Some document characteristics do not tell whether the document

matches the subject of a query.

→ Yet they may be relevant to the ranking/quality of the document.

Examples:

Web pages with higher incoming link count may more trustworthy.

Documents that weren’t modified for a long time may contain

outdated information.

Quality features for the query may help to express the user’s intention:

Is (s)he only interested in the most recent news?

→ Give higher weight to features like ‘days last updated’.
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PageRank

PageRank28 is a quality feature that became popular with the rise of

Google.

Motivation: Use link analysis to rate the popularity of a web site.

→ Incoming links indicate quality, but are easy to manipulate.

→ Try to weigh each incoming link by the popularity of the originating

site.

Idea:

Assume a random Internet surfer Alice.

→ On every page, randomly click some of its outgoing links.

→ Every now and then (with probability λ) jump to a random

page instead.

PageRank of a page p: What is the probabilty that Alice looks at p

when we randomly interrupt her browsing?

28Named after Google founder Larry Page.
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Computing PageRank

Example:

A B

C

Probability that Alice ends up on C :

PR(C ) =
λ

3︸︷︷︸
random jump

+ (1− λ) ·
(
PR(A)

2
+
PR(B)

1

)
︸ ︷︷ ︸

chance of coming from A or B

.

Generally:

PR(u) =
λ

N
+ (1− λ) ·

∑
v∈Bu

PR(v)

outgoingv
.
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Computing PageRank

But we don’t know PR(A) and PR(B), yet!

→ Iterate the above formula and PageRanks will converge.

→ E.g., initialize with equal PageRanks 1/N.

A typical value for λ is 0.15.

Today, PageRank is just one out of many features used in ranking.

→ Tends to have most impact on popular queries.
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Prepare for Queries

Before querying, documents must be analyzed:

1 Parse and tokenize document.

→ Strip markup (if applicable), identify text to index.

→ Break text into tokens (words).

→ Normalize capitalization.

2 Remove stop words.

→ ‘the,’ ‘a,’ ‘this,’ ‘that,’ etc. generally not useful for search.

3 Normalize words to terms (“stemming”).

→ E.g., ‘fishing,’ ‘fished,’ ‘fisher’ → ‘fish’

→ Stems need not themselves be words (e.g., ‘describe,’

‘describing,’ ‘description’ → ‘describ’)

4 Some systems also extract phrases.

→ E.g., ‘european union,’ ‘database conference’

Terms are then used to populate an index.
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Inverted Files

A search engine’s document collection is essentially a mapping

document → list of term .

To search the collection, it is much more useful to construct the mapping

term → list of document .

E.g.,

term docs

and (doc1)

aquarium (doc3)

are (doc3, doc4)

around (doc1)

as (doc2)

term docs

both (doc1)

bright (doc3)

coloration (doc3, doc4)

derives (doc4)

due (doc3)
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Inverted Files

A representation of this type is thus also called inverted file29.

Conceptually, an inverted file is the same as a database index.

However, in a search engine, the inverted file forms the heart of the

whole system.

→ It makes sense to specialize and fine-tune its implementation.

→ Terminology: For each index term there’s one inverted list.

The inverted list is a list of postings.

Characteristics:

The set of index terms is pretty much fixed (e.g., given by the

English dictionary).

Sizes of inverted lists, by contrast, grow with the number of

documents indexed.

→ Their sizes typically follow a Zipfian distribution.

29sometimes also “inverted index”
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Size of Inverted Files

Inverted files can grow large.

→ One posting for every term in every document.

→ Index about as large as entire document collection.

It thus makes sense to compress inverted lists.

� How well will lists of document ids compress?

→ Inverted list a “random” subset of all document ids, with uniform

probability.

→ Little entropy to use for compression.
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Inverted Files—Compression

This changes if we sort, then delta-encode inverted lists:

1, 5, 9, 18, 23, 24, 30, 44, 45, 48

;

1, 4, 4, 9, 5, 1, 6, 14, 1, 3

Can now use compression schemes that favor small values.

→ E.g., null suppression

Suppress leading null bytes.

Encode number of suppressed nulls with fixed-length prefix.

E.g., 18 → 00 00010010; 427 → 01 00000001 10101011.

→ E.g., unary codes

Encode n with sequence of n 1s, followed by a 0.

E.g., 0 → 0; 1 → 10; 2 → 110; 12 → 1111111111110.
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Inverted Files—Elias-γ Compression

Elias-γ Codes:

To encode n, compute

nd = blog2 nc “position of leading bit”

nr = n − 2blog2 nc “value encoded by remaining bits”

Then, represent n using

nd , unary-encoded; followed by

nr , binary-encoded.

n nd nr code

1 0 0 0

2 1 0 10 0

3 1 1 10 1

15 3 7 1110 111

255 7 127 11111110 1111111
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Inverted Files—PFOR Compression

PFOR Compression:

Illustrated here using compressed representation of the digits of π.30

header 3 1

4 1 5 2 6 5 3 5

3 2

⊥ ⊥
⊥ ⊥ ⊥

9 7 9 8 9

compressed data

exceptions

Decompressed numbers: 31415926535897932

30PFOR was developed in the context of the MonetDB/X100 main-memory

database project, now commercialized by Actian.
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PFOR Decompression

During decompression, we have to consider all the exceptions:

for (i = j = 0; i < n; i++)

if (code[i] != ⊥)
output[i] = DECODE (code[i]);

else

output[i] = exception[--j];

For PFOR, DECODE is a simple addition:

#define DECODE(a) ((a) + base value)

Problem on modern hardware: High branch misprediction cost.
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PFOR: Avoiding the Misprediction Cost

Invest some unnecessary work to avoid high misprediction penalty.

Run decompression in two phases:

1 Decompress all regular fields, but don’t care about exceptions.

2 Work in all the exceptions and patch the result.

/* ignore exceptions during decompression */

for (i = 0; i < n; i++)

output[i] = DECODE (code[i]);

/* patch the result */

foreach exception

patch corresponding output item ;
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PFOR: Patching the Output

�
We don’t want to use a branch to find all exception targets!

Thus: interpret values in “exception holes” as linked list:

header 3 1

4 1 5 2 6 5 3 5

7 3 2

5 0

1 3

9 9 8 9

compressed data

exceptions

→ Can now traverse exception holes and patch in exception values.
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PFOR: Patching the Output

The resulting decompression routine is branch-free:

/* ignore exceptions during decompression */

for (i = 0; i < n; i++)

output[i] = DECODE (code[i]);

/* patch the result (traverse linked list) */

j = 0;

for (cur = first exception; cur < n; cur = next) {
next = cur + code[cur] + 1;

output[cur] = exception[--j];

}
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Query Execution—Boolean Queries

With inverted lists available, the evaluation of

term1 and term2

amounts to computing the intersection of the two inverted lists.

Strategy: (assuming inverted lists are sorted by document id)

→ “Merge” lists lterm1 and lterm2 (↗ merge join (), slide 186).

→ Cost: linear scan of lterm1 plus linear scan of lterm2 .

Problem: Long, inefficient scans

E.g.,

|lfish| = 300 M; |lfreshwater | = 1 M.

At least 299 M lfish entries scanned unnecessarily.

→ Skip over those entries?
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Skip Pointers

Idea:
skip pointers postings

Skip pointers point to every kth posting.

skip pointer: 〈byte pos, doc id〉.

Skip forward to document d :

1 Read skip pointer list as long as doc id ≤ d .

2 Follow the pointer and scan posting list from there to find d .
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Skip Pointers

Example: |lfish| = 300 M; |lfreshwater | = 1 M; skip distance k .

For complete merge: (cost to read lfish)

Read all 300 M/k skip pointers.

Perform 1 M posting list scans; average length: 1
2k .

Total cost to read lfish: 300,000,000/k + 500,000k :

0 M

20 M

40 M

60 M

0 20 40 60 80 100

cost

k
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Skip Pointers

Improvements:

Rather than reading skip pointer list sequentially, use

→ binary search,

→ exponential search (also: “galloping search”), or

→ interpolation search.

� Why not use these search methods directly on the inverted list?

Compression makes skipping really difficult.

For delta-encoded data, need to know previous value to decode.
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Query Execution (with Ranking)

Idea:

1 Compute score for each document.

2 Sort by score.

3 Return top n result documents.

Only features j where qj 6= 0 will contribute to
∑

j dijqj .

→ Score only documents that appear in at least one inverted list for

the index terms in q.
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Term-at-a-Time Retrieval

Process inverted lists one after another:

1 R ← PriorityQueue (n) ;

2 A← HashTable () ;

3 foreach term j in q do

4 foreach document i in inverted list for j do

5 score ← A.get (i) ;

6 if not found then

7 A.put (i , dijqj ) ;

8 else

9 A.put (i , score + dijqj ) ;

10 foreach 〈i , score〉 in A do

11 R.add (i , score) ;

12 return R ;
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Document-at-a-Time Retrieval

1 R ← PriorityQueue (n) ;

2 foreach term j in q do

3 L.add (inverted list for j) ;

4 while L is not empty do

/* Find next document i in any inverted list */

5 i ← smallest lj .docID in L ;

/* Score document i */

6 score ← 0 ;

7 foreach lj ∈ L do

8 if lj .docID = i then

9 score ← score + dijqj ;

10 lj .advance () ;

11 if eof (lj ) then

12 L.remove (lj ) ;

13 R.add (i , score) ;

14 return R ;
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Optimizations: Conjunctive Processing

Restriction:

Return only documents that contain all of the query terms.

Then:

Document-at-a-time ; intersection/merging.

→ Use skip lists to navigate through inverted lists quickly.

In k-way merges, it may help to always consult shortest inverted

list first.

�
This is a heuristic and might miss some top-n results!
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Threshold Methods: MaxScore

Top-n formulation returns only documents with score ≥ τ .

→ But we know τ only after we evaluated the query!

However:

Once we added n elements to the priority queue R, we can conclude

that

τ ≥ τ ′
def
= minimum score in R .

i.e., τ ′ is a conservative estimate for τ .

For each inverted list lj , maintain maximum score µj .

→ Once τ ′ > µj , documents that occur only in lj can be skipped.

MaxScore achieves similar effect as conjunctive processing, but

guarantees a correct result.
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List Ordering

We assumed that posting lists are sorted by document id.

→ Enables delta encoding.

→ Eases intersection/merging.

Document ids, however, were so far assigned “randomly”.

Idea:

Assign document ids/order inverted lists, so list processing can be

terminated early.

E.g., order by decreasing value of quality features.

→ µj decreases within lj .
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Inverted Lists with More Details

So far:

Inverted lists contain document ids (pointers to documents).

Must read (maybe even parse, tokenize, stem) documents to get qij .

Instead:

Add information to inverted lists to avoid document access.

Example: Add

number of documents that contain the term (; idf j )

number of occurrences of the term in the document (; tf ij )

term # docs

and 1 (〈doc1:1〉)
aquarium 1 (〈doc3:1〉)
are 2 (〈doc3:1〉, 〈doc4:1〉)
around 1 (〈doc1:1〉)
as 1 (〈doc2:1〉)

term # docs

both 1 (〈doc1:1〉)
bright 1 (〈doc3:1〉)
coloration 2 (〈doc3:1〉, 〈doc4:1〉)
derives 1 (〈doc4:1〉)
due 1 (〈doc3:1〉)
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Inverted Lists with More Details

Instead, some systems store word positions:

term # docs

and 1 (〈doc1: (15)〉)
aquarium 1 (〈doc3: (5)〉)
are 2 (〈doc3: (3)〉, 〈doc4: (14)〉)
...

...
...

fish 4 (〈doc1: (2, 4)〉, 〈doc2: (7, 18, 23)〉,
〈doc3: (2, 6)〉, 〈doc4: (3, 13)〉)

...
...

...

→ Find phrases (“tropical fish”) or rank documents higher where

search terms occur nearby.
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Inverted Lists with More Details

Store tf ij idf i directly in inverted list?

" Speeds up computation of document scores.

→ Could incorporate even more expensive offline computations.

% Very inflexible.

→ What if ranking function changes? Need to re-compute index!

% Scoring values might compress poorly.

More Tricks:

Store extent lists as inverted lists:

→ E.g., inverted list for ‘title’, storing document regions that

correspond to the document’s title.

→ Fits well with start/end tags in markup languages.
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Evaluating a Search Engine

A good search engines returns

many relevant documents, but

few non-relevant documents.

“Relevant”?

What matters is relevance to the user.

To evaluate a search engine

→ Take a test collection of documents and queries.

→ Obtain relevance judgements from experts (users).

→ Compare search engine output to expert judgements.
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Recall and Precision

Recall:

How many of the relevant documents were retrieved?

Recall =
|retrieved documents that are relevant|

|all relevant documents|

Precision:

How many of the retrieved documents are relevant?

Precision =
|retrieved documents that are relevant|

|retrieved documents|
Since we return top-n documents according to rank, both values will vary

with n.
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Recall and Precision

Precision and recall for an example document/query:

relevant documents

0 %

25 %

50 %

75 %

100 %

0 5 10 15 20 result
document
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Recall and Precision

Recall is monotonically

increasing.

Precision tends to

decrease with n.

→ Draw “recall-precision

graph”

0 %
0 %

25 %

25 %

50 %

50 %

75 %

75 %

100 %

100 %

Recall

P
re

ci
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o
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