Architecture and Implementation of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group jens.teubner@cs.tu-dortmund.de

Winter 2015/16

Part XII

- Ever-increasing amounts of data are available electronically.
- These data have varying degrees of structure.

How can we efficiently store and access such **un-structured data**?

 \rightarrow success of search engines \sim "search"

Boolean Queries

Let's start with what we have...

• *E.g.*, four **documents**

Tropical fish in- clude fish found in tropical envi- ronments around the world, in- cluding both freshwater and salt water species.	Fishkeepers of- ten use the term tropical fish to refer only those requiring fresh water, with salt- water tropical fish referred to as marine fish.	Tropical fish are popular aquar- ium fish, due to their often bright coloration.	In freshwater fish, this col- oration typically derives from iri- descence, while salt water fish are generally pig- mented.
doc1	doc ₂	doc3	doc₄

Say we're interested in "freshwater fish."

 \rightarrow Two search terms: "freshwater" and "fish"

Query in SQL-style notation:

SELECT	*
FROM	Documents AS D
WHERE	D.content CONTAINS 'freshwater'
AND	D.content CONTAINS 'fish'

Idea:

- **Index** to look up $term \rightarrow document$.
 - $\rightarrow\,$ There will be an index entry for every word in every document.

Execution strategy for the above query?

Boolean Queries

Discussion:

• Returns **all** documents that contain both search terms.

- \rightarrow This may be **more** than we want.
 - Google: about 21 million pages with "freshwater" and "fish!"

Returns nothing else.

- \rightarrow This may be **less** than we want.
 - doc_2 and doc_3 may be relevant for us, too.
- Returns documents in **no specific order**.
 - \rightarrow But some documents might be **more relevant** than others.
 - \rightarrow ORDER BY won't help!

Boolean Query: (exact match retrieval)

• A predicate precisely tells whether a document belongs to the result.

Ranked Query:

Results are **ranked** according to their **relevance** (to the query).

Ranking

Goal: Rank documents higher that are closer to the query's intention.

- $\rightarrow\,$ Extract **features** from each document.
- $\rightarrow\,$ Use feature vector and query to compute a score.

Idea:

• Compute **similarity** between query and document.

Similarity:

- Define a set of **features** to use for ranking.
 - $\rightarrow\,$ each term in the collection is one feature
 - $\rightarrow\,$ possible features: document size/age, page rank, etc.
- For each **document** compute a **feature vector d**_{*i*}
 - \rightarrow *e.g.*, yes/no features; term count; etc.
- For the **query** compute a **feature vector q**.
- Measure similarity of the two vectors.

Vector Space Model

Two vectors are similar if the **angle** between them is small.

Cosine between **d**_{*i*} and **q**:

$$\cos(\mathbf{d}_i, \mathbf{q}) = \frac{\sum_j d_{ij} \cdot q_j}{\sqrt{\sum_j d_{ij}^2 \cdot \sum_j q_j^2}}$$

(*j* iterates over all features/terms; *i* is the document in question)

 \rightarrow "vector space model"

Ranking Model

Ignoring the normalization term: $sim(\mathbf{d}_i, \mathbf{q}) = \sum_j d_{ij}q_j$.

 $\rightarrow\,$ Multiply corresponding feature values, then sum up.

What does this mean for an implementation?

What are good features (and their values)?

Topical Features:

Each **term** in the collection (\sim vocabulary) is one feature.

Feature Value:

- A document with **multiple occurrences** of 'foo' is likely more relevant to queries that contain 'foo'.
 - \rightarrow **term frequency** *tf* as a feature value.

$$tf_{doc,foo} = \frac{\text{number of occurrences of 'foo' in } doc}{\text{number of words in } doc}$$

 $\rightarrow\,$ Normalize to account for different document sizes.

Terms that occur in many documents are less discriminating.
 inverse document frequency *idf*:

 $idf_{foo} = \log \frac{\text{number of documents in the collection}}{\text{number of documents that contain 'foo'}}$

 \rightarrow *idf* is a property of the **term**, not the document!

■ Combine to obtain feature value *d_{ij}* (document *i*, term *j*):

$$d_{ij} = tf_{ij} \cdot idf_j$$
 .

Do the same thing for **query** features q_i .

tf/idf weights essentially come from **intuition and experiments**. \rightarrow No formal basis for the formulas above.

Alternative Formulations:

Boolean "frequencies":

$$tf_{ij} = \begin{cases} 1 & \text{when term } j \text{ occurs in document } i \\ 0 & \text{otherwise} \end{cases}$$

• Use **logarithm** rather than raw count:

$$tf_{ij} = \log(f_{ij}) + 1$$

(add 1 to ensure non-zero weights)

• Give benefit for words that occur in titles, etc.

Some document characteristics do not tell whether the document matches the subject of a query.

 $\rightarrow\,$ Yet they may be relevant to the ranking/quality of the document.

Examples:

- Web pages with higher incoming link count may more trustworthy.
- Documents that weren't modified for a long time may contain outdated information.

Quality features for the **query** may help to express the user's intention:

- Is (s)he only interested in the most recent news?
 - $\rightarrow\,$ Give higher weight to features like 'days last updated'.

 $\ensuremath{\text{PageRank}}^{28}$ is a quality feature that became popular with the rise of Google.

Motivation: Use link analysis to rate the popularity of a web site.

- $\rightarrow~$ Incoming links indicate quality, but are easy to manipulate.
- $\rightarrow\,$ Try to weigh each incoming link by the popularity of the originating site.

Idea:

- Assume a random Internet surfer Alice.
 - $\rightarrow\,$ On every page, randomly click some of its outgoing links.
 - $\rightarrow\,$ Every now and then (with probability $\lambda)$ jump to a random page instead.
- PageRank of a page p: What is the probability that Alice looks at p when we randomly interrupt her browsing?

²⁸Named after Google founder Larry Page.

Computing PageRank

Example:

Probability that Alice ends up on C:

Generally:

$$PR(u) = \frac{\lambda}{N} + (1 - \lambda) \cdot \sum_{v \in B_u} \frac{PR(v)}{outgoing_v}$$

But we don't know PR(A) and PR(B), yet!

- $\rightarrow~$ **Iterate** the above formula and PageRanks will converge.
- \rightarrow E.g., initialize with equal PageRanks $^{1}/N$.
 - A typical value for λ is 0.15.
 - Today, PageRank is just one out of many features used in ranking.
 → Tends to have most impact on popular gueries.

Prepare for Queries

Before querying, documents must be **analyzed**:

- **1** Parse and tokenize document.
 - \rightarrow Strip markup (if applicable), identify text to index.
 - \rightarrow Break text into **tokens** (words).
 - \rightarrow Normalize **capitalization**.
- 2 Remove stop words.
 - $\rightarrow\,$ 'the,' 'a,' 'this,' 'that,' etc. generally not useful for search.
- **3** Normalize words to terms (**"stemming"**).
 - \rightarrow *E.g.*, 'fishing,' 'fished,' 'fisher' \rightarrow 'fish'
 - \rightarrow Stems need not themselves be words (*e.g.*, 'describe,' 'describing,' 'description' \rightarrow 'describ')
- 4 Some systems also extract **phrases**.
 - \rightarrow E.g., 'european union,' 'database conference'

Terms are then used to populate an **index**.

A search engine's document collection is essentially a mapping

 $\textit{document} \rightarrow \textit{list} \textit{ of } \textit{term}$.

To search the collection, it is much more useful to construct the mapping

 $\textit{term} \rightarrow \textit{list} \textit{ of } \textit{document}$.

E.g.,

term	docs	term	docs
and	(doc_1)	both	(doc_1)
aquarium	(doc_3)	bright	(doc_3)
are	(doc_3, doc_4)	coloration	(doc_3, doc_4)
around	(doc_1)	derives	(doc_4)
as	(doc_2)	due	(doc_3)

A representation of this type is thus also called **inverted file**²⁹.

- Conceptually, an inverted file is the same as a **database index**.
- However, in a search engine, *the* inverted file forms the heart of the whole system.
 - $\rightarrow\,$ It makes sense to specialize and fine-tune its implementation.
 - \rightarrow Terminology: For each **index term** there's one **inverted list**. The inverted list is a list of **postings**.

Characteristics:

- The set of **index terms** is pretty much fixed (*e.g.*, given by the English dictionary).
- Sizes of inverted lists, by contrast, grow with the number of documents indexed.
 - $\rightarrow\,$ Their sizes typically follow a Zipfian distribution.

²⁹sometimes also "inverted index"

[©] Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16

Inverted files can grow large.

- $\rightarrow\,$ One posting for every term in every document.
- $\rightarrow\,$ Index about as large as entire document collection.

It thus makes sense to **compress** inverted lists.

How well will lists of document ids compress?

This changes if we **sort**, then **delta-encode** inverted lists:

```
1, 5, 9, 18, 23, 24, 30, 44, 45, 48

↓
1, 4, 4, 9, 5, 1, 6, 14, 1, 3
```

Can now use compression schemes that favor small values.

- \rightarrow *E.g.*, null suppression
 - Suppress leading null bytes.
 - Encode number of suppressed nulls with fixed-length prefix.
 - *E.g.*, $18 \rightarrow \underline{00} 00010010$; $427 \rightarrow \underline{01} 00000001 10101011$.
- \rightarrow *E.g.*, unary codes
 - Encode n with sequence of n 1s, followed by a 0.
 - *E.g.*, 0 → 0; 1 → 10; 2 → 110; 12 → 1111111111110.

Inverted Files—Elias- γ Compression

Elias- γ Codes:

■ To encode *n*, compute

$$n_d = \lfloor \log_2 n \rfloor$$
$$n_r = n - 2^{\lfloor \log_2 n \rfloor}$$

"position of leading bit"

"value encoded by remaining bits"

■ Then, represent *n* using

- **n**_d, unary-encoded; followed by
- *n_r*, binary-encoded.

п	n _d	n _r	code
1	0	0	0
2	1	0	100
3	1	1	101
15	3	7	1110 111
255	7	127	111111101111111

PFOR Compression:

Illustrated here using compressed representation of the digits of π .³⁰

Decompressed numbers: 31415926535897932

³⁰PFOR was developed in the context of the MonetDB/X100 main-memory database project, now commercialized by Actian.

 \bigcirc Jens Teubner \cdot Architecture & Implementation of DBMS \cdot Winter 2015/16

During decompression, we have to consider all the exceptions:

```
for (i = j = 0; i < n; i++)
    if (code[i] != ⊥)
        output[i] = DECODE(code[i]);
    else
        output[i] = exception[--j];</pre>
```

For PFOR, DECODE is a simple addition:

#define DECODE(a) ((a) + base_value)

Problem on modern hardware: High branch misprediction cost.

Invest some unnecessary work to avoid high misprediction penalty.

Run decompression in two phases:

- **1 Decompress** all regular fields, but don't care about exceptions.
- 2 Work in all the exceptions and **patch** the result.

```
/* ignore exceptions during decompression */
for (i=0; i<n; i++)
    output[i] = DECODE(code[i]);
/* patch the result */
foreach exception
    patch corresponding output item;</pre>
```

We **don't** want to use a branch to find all exception targets!

Thus: interpret values in "exception holes" as linked list:

 $\rightarrow\,$ Can now traverse exception holes and patch in exception values.

The resulting decompression routine is branch-free:

```
/* ignore exceptions during decompression */
for (i=0; i<n; i++)
    output[i]=DECODE(code[i]);
/* patch the result (traverse linked list) */
j=0;
for (cur=first_exception; cur<n; cur=next) {
    next=cur+code[cur]+1;
    output[cur]=exception[--j];
}</pre>
```

Query Execution—Boolean Queries

With inverted lists available, the evaluation of

 $term_1$ and $term_2$

amounts to computing the intersection of the two inverted lists.

Strategy: (assuming inverted lists are sorted by document id)

- \rightarrow "Merge" lists I_{term_1} and I_{term_2} (\nearrow merge_join (), slide 186).
- \rightarrow Cost: linear scan of I_{term_1} plus linear scan of I_{term_2} .

Problem: Long, inefficient scans

E.g.,

- $|I_{fish}| = 300 \text{ M}; |I_{freshwater}| = 1 \text{ M}.$
- At least 299 M I_{fish} entries scanned unnecessarily.
 - \rightarrow **Skip** over those entries?

- **Skip pointers** point to every *k*th posting.
- skip pointer: *(byte pos, doc id)*.

Skip forward to document *d*:

- **1** Read skip pointer list as long as $doc id \leq d$.
- **2** Follow the pointer and scan posting list from there to find *d*.

Skip Pointers

Example: $|I_{fish}| = 300 \text{ M}$; $|I_{freshwater}| = 1 \text{ M}$; skip distance k.

For complete merge: (cost to read *I*_{fish})

- Read all 300 M/k skip pointers.
- Perform 1 M posting list scans; average length: $\frac{1}{2}k$.
- Total cost to read I_{fish} : 300,000,000/k + 500,000k:

Improvements:

- Rather than reading skip pointer list sequentially, use
 - \rightarrow binary search,
 - ightarrow exponential search (also: "galloping search"), or
 - $\rightarrow\,$ interpolation search.

Why not use these search methods directly on the inverted list?

Idea:

- **1 Compute score** for each document.
- 2 Sort by score.
- **3 Return** top *n* result documents.

Only features j where $q_j \neq 0$ will contribute to $\sum_i d_{ij}q_j$.

 $\rightarrow\,$ Score only documents that appear in at least one inverted list for the index terms in ${\bf q}.$

Process inverted lists one after another:

Document-at-a-Time Retrieval

Restriction:

Return only documents that contain **all** of the query terms.

Then:

- Document-at-a-time ~> intersection/merging.
 - $\rightarrow\,$ Use skip lists to navigate through inverted lists quickly.
- In k-way merges, it may help to always consult shortest inverted list first.

⁾ This is a heuristic and might miss some top-n results!

Top-*n* formulation returns only documents with $score \geq \tau$.

ightarrow But we know au only after we evaluated the query!

However:

• Once we added *n* elements to the priority queue *R*, we can conclude that

 $au \geq au' \stackrel{ ext{def}}{=} ext{minimum score in } R$.

i.e., τ' is a conservative estimate for τ .

For each inverted list l_j , maintain **maximum score** μ_j .

 \rightarrow Once $\tau' > \mu_j$, documents that occur only in l_j can be skipped.

MaxScore achieves similar effect as conjunctive processing, but guarantees a **correct result**.

We assumed that posting lists are sorted by document id.

- $\rightarrow\,$ Enables delta encoding.
- $\rightarrow\,$ Eases intersection/merging.

Document ids, however, were so far assigned "randomly".

Idea:

- Assign document ids/order inverted lists, so list processing can be terminated early.
- *E.g.*, order by **decreasing value of quality features**.
 - \rightarrow μ_j decreases within I_j .

So far:

- Inverted lists contain document ids (pointers to documents).
- Must read (maybe even parse, tokenize, stem) documents to get q_{ij} .

Instead:

- Add information to inverted lists to **avoid document access**.
- Example: Add
 - number of documents that contain the term ($\sim idf_j$)
 - number of occurrences of the term in the document ($\sim tf_{ij}$)

term	#	docs	term	#	docs
and	1	$(\langle doc_1:1\rangle)$	both	1	$(\langle doc_1:1\rangle)$
aquarium	1	$(\langle doc_3:1\rangle)$	bright	1	$(\langle doc_3:1\rangle)$
are	2	$(\langle doc_3:1 \rangle, \langle doc_4:1 \rangle)$	coloration	2	$(\langle doc_3:1 \rangle, \langle doc_4:1 \rangle)$
around	1	$(\langle doc_1:1\rangle)$	derives	1	$(\langle doc_4:1\rangle)$
as	1	$(\langle doc_2:1\rangle)$	due	1	$(\langle doc_3:1\rangle)$

Instead, some systems store word positions:

term	#	docs
and	1	$(\langle doc_1: (15) \rangle)$
aquarium	1	$(\langle doc_3: (5) \rangle)$
are	2	$(\langle doc_3: (3) \rangle, \langle doc_4: (14) \rangle)$
:	÷	: :
fish	4	$(\langle doc_1: (2, 4) \rangle, \langle doc_2: (7, 18, 23) \rangle, \\ \langle doc_3: (2, 6) \rangle, \langle doc_4: (3, 13) \rangle)$
÷	:	

 $\rightarrow\,$ Find phrases ("tropical fish") or rank documents higher where search terms occur nearby.

Store *tf*_{ij}*idf*_i directly in inverted list?

Speeds up computation of document scores.

 $\rightarrow\,$ Could incorporate even more expensive offline computations.

X Very inflexible.

- \rightarrow What if ranking function changes? Need to re-compute index!
- X Scoring values might **compress** poorly.

More Tricks:

- Store extent lists as inverted lists:
 - \rightarrow *E.g.*, inverted list for 'title', storing **document regions** that correspond to the document's title.
 - $\rightarrow\,$ Fits well with start/end tags in markup languages.

A good search engines returns

- **many relevant documents**, but
- few non-relevant documents.

"Relevant"?

- What matters is relevance to the user.
- To evaluate a search engine
 - $\rightarrow\,$ Take a test collection of documents and queries.
 - \rightarrow Obtain relevance judgements from experts (users).
 - $\rightarrow\,$ Compare search engine output to expert judgements.

Recall:

How many of the relevant documents were retrieved?

$$Recall = \frac{|retrieved documents that are relevant|}{|all relevant documents|}$$

Precision:

How many of the retrieved documents are relevant?

Since we return top-n documents according to rank, both values will vary with n.

Precision and recall for an example document/query:

Recall and Precision

- Recall is monotonically increasing.
- Precision tends to
 decrease with n.
- \rightarrow Draw "recall-precision graph"

