Architecture and Implementation

of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Winter 2015/16

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Part XIl|

Search

(© Jens Teubner - Archite & Implementation of DBMS - Wint

m Ever-increasing amounts of data are available electronically.

m These data have varying degrees of structure.

(R)DBMS unstructured text
social graphs web pages
structured un-structured
information information
XML text with
markup

m How can we efficiently store and access such un-structured data?
— success of search engines ~ “search”

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Boolean Queries

Let's start with what we have. ..

m E.g., four documents

Tropical fish in-
clude fish found
in tropical envi-
ronments around

Fishkeepers of-
ten use the term
tropical fish to
refer only those

Tropical fish are
popular aquar-
ium fish, due to
their often bright

In freshwater
fish, this col-
oration typically
derives from iri-

the world, in- requiring fresh coloration. descence, while
cluding both water, with salt- salt water fish
freshwater water tropical are generally pig-
and salt water fish referred to mented.

species. as marine fish.

docy docy docs docy

m Say we're interested in “freshwater fish.”

— Two search terms:

“freshwater” and “fish”

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Boolean Queries

Query in SQL-style notation:

SELECT x*
FROM Documents AS D
WHERE D.content CONTAINS ’freshwater’
AND D.content CONTAINS ’fish’

Idea:
m Index to look up term — document.

— There will be an index entry for every word in every document.

D Execution strategy for the above query?

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Boolean Queries

Discussion:
m Returns all documents that contain both search terms.

— This may be more than we want.
Google: about 21 million pages with “freshwater” and “fish!”

m Returns nothing else.

— This may be less than we want.
doc, and docs may be relevant for us, too.

m Returns documents in no specific order.

— But some documents might be more relevant than others.
— ORDER BY won't help!

Boolean Query: (exact match retrieval)
m A predicate precisely tells whether a document belongs to the result.
Ranked Query:

m Results are ranked according to their relevance (to the query).

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Goal: Rank documents higher that are closer to the query’s intention.

— Extract features from each document.

— Use feature vector and query to compute a score.

Tropical fish include 9.7 fish tropical fish
fish found in tropical 4.2 tropical query
environments around 22.1 tropical fish

the world, including — 8.2 freshwater 1

both freshwater and 2.3 species
salt water species.

topical features
document \«

ranking
function

14 incoming links —
3 days since last upd. l
quality features

303.01
document score

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Idea:
m Compute similarity between query and document.

Similarity:
m Define a set of features to use for ranking.

— each term in the collection is one feature
— possible features: document size/age, page rank, etc.

m For each document compute a feature vector d;
— e.g., yes/no features; term count; etc.

m For the query compute a feature vector q.

m Measure similarity of the two vectors.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Vector Space Model

Two vectors are similar if the angle between them is small.

features ds o
Cosine between d; and q:
cos(d;, q) = 2 2” - -
V2 922G
(J iterates over all features/terms;
d> i is the document in question)
— "vector space model”
featurey
features

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Ranking Model

Ignoring the normalization term: sim(d;, q) = ZJ- diiq;.

— Multiply corresponding feature values, then sum up.

Tropical fish in-
clude fish found
in tropical envi-
ronments around
the world, includ-
ing both freshwa-
ter and salt water
species.

document

9.7 fish fish 5.2
4.2 tropical ¢— tropical 3.4
22.1 tropical fish «— tropical fish 9.9
— 8.2 freshwater chichlids 1.2
2.3 species barbs 0.7
topical features topical features

14 incoming links <= incoming links 1.2
3 days last upd. <— days last upd. 0.9

quality features l quality features

303.01
document score

Q. What does this mean for an implementation?

“tropical fish”
.~ Query

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

tf /idf Ranking

What are good features (and their values)?
Topical Features:

m Each term in the collection (~ vocabulary) is one feature.
Feature Value:

m A document with multiple occurrences of ‘foo’ is likely more
relevant to queries that contain “foo’.

— term frequency tf as a feature value.

number of occurrences of ‘foo’ in doc
number of words in doc

tf doc,foo —

— Normalize to account for different document sizes.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

tf /idf Ranking

m Terms that occur in many documents are less discriminating.

— inverse document frequency /df:

number of documents in the collection
number of documents that contain ‘foo’

idf f0 = log
— idf is a property of the term, not the document!
m Combine to obtain feature value dj; (document /, term j):
dj = tfj-idf; .

m Do the same thing for query features g;.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

tf /idf Ranking

tf /idf weights essentially come from intuition and experiments.

— No formal basis for the formulas above.

Alternative Formulations:

m Boolean “frequencies’:

" 1 when term j occurs in document |
v 0 otherwise
m Use logarithm rather than raw count:
tf; = log(fi) + 1

(add 1 to ensure non-zero weights)

m Give benefit for words that occur in titles, etc.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Quality Features

Some document characteristics do not tell whether the document
matches the subject of a query.

— Yet they may be relevant to the ranking/quality of the document.

Examples:

m Web pages with higher incoming link count may more trustworthy.

m Documents that weren’t modified for a long time may contain
outdated information.

Quality features for the query may help to express the user's intention:
m Is (s)he only interested in the most recent news?
— Give higher weight to features like ‘days last updated’.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

PageRank

k28

PageRan is a quality feature that became popular with the rise of

Google.
Motivation: Use link analysis to rate the popularity of a web site.
— Incoming links indicate quality, but are easy to manipulate.

— Try to weigh each incoming link by the popularity of the originating
site.

Idea:
m Assume a random Internet surfer Alice.

— On every page, randomly click some of its outgoing links.
— Every now and then (with probability A) jump to a random
page instead.

m PageRank of a page p: What is the probabilty that Alice looks at p
when we randomly interrupt her browsing?

2Named after Google founder Larry Page.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Computing PageRank

Example:

A~ [g]
QE«/

Probability that Alice ends up on C:

A PR(A PR(B
PRC) = 2 4 (1-x). (PRA) L PR(B)

3 2 1

N N y
random jump chance of coming from A or B
Generally:
A PR(v)
PR =2+ (1N W
(u) N *) Z outgoing,

veBy,

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Computing PageRank

But we don't know PR(A) and PR(B), yet!
— lIterate the above formula and PageRanks will converge.
— E.g., initialize with equal PageRanks 1/n.

m A typical value for X is 0.15.

m Today, PageRank is just one out of many features used in ranking.
— Tends to have most impact on popular queries.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Prepare for Queries

Before querying, documents must be analyzed:
Parse and tokenize document.

— Strip markup (if applicable), identify text to index.
— Break text into tokens (words).
— Normalize capitalization.

Remove stop words.

— ‘the,” ‘a,” ‘this,” 'that,” etc. generally not useful for search.
Normalize words to terms (“stemming”).

— E.g., 'fishing,” ‘fished,” ‘fisher’ — ‘fish’

— Stems need not themselves be words (e.g., ‘describe,’

‘describing,” ‘description’ — ‘describ’)

Some systems also extract phrases.

— E.g., ‘european union,” ‘database conference’

Terms are then used to populate an index.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Files

A search engine's document collection is essentially a mapping

document — list of term .

To search the collection, it is much more useful to construct the mapping

E.g.,

term — list of document .

term docs

and (doc)
aquarium | (docs)

are (docs, docy)
around (docy)

as (docy)

term docs

both (doc)
bright (docs)
coloration | (docs, docy)
derives (doca)

due (docs)

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Files

A representation of this type is thus also called inverted file2°.

m Conceptually, an inverted file is the same as a database index.
m However, in a search engine, the inverted file forms the heart of the
whole system.

— It makes sense to specialize and fine-tune its implementation.
— Terminology: For each index term there's one inverted list.
The inverted list is a list of postings.

Characteristics:

m The set of index terms is pretty much fixed (e.g., given by the
English dictionary).
m Sizes of inverted lists, by contrast, grow with the number of
documents indexed.
— Their sizes typically follow a Zipfian distribution.

2sometimes also “inverted index”

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Size of Inverted Files

Inverted files can grow large.
— One posting for every term in every document.
— Index about as large as entire document collection.

It thus makes sense to compress inverted lists.

D How well will lists of document ids compress?

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Files—Compression

This changes if we sort, then delta-encode inverted lists:

1,5,9,18, 23,24, 30,44, 45, 48
¢
1,4,4,9,5,1,6,14,1,3

Can now use compression schemes that favor small values.
— E.g., null suppression

m Suppress leading null bytes.
m Encode number of suppressed nulls with fixed-length prefix.
m E.g., 18 — 0000010010; 427 — 01 00000001 10101011.

— E.g., unary codes
m Encode n with sequence of n 1s, followed by a 0.
mEg,0—-0;1—10;2— 110; 12 — 1111111111110.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Files—Elias-y Compression

Elias-y Codes:
m To encode n, compute

ng = |log, n| “position of leading bit”
ny = n — 2llegz2n] “value encoded by remaining bits”

m Then, represent n using
m ng, unary-encoded; followed by
m n,, binary-encoded.

n nyg n, code
1 0 0 O
2 1 0 100
3 1 1 101
15 3 7 1110111
255 7 127 111111101111111

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Files—PFOR Compression

PFOR Compression:

m lllustrated here using compressed representation of the digits of .30

header 311
411|5|L|2|6 | 5 | 3|15 |L compressed data
1L]L 312
9 | 7 | 9 | 8 | 9 }exceptions

m Decompressed numbers: 31415926535897932

PFOR was developed in the context of the MonetDB/X100 main-memory
database project, now commercialized by Actian.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

PFOR Decompression

During decompression, we have to consider all the exceptions:

for (i=j=0; i<n; i++)
if (codeli] != 1)
output [i] = DECODE (code[i]);

else

output [i] = exception[--j];
For PFOR, DECODE is a simple addition:
#define DECODE(a) ((a) + base_value)

Problem on modern hardware: High branch misprediction cost.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

PFOR: Avoiding the Misprediction Cost

Invest some unnecessary work to avoid high misprediction penalty.

Run decompression in two phases:
Decompress all regular fields, but don't care about exceptions.
Work in all the exceptions and patch the result.

/* ignore exceptions during decompression */
for (1=0; i<n; i++)

output [i] = DECODE (code[i]);
/* patch the result */

foreach exception
patch corresponding output item;

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

PFOR: Patching the Output

@ We don’t want to use a branch to find all exception targets!

Thus: interpret values in “exception holes” as linked list:

header 31
Lal1ls [sFEIETSTTI5 0| [compressed data
"1\"?"3"3"'2""'
‘ 9 | 9 | é(| 9 }exceptions

— Can now traverse exception holes and patch in exception values.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

PFOR: Patching the Output

The resulting decompression routine is branch-free:

/* ignore exceptions during decompression */
for (1=0; i<n; i++)
output [1] =DECODE (code[i]);

/* patch the result (traverse linked list) */
j=0;
for (cur=first_exception; cur<n; cur=next) {
next =cur +code[cur] +1;
output [cur] =exception[--j];

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Query Execution—Boolean Queries

With inverted lists available, the evaluation of
termy and terms

amounts to computing the intersection of the two inverted lists.
Strategy: (assuming inverted lists are sorted by document id)
— “Merge" lists lterm, and lterm, (' merge_join (), slide 186).
— Cost: linear scan of lterm, plus linear scan of lrerm, .
Problem: Long, inefficient scans
E.g.,
m |/fisn| = 300 M; |lfreshwater| = 1 M.

m At least 299 M /s, entries scanned unnecessarily.
— SKkip over those entries?

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Idea:
skip pointers postings

N EEEEEEEEEEEEEEEEEEEEEE
-~

m Skip pointers point to every kth posting.
m skip pointer: (byte pos, doc id).

Skip forward to document d:
Read skip pointer list as long as doc id < d.
Follow the pointer and scan posting list from there to find d.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Example: |/fip| = 300 M; |/freshwater| = 1 M; skip distance k.

For complete merge: (cost to read /ssp)
m Read all 300 M/k skip pointers.
m Perform 1 M posting list scans; average length: %k.
m Total cost to read /ssp: 300,000,000/ k + 500,000k

cost
60M +

40M |

20M t

oM . : | : }
0 20 40 60 80 100 k

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Improvements:
m Rather than reading skip pointer list sequentially, use

— binary search,
— exponential search (also: “galloping search”), or
— interpolation search.

Q. Why not use these search methods directly on the inverted list?

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Query Execution (with Ranking)

Idea:
Compute score for each document.
Sort by score.
Return top n result documents.

Only features j where g; # 0 will contribute to ZJ- djjq;.

— Score only documents that appear in at least one inverted list for
the index terms in q.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Term-at-a- Time Retrieval

Process inverted lists one after another:

R <« PriorityQueue (n) ;
A « HashTable () ;
foreach term j in q do
foreach document / in inverted list for j do
score + A.get (i) ;
if not found then
L A.put (i, d;q)) ;
else
L A.put (i, score + djiq;) ;

~N o g W N =

©

10 foreach (i, score) in A do
1 | Radd (i, score) ;

12 return R ;

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Document-at-a- Time Retrieval

1 R < PriorityQueue (n) ;
2 foreach term j in q do
3 L L.add (inverted list for j) ;

4 while L is not empty do

/* Find next document / in any inverted list */
5 I <= smallest /;.docID in L ;
/* Score document i */
6 score <0 ;
7 foreach /; € [do
8 if /;.docID =i then
9 score <— score + djiq; ;
10 lj.advance () ;
11 if eof (/;) then
12 L L.remove (/) ;
13 R.add (i, score) ;

14 return R ;

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Optimizations: Conjunctive Processing

Restriction:

m Return only documents that contain all of the query terms.

Then:
m Document-at-a-time ~ intersection/merging.
— Use skip lists to navigate through inverted lists quickly.

m In k-way merges, it may help to always consult shortest inverted
list first.

@ This is a heuristic and might miss some top-n results!

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Threshold Methods: MaxScore

Top-n formulation returns only documents with score > 7.

— But we know 7 only after we evaluated the query!

However:

m Once we added n elements to the priority queue R, we can conclude

that

; def . .
T > T = minimum score in R .

i.e., T' is a conservative estimate for 7.

m For each inverted list /;, maintain maximum score ;.
— Once 7" > pu;, documents that occur only in /; can be skipped.

MaxScore achieves similar effect as conjunctive processing, but
guarantees a correct result.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

List Ordering

We assumed that posting lists are sorted by document id.
— Enables delta encoding.

— Eases intersection/merging.

Document ids, however, were so far assigned “randomly”.
Idea:

m Assign document ids/order inverted lists, so list processing can be
terminated early.

m £.g., order by decreasing value of quality features.
— ; decreases within /;.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Lists with More Details

So far:
m Inverted lists contain document ids (pointers to documents).
m Must read (maybe even parse, tokenize, stem) documents to get gj;.

Instead:
m Add information to inverted lists to avoid document access.
m Example: Add

m number of documents that contain the term (~ idf)
m number of occurrences of the term in the document (~ tf)

term # | docs term # | docs

and 1 | ({docy:1)) both 1 | ((docy:1))
aquarium | 1 | ({docs:1)) bright 1 | ({(docs:1))

are 2 | ({docs:1), {docs:1)) coloration | 2 | ({docs:1), (docs:1))
around 1 | ({doci:1)) derives 1 | ((docg:1))

as 1 | ({docy:1)) due 1 | ((docs:1))

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Lists with More Details

Instead, some systems store word positions:

term # | docs

and 1 | ({doci:(15)))

aquarium | 1 | ((docs:(5)))

are 2 | ({docs:(3)), (docy: (14)))

fi:sh 4 (-<dOC1: (2,4)), (docy: (7,18,23)),

(docs:(2,6)), (docs: (3,13)))

— Find phrases (“tropical fish”) or rank documents higher where
search terms occur nearby.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Inverted Lists with More Details

Store tfjidf; directly in inverted list?

¢/ Speeds up computation of document scores.
— Could incorporate even more expensive offline computations.

X Very inflexible.
— What if ranking function changes? Need to re-compute index!

X Scoring values might compress poorly.

More Tricks:
m Store extent lists as inverted lists:

— E.g., inverted list for ‘title’, storing document regions that
correspond to the document’s title.
— Fits well with start/end tags in markup languages.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Evaluating a Search Engine

A good search engines returns
= many relevant documents, but

m few non-relevant documents.

“Relevant”?
m What matters is relevance to the user.
m To evaluate a search engine

— Take a test collection of documents and queries.
— Obtain relevance judgements from experts (users).
— Compare search engine output to expert judgements.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Recall and Precision

Recall:
m How many of the relevant documents were retrieved?

[retrieved documents that are relevant]
Recall =

|all relevant documents|

Precision:
m How many of the retrieved documents are relevant?

[retrieved documents that are relevant|
[retrieved documents|

Precision =

Since we return top-n documents according to rank, both values will vary
with n.

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Recall and Precision

Precision and recall for an example document/query:

100 % -
75%
50% -
o/ |

25% relevant documents
0% -

5 5 10 15 20 result
document

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

Recall and Precision

100% +
o 1
m Recall is monotonically - 5%
increasing. =
) o |
m Precision tends to § 50%
decrease with n. o
— Draw “recall-precision 25% 1
graph”
0,

0 t t t t
0% 25% 50% 75% 100%
Recall

(© Jens Teubner - Architecture & Implementation of DBMS - Winter 2015/16

	Search

