
Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Winter 2015/16
Part XII

Search
Ever-increasing amounts of data are available electronically. These data have varying degrees of structure.

How can we efficiently store and access such un-structured data? → success of search engines ~ “search”
Let’s start with what we have...

- E.g., four documents

 doc_1
 Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

 doc_2
 Fishkeepers often use the term tropical fish to refer only those requiring freshwater, with saltwater tropical fish referred to as marine fish.

 doc_3
 Tropical fish are popular aquarium fish, due to their often bright coloration.

 doc_4
 In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.

- Say we’re interested in “freshwater fish.”
 → Two search terms: “freshwater” and “fish”
Boolean Queries

Query in SQL-style notation:

```sql
SELECT * 
FROM Documents AS D 
WHERE D.content CONTAINS 'freshwater' 
AND D.content CONTAINS 'fish'
```

Idea:
- **Index** to look up term → document.
 - There will be an index entry for every word in every document.

⚠️ **Execution strategy for the above query?**
Boolean Queries

Discussion:

- Returns **all** documents that contain both search terms.
 - This may be **more** than we want.
 - Google: about 21 million pages with “freshwater” and “fish!”
- Returns **nothing else**.
 - This may be **less** than we want.
 - doc_2 and doc_3 may be relevant for us, too.
- Returns documents in **no specific order**.
 - But some documents might be **more relevant** than others.
 - **ORDER BY** won’t help!

Boolean Query: (exact match retrieval)

- A predicate precisely tells whether a document belongs to the result.

Ranked Query:

- Results are **ranked** according to their **relevance** (to the query).
Goal: Rank documents higher that are **closer** to the query’s intention.

→ Extract **features** from each document.
→ Use **feature vector** and **query** to compute a **score**.

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

<table>
<thead>
<tr>
<th>Tropical fish</th>
<th>document</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7 fish</td>
<td>14 incoming links</td>
</tr>
<tr>
<td>4.2 tropical</td>
<td>3 days since last upd.</td>
</tr>
<tr>
<td>22.1 tropical fish</td>
<td></td>
</tr>
<tr>
<td>8.2 freshwater</td>
<td></td>
</tr>
<tr>
<td>2.3 species</td>
<td></td>
</tr>
</tbody>
</table>

topical features

quality features

```
“tropical fish”
query
```

```
ranking function
```

```
303.01
document score
```
Idea:
- Compute **similarity** between query and document.

Similarity:
- Define a set of **features** to use for ranking.
 - each **term** in the collection is one feature
 - possible features: document size/age, page rank, etc.
- For each **document** compute a **feature vector** d_i.
 - e.g., yes/no features; term count; etc.
- For the **query** compute a **feature vector** q.
- Measure **similarity** of the two vectors.
Two vectors are similar if the **angle** between them is small.

Cosine between \(d_i \) and \(q \):

\[
\cos(d_i, q) = \frac{\sum_j d_{ij} \cdot q_j}{\sqrt{\sum_j d_{ij}^2 \cdot \sum_j q_j^2}}
\]

\((j \text{ iterates over all features/terms; } i \text{ is the document in question})\)

\(\rightarrow\) “vector space model”
Ranking Model

Ignoring the normalization term: \(\text{sim}(d_i, q) = \sum_j d_{ij} q_j \).

\[\rightarrow \text{ Multiply corresponding feature values, then sum up.} \]

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

<table>
<thead>
<tr>
<th>document</th>
<th>query</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7 fish</td>
<td>fish 5.2</td>
</tr>
<tr>
<td>4.2 tropical</td>
<td>tropical 3.4</td>
</tr>
<tr>
<td>22.1 tropical fish</td>
<td>tropical fish 9.9</td>
</tr>
<tr>
<td>8.2 freshwater</td>
<td>chichlids 1.2</td>
</tr>
<tr>
<td>2.3 species</td>
<td>barbs 0.7</td>
</tr>
<tr>
<td>topical features</td>
<td>topical features</td>
</tr>
<tr>
<td>14 incoming links</td>
<td>incoming links 1.2</td>
</tr>
<tr>
<td>3 days last upd.</td>
<td>days last upd. 0.9</td>
</tr>
<tr>
<td>quality features</td>
<td>quality features</td>
</tr>
<tr>
<td>303.01</td>
<td>document score</td>
</tr>
</tbody>
</table>

What does this mean for an implementation?
What are good features (and their values)?

Topical Features:
- Each **term** in the collection (≈ vocabulary) is one feature.

Feature Value:
- A document with **multiple occurrences** of ‘foo’ is likely more relevant to queries that contain ‘foo’.
 - → **term frequency** tf as a feature value.

 $tf_{doc,foo} = \frac{\text{number of occurrences of ‘foo’ in } doc}{\text{number of words in } doc}$

 → Normalize to account for different document sizes.
tf/idf Ranking

- Terms that occur **in many documents** are less discriminating.

 → **inverse document frequency** idf:

 $$
 idf_{foo} = \log \frac{\text{number of documents in the collection}}{\text{number of documents that contain ‘foo’}}
 $$

 → idf is a property of the **term**, not the document!

- Combine to obtain feature value d_{ij} (document i, term j):

 $$
 d_{ij} = tf_{ij} \cdot idf_j
 $$

- Do the same thing for **query** features q_j.
tf/idf weights essentially come from **intuition and experiments**.

→ No formal basis for the formulas above.

Alternative Formulations:

- **Boolean “frequencies”:**

 $tf_{ij} = \begin{cases}
 1 & \text{when term } j \text{ occurs in document } i \\
 0 & \text{otherwise}
 \end{cases}$

- Use **logarithm** rather than raw count:

 $tf_{ij} = \log(f_{ij}) + 1$

 (add 1 to ensure non-zero weights)

- Give benefit for words that occur in titles, etc.
Quality Features

Some document characteristics do not tell whether the document matches the subject of a query.

→ Yet they may be relevant to the ranking/quality of the document.

Examples:

- Web pages with higher incoming link count may more trustworthy.
- Documents that weren’t modified for a long time may contain outdated information.

Quality features for the query may help to express the user’s intention:

- Is (s)he only interested in the most recent news?
 → Give higher weight to features like ‘days last updated’.
PageRank is a quality feature that became popular with the rise of Google.

Motivation: Use **link analysis** to rate the popularity of a web site.
- **Incoming links** indicate quality, but are easy to manipulate.
- Try to weigh each incoming link by the popularity of the originating site.

Idea:
- Assume a **random Internet surfer** Alice.
 - On every page, randomly click some of its outgoing links.
 - Every now and then (with probability λ) jump to a random page instead.
- PageRank of a page p: What is the probability that Alice looks at p when we randomly interrupt her browsing?

28 Named after Google founder Larry Page.
Computing PageRank

Example:

Probability that Alice ends up on C:

\[PR(C) = \frac{\lambda}{3} + (1 - \lambda) \cdot \left(\frac{PR(A)}{2} + \frac{PR(B)}{1} \right) \]

Generally:

\[PR(u) = \frac{\lambda}{N} + (1 - \lambda) \cdot \sum_{v \in B_u} \frac{PR(v)}{\text{outgoing}_v} \]
Computing PageRank

But we don’t know $PR(A)$ and $PR(B)$, yet!

→ **Iterate** the above formula and PageRanks will converge.

→ *E.g.*, initialize with equal PageRanks $\frac{1}{N}$.

- A typical value for λ is 0.15.
- Today, PageRank is just one out of many features used in ranking.
 → Tends to have most impact on popular queries.
Before querying, documents must be **analyzed**:

1. **Parse** and **tokenize** document.
 - Strip markup (if applicable), identify text to index.
 - Break text into **tokens** (words).
 - Normalize **capitalization**.

2. **Remove** **stop words**.
 - ‘the,’ ‘a,’ ‘this,’ ‘that,’ etc. generally not useful for search.

3. **Normalize** words to terms ("**stemming**").
 - *E.g.*, ‘fishing,’ ‘fished,’ ‘fisher’ → ‘fish’
 - Stems need not themselves be words (e.g., ‘describe,’ ‘describing,’ ‘description’ → ‘describ’)

4. Some systems also extract **phrases**.
 - *E.g.*, ‘european union,’ ‘database conference’

Terms are then used to populate an **index**.
Inverted Files

A search engine’s document collection is essentially a mapping

\[\text{document} \rightarrow \text{list of term} \ . \]

To search the collection, it is much more useful to construct the mapping

\[\text{term} \rightarrow \text{list of document} \ . \]

\textit{E.g.,}

<table>
<thead>
<tr>
<th>term</th>
<th>docs</th>
<th>term</th>
<th>docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>(doc_1)</td>
<td>both</td>
<td>(doc_1)</td>
</tr>
<tr>
<td>aquarium</td>
<td>(doc_3)</td>
<td>bright</td>
<td>(doc_3)</td>
</tr>
<tr>
<td>are</td>
<td>(doc_3, doc_4)</td>
<td>coloration</td>
<td>(doc_3, doc_4)</td>
</tr>
<tr>
<td>around</td>
<td>(doc_1)</td>
<td>derives</td>
<td>(doc_4)</td>
</tr>
<tr>
<td>as</td>
<td>(doc_2)</td>
<td>due</td>
<td>(doc_3)</td>
</tr>
</tbody>
</table>
A representation of this type is thus also called **inverted file**\(^\text{29}\).

- Conceptually, an inverted file is the same as a **database index**.
- However, in a search engine, *the* inverted file forms the heart of the whole system.

 → It makes sense to specialize and fine-tune its implementation.
 → Terminology: For each **index term** there’s one **inverted list**. The inverted list is a list of **postings**.

Characteristics:

- The set of **index terms** is pretty much fixed (e.g., given by the English dictionary).
- Sizes of **inverted lists**, by contrast, grow with the number of documents indexed.

 → Their **sizes** typically follow a **Zipfian distribution**.

\(^{29}\) sometimes also “inverted index”
Inverted files can grow large.

→ One posting for every term in every document.

→ Index about as large as entire document collection.

It thus makes sense to **compress** inverted lists.

How well will lists of document ids compress?
Inverted Files—Compression

This changes if we sort, then delta-encode inverted lists:

\[1, 5, 9, 18, 23, 24, 30, 44, 45, 48 \]
\[\downarrow \]
\[1, 4, 4, 9, 5, 1, 6, 14, 1, 3 \]

Can now use compression schemes that favor small values.

→ E.g., null suppression

- Suppress leading null bytes.
- Encode number of suppressed nulls with fixed-length prefix.
- E.g., 18 → 000010010; 427 → 010000000110101011.

→ E.g., unary codes

- Encode \(n \) with sequence of \(n \) 1s, followed by a 0.
- E.g., 0 → 0; 1 → 10; 2 → 110; 12 → 1111111111110.
Elias-γ Codes:

- To encode n, compute

 $$n_d = \lfloor \log_2 n \rfloor$$

 “position of leading bit”

 $$n_r = n - 2^{\lfloor \log_2 n \rfloor}$$

 “value encoded by remaining bits”

- Then, represent n using

 - n_d, unary-encoded; followed by
 - n_r, binary-encoded.

<table>
<thead>
<tr>
<th>n</th>
<th>n_d</th>
<th>n_r</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>10 0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>10 1</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>7</td>
<td>1110 111</td>
</tr>
<tr>
<td>255</td>
<td>7</td>
<td>127</td>
<td>11111110 1111111</td>
</tr>
</tbody>
</table>
Inverted Files—PFOR Compression

PFOR Compression:

- Illustrated here using compressed representation of the digits of π.30

![Compressed representation of π](image)

- Decompressed numbers: 31415926535897932

30PFOR was developed in the context of the MonetDB/X100 main-memory database project, now commercialized by Actian.
PFOR Decompression

During decompression, we have to consider all the exceptions:

```c
for (i=j=0; i<n; i++)
    if (code[i] != ⊥)
        output[i] = DECODE (code[i]);
    else
        output[i] = exception[--j];
```

For PFOR, \textsf{DECODE} is a simple addition:

```c
#define DECODE(a) ((a) + base_value)
```

Problem on modern hardware: High branch misprediction cost.
PFOR: Avoiding the Misprediction Cost

Invest some unnecessary work to avoid high misprediction penalty.

Run decompression in two phases:

1. **Decompress** all regular fields, but don’t care about exceptions.
2. Work in all the exceptions and **patch** the result.

```c
/* ignore exceptions during decompression */
for (i = 0; i < n; i++)
    output[i] = DECODE(code[i]);

/* patch the result */
foreach exception
    patch corresponding output item;
```
We **don’t** want to use a branch to find all exception targets!

Thus: interpret values in “exception holes” as **linked list**:

![Diagram showing linked list structure]

→ Can now traverse exception holes and patch in exception values.
The resulting decompression routine is branch-free:

```c
/* ignore exceptions during decompression */
for (i = 0; i < n; i++)
    output[i] = DECODE(code[i]);

/* patch the result (traverse linked list) */
j = 0;
for (cur = first_exception; cur < n; cur = next) {
    next = cur + code[cur] + 1;
    output[cur] = exception[--j];
}
```
With inverted lists available, the evaluation of

$$term_1 \text{ and } term_2$$

amounts to computing the **intersection** of the two inverted lists.

Strategy: (assuming inverted lists are sorted by document id)

→ “Merge” lists l_{term_1} and l_{term_2} (↑ merge_join (), slide 186).
→ Cost: linear scan of l_{term_1} plus linear scan of l_{term_2}.

Problem: Long, inefficient scans

E.g.,

- $|l_{fish}| = 300 \ M; \ |l_{freshwater}| = 1 \ M$.
- At least 299 M l_{fish} entries scanned unnecessarily.
 → **Skip** over those entries?
Skip Pointers

Idea:

- **Skip pointers** point to every kth posting.
- skip pointer: $\langle \text{byte pos}, \text{doc id} \rangle$.

Skip forward to document d:

1. Read skip pointer list as long as $doc\ id \leq d$.
2. Follow the pointer and scan posting list from there to find d.
Skip Pointers

Example: \(|l_{fish}| = 300 \text{ M}; |l_{freshwater}| = 1 \text{ M}; \) skip distance \(k \).

For complete merge: (cost to read \(l_{fish} \))

- Read all \(300 \text{ M}/k \) skip pointers.
- Perform \(1 \text{ M} \) posting list scans; average length: \(\frac{1}{2}k \).
- Total cost to read \(l_{fish} \): \(300,000,000/k + 500,000k \):
Improvements:

- Rather than reading skip pointer list sequentially, use
 - binary search,
 - exponential search (also: “galloping search”), or
 - interpolation search.

Why not use these search methods directly on the inverted list?
Query Execution (with Ranking)

Idea:

1. **Compute score** for each document.
2. **Sort** by score.
3. **Return** top \(n \) result documents.

Only features \(j \) where \(q_j \neq 0 \) will contribute to \(\sum_j d_{ij} q_j \).

→ Score only documents that appear in at least one inverted list for the index terms in \(q \).
Term-at-a-Time Retrieval

Process inverted lists one after another:

1. \(R \leftarrow \text{PriorityQueue}(n) \);
2. \(A \leftarrow \text{HashTable}() \);
3. \textbf{foreach} term \(j \) in \(q \) \textbf{do}
4. \hspace{1em} \textbf{foreach} document \(i \) in inverted list for \(j \) \textbf{do}
5. \hspace{2em} \text{score} \leftarrow A.\text{get}(i) ;
6. \hspace{2em} \textbf{if} not found \textbf{then}
7. \hspace{3em} A.\text{put}(i, \text{d}_{ij}q_j) ;
8. \hspace{2em} \textbf{else}
9. \hspace{3em} A.\text{put}(i, \text{score} + \text{d}_{ij}q_j) ;
10. \textbf{foreach} \(\langle i, \text{score} \rangle \) in \(A \) \textbf{do}
11. \hspace{1em} R.\text{add}(i, \text{score}) ;
12. \textbf{return} \(R ; \)
Document-at-a-Time Retrieval

1. \(R \leftarrow \text{PriorityQueue}(n) \);
2. \textbf{foreach} term \(j \) in \(q \) \textbf{do}
3. \hspace{1em} \(L.\text{add}\) (inverted list for \(j \)) ;
4. \hspace{1em} \textbf{while} \(L \) is not empty \textbf{do}
5. \hspace{2em} /* Find next document \(i \) in any inverted list */
6. \hspace{2em} \(i \leftarrow \text{smallest } l_j.\text{docID} \text{ in } L \);
7. \hspace{2em} /* Score document \(i \) */
8. \hspace{2em} \(\text{score} \leftarrow 0 \);
9. \hspace{2em} \textbf{foreach} \(l_j \in L \) \textbf{do}
10. \hspace{3em} \textbf{if} \(l_j.\text{docID} = i \) \textbf{then}
11. \hspace{4em} \(\text{score} \leftarrow \text{score} + d_{ij}q_j \);
12. \hspace{4em} \(l_j.\text{advance}() \);
13. \hspace{4em} \textbf{if} \(\text{eof}(l_j) \) \textbf{then}
14. \hspace{5em} \(L.\text{remove}(l_j) \);
15. \hspace{2em} \(R.\text{add}(i, \text{score}) \);
16. \textbf{return} \(R \);
Restriction:

- Return only documents that contain all of the query terms.

Then:

- Document-at-a-time \leadsto intersection/merging.
 - Use skip lists to navigate through inverted lists quickly.
- In k-way merges, it may help to always consult shortest inverted list first.

⚠️ This is a heuristic and might miss some top-n results!
Threshold Methods: MaxScore

Top-n formulation returns only documents with $score \geq \tau$.

\rightarrow But we know τ only after we evaluated the query!

However:

- Once we added n elements to the priority queue R, we can conclude that

 $$\tau \geq \tau' \overset{\text{def}}{=} \text{minimum score in } R.$$

 $i.e., \tau'$ is a conservative estimate for τ.

- For each inverted list l_j, maintain maximum score μ_j.

 \rightarrow Once $\tau' > \mu_j$, documents that occur only in l_j can be skipped.

MaxScore achieves similar effect as conjunctive processing, but guarantees a correct result.
List Ordering

We assumed that posting lists are sorted by document id.
→ Enables delta encoding.
→ Eases intersection/merging.

Document ids, however, were so far assigned “randomly”.

Idea:
- Assign document ids/order inverted lists, so list processing can be terminated early.
- E.g., order by decreasing value of quality features.
 → μ_j decreases within l_j.
Inverted Lists with More Details

So far:

- Inverted lists contain document ids (pointers to documents).
- Must read (maybe even parse, tokenize, stem) documents to get \(q_{ij} \).

Instead:

- Add information to inverted lists to avoid document access.
- Example: Add
 - number of documents that contain the term (\(\sim idf_j \))
 - number of occurrences of the term in the document (\(\sim tf_{ij} \))

<table>
<thead>
<tr>
<th>term</th>
<th>#</th>
<th>docs</th>
<th>term</th>
<th>#</th>
<th>docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>⟨doc1:1⟩</td>
<td>both</td>
<td>1</td>
<td>⟨doc1:1⟩</td>
</tr>
<tr>
<td>aquarium</td>
<td>1</td>
<td>⟨doc3:1⟩</td>
<td>bright</td>
<td>1</td>
<td>⟨doc3:1⟩</td>
</tr>
<tr>
<td>are</td>
<td>2</td>
<td>⟨doc3:1⟩, ⟨doc4:1⟩</td>
<td>coloration</td>
<td>2</td>
<td>⟨doc3:1⟩, ⟨doc4:1⟩</td>
</tr>
<tr>
<td>around</td>
<td>1</td>
<td>⟨doc1:1⟩</td>
<td>derives</td>
<td>1</td>
<td>⟨doc4:1⟩</td>
</tr>
<tr>
<td>as</td>
<td>1</td>
<td>⟨doc2:1⟩</td>
<td>due</td>
<td>1</td>
<td>⟨doc3:1⟩</td>
</tr>
</tbody>
</table>
Instead, some systems store **word positions**:

<table>
<thead>
<tr>
<th>term</th>
<th>#</th>
<th>docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>⟨doc₁: (15)⟩</td>
</tr>
<tr>
<td>aquarium</td>
<td>1</td>
<td>⟨doc₃: (5)⟩</td>
</tr>
<tr>
<td>are</td>
<td>2</td>
<td>⟨doc₃: (3), doc₄: (14)⟩</td>
</tr>
<tr>
<td>fish</td>
<td>4</td>
<td>⟨doc₁: (2, 4), doc₂: (7, 18, 23), doc₃: (2, 6), doc₄: (3, 13)⟩</td>
</tr>
</tbody>
</table>

→ Find phrases ("tropical fish") or rank documents higher where search terms occur nearby.
Inverted Lists with More Details

Store $tf_{ij}idf_i$ directly in inverted list?

✔ Speeds up computation of document scores.
 → Could incorporate even more expensive offline computations.

✘ Very inflexible.
 → What if ranking function changes? Need to re-compute index!

✘ Scoring values might compress poorly.

More Tricks:

- Store extent lists as inverted lists:
 → E.g., inverted list for ‘title’, storing document regions that correspond to the document’s title.
 → Fits well with start/end tags in markup languages.
Evaluating a Search Engine

A good search engine returns

- many relevant documents, but
- few non-relevant documents.

“Relevant”?

- What matters is relevance to the user.
- To evaluate a search engine
 - Take a test collection of documents and queries.
 - Obtain relevance judgements from experts (users).
 - Compare search engine output to expert judgements.
Recall and Precision

Recall:

- How many of the relevant documents were retrieved?

\[
Recall = \frac{|\text{retrieved documents that are relevant}|}{|\text{all relevant documents}|}
\]

Precision:

- How many of the retrieved documents are relevant?

\[
Precision = \frac{|\text{retrieved documents that are relevant}|}{|\text{retrieved documents}|}
\]

Since we return top-\(n\) documents according to rank, both values will vary with \(n\).
Recall and Precision

Precision and recall for an example document/query:
Recall and Precision

- Recall is **monotonically increasing**.
- Precision tends to **decrease** with n.
 - Draw “recall-precision graph”