
Architecture and Implementation

of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 1



Part VIII

Recovery

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 328



Recovery

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Operator Evaluator Optimizer

Executor Parser

Lock

Manager

Transaction

Manager Recovery

Manager

Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 329



Failure Recovery

We want to deal with three types of failures:

transaction failure (also: ‘process failure’)

A transaction voluntarily or involuntarily aborts. All of its updates

need to be undone.

system failure

Database or operating system crash, power outage, etc. All

information in main memory is lost. Must make sure that no

committed transaction is lost (or redo their effects) and that all

other transactions are undone.

media failure (also: ‘device failure’)

Hard disk crash, catastrophic error (fire, water, . . . ). Must recover

database from stable storage.

In spite of these failures, we want to guarantee atomicity and durability.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 330



Example: System Crash (or Media Failure)

T1
T2
T3
T4
T5

time

crash

Transactions T1, T2, and T5 were committed before the crash.

→ Durability: Ensure that updates are preserved (or redone).

Transactions T3 and T4 were not (yet) committed.

→ Atomicity: All of their effects need to be undone.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 331



Types of Storage

We assume three different types of storage:

volatile storage

This is essentially the buffer manager. We are going to use volatile

storage to cache the write-ahead log in a moment.

non-volatile storage

Typical candidate is a hard disk.

stable storage

Non-volatile storage that survives all types of failures. Stability can

be improved using, e.g., (network) replication of disk data. Backup

tapes are another example.

Observe how these storage types correspond to the three types of

failures.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 332



Shadow Pages

Since a failure could occur at any time, it must be made sure that

the system can always get back to a consistent state.

Need to keep information redundant.

System R: shadow pages. Two versions of every data page:

The current version is the system’s “working copy” of the

data and may be inconsistent.

The shadow version is a consistent version on stable storage.

Use operation SAVE to save the current version as the shadow

version.

SAVE ↔ commit

Use operation RESTORE to recover to shadow version.

RESTORE ↔ abort

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 333



Shadow Pages

1. Initially: shadow ≡ current.

2. A transaction T now changes the

current version.

Updates are not done in-place.

Create new pages and alter current

page table.

3a. If T aborts, overwrite current version

with shadow version.

3b. If T commits, change information in

directory to make current version

persistent.

4. Reclaim disk pages using garbage

collection.

R R∗
directory

current

shadow

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 334



Shadow Pages: Discussion

Recovery is instant and fast for entire files.

To guarantee durability, all modified pages must be forced to disk

when a transaction commits.

As we discussed on slide 40, this has some undesirable effects:

high I/O cost, since writes cannot be cached,

high response times.

We’d much more like to use a no-force policy, where write

operations can be deferred to a later time.

To allow for a no-force policy, we’d have to have a way to redo

transactions that are committed, but haven’t been written back to

disk, yet.

↗ Gray et al.. The Recovery Manager of the System R Database Manager.

ACM Comp. Surv., vol. 13(2), June 1981.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 335



Shadow Pages: Discussion

Shadow pages do allow frame stealing: buffer frames may be

written back to disk (to the “current version”) before the

transaction T commits.

Such a situation occurs, e.g., if another transaction T ′ wants to use

the space to bring in its data.

T ′ “steals” a frame from T .

Obviously, a frame may only be stolen if it is not pinned.

Frame stealing means that dirty pages are written back to disk.

Such writes have to be undone during recovery.

Fortunately, this is easy with shadow pages.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 336



Effects on Recovery

The decisions force/no force and steal/no steal have implications on

what we have to do during recovery:

force no force

no steal
no redo

no undo

must redo

no undo

steal
no redo

must undo

must redo

must undo

If we want to use steal and no force (to increase concurrency and

performance), we have to implement redo and undo routines.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 337



Write-Ahead Log

The ARIES21 recovery method uses a write-ahead log to

implement the necessary redundancy. Data pages are updated in

place.

↗ Mohan et al. ARIES: A Transaction Recovery Method Supporting

Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead

Logging. ACM TODS, vol. 17(1), March 1992.

To prepare for undo, undo information must be written to stable

storage before a page update is written back to disk.

To ensure durability, redo information must be written to stable

storage at commit time (no-force policy: the on-disk data page

may still contain old information).

21Algorithm for Recovery and Isolation Exploiting Semantics
© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 338



Content of the Write-Ahead Log

LSN Type TX Prev Page UNxt Redo Undo
...

...
...

...
...

...
...

...

LSN (Log Sequence Number)

Monotonically increasing number to identify each log record.

Trick: Use byte position of log record � Why?

Type (Log Record Type)

Indicates whether this is an update record (UPD), end of

transaction record (EOT), compensation log record (CLR), . . .

TX (Transaction ID)

Transaction identifier (if applicable).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 339



Content of the Write-Ahead Log (cont.)

Prev (Previous Log Sequence Number)

LSN of the preceding log record written by the same transaction (if

applicable). Holds ‘–’ for the first record of every transaction.

Page (Page Identifier)

Page to which updates were applied (only for UPD and CLR).

UNxt (LSN Next to be Undone)

Only for CLR. Next log record of this transaction that has to be

processed during rollback.

Redo

Information to redo the operation described by this record.

Undo

Information to undo the operation described by this record. Empty

for CLR.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 340



Example

Transact. 1 Transact. 2 LSN Type TX Prev Page UNxt Redo Undo

a← rd(A) ;

c ← rd(C) ;

a← a − 50 ;

c ← c + 10 ;

wr(a,A) ; 1 UPD T1 – · · · A := A− 50 A := A+ 50

wr(c,C) ; 2 UPD T2 – · · · C := C + 10 C := C − 10

b ← rd(B) ;

b ← b + 50 ;

wr(b,B) ; 3 UPD T1 1 · · · B := B + 50 B := B − 50

commit ; 4 EOT T1 3 · · ·
a← rd(A) ;

a← a − 10 ;

wr(a,A) ; 5 UPD T2 2 · · · A := A− 10 A := A+ 10

commit ; 6 EOT T2 5 · · ·

rd is for “read”; wr is for “write”

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 341



What Redo/Undo Information to Log

Redo/undo information can be encoded in different ways.

In physical logging, the exact byte representation of every page is

faithfully logged and preserved.

E.g., before and after image of the entire page.

Typically try to be smarter: log only modified parts of the page

and/or compress log entries.

Advantages:

Recovery mechanism is object-independent (whether the page is

an index/data/. . . page doesn’t matter).

Recovery is page-oriented (and pages are the granularity for atomic

data changes on disk).

Disadvantages:

Log volume can become very large. Logs are a key limitation of

today’s transaction processing systems.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 342



Physical Logging

Disadvantages (cont.):

A transaction abort might force other transactions to abort when

they altered the same pages.

→ This can happen even if the transactions do not conflict on the

logical level.

Observe that

Physical logging not only preserves the logical database content but

also its physical representation.

To this end, every page modification must be logged.

→ Even cleanup operations or internal page re-organizations.

As such, physical logging does more than needed.

The physical representation of data is not visible to the user.

ACID only refers to the logical representation.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 343



Logical Logging

Logical logging is an alternative.

Log high-level operations

→ E.g., “insert tuple 〈. . . 〉 into table R”

A single such log record often implies a series of changes.

→ Insert tuple in data pages, indexes, etc.

→ May have to split index pages, allocate new heap space, etc.

Logical logging will not preserve the physical representation.

→ E.g., don’t undo an index page split.

→ During redo, tuples or index entries might end up on completely

different pages.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 344



Logical Logging

Advantages:

Log volume very small.

→ Individual log entries very small.

→ Maintenance operations need not be logged at all.

Potential to improve undo/recovery performance

→ E.g., don’t undo a page split

Disadvantages:

Very hard to get right.

→ Logged operations are not atomic with respect to disk

operations.

→ Idempotency of redo/undo operations?

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 345



Problems of Logical Logging

Example:

The insertion of a tuple into table T implies a new entry in indexes

A and B.

Problem 1: Partial Actions

A transaction failure could occur at any of the three steps.

Need to know which prefix of changes to T , A, B has to be undone.

Problem 2: Action Consistency

In the case of crash recovery, any subset of the affected pages

could have reached the disk before the crash.

It is even worse:

A B-tree insertion itself may affect multiple pages (splits, etc.).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 346



Compromise: Physiological Logging

Idea:

“physical to a page, logical within a page”

Physical part:

Every log record refers to a particular physical page.

Logical part:

Use logical logging to describe changes within one page.

Example log entry:

[. . . , insert, . . . , page 4711, . . . , record value r ]
[. . . , ix insert, . . . , ix page 0815, . . . , ix key: k1, rid: v ]
[. . . , ix insert, . . . , ix page 4242, . . . , ix key: k2, rid: v ]

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 347



Physiological Logging

Important: page action consistency

Complex actions composed of single-page actions, each such

action is logged.

Pages may be inconsistent during single-page action, but this

situation is protected by latches.

In practice:

Write undo/redo log record before releasing the page latch.

Page modifications are atomic from the perspective of the

logging/recovery mechanism.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 348



Idempotency

The idempotency challenge of logical logging remains.

E.g., insert log record for new tuple t

→ t should be inserted exactly once.

→ Must not re-insert t (again and again), e.g., in case of crash

recovery.

Thus:

Assign a unique, monotone log sequence number (LSN) to each

log entry.

Record the LSN of the latest page update in each page header.

During redo, apply operation only if pageLSN < logLSN.

Redo instructions themselves need not be idempotent!

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 349



Writing Log Records

For performance reasons, all log records are first written to volatile

storage.

At certain times, the log is forced to stable storage up to a certain

LSN:

All records until T ’s EOT record are forced to disk when T

commits (to prepare for a redo of T ’s effects).

When a data page p is written back to disk, log records up to

the last modification of p are forced to disk (such that

uncommitted updates on p can be undone).

The log is an ever-growing file (but see later).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 350



Normal Processing

During normal transaction processing, keep two pieces of information in

each Transaction Control Block (slide 276):

LastLSN (Last Log Sequence Number)

LSN of the last log record written for this transaction.

UNxt (LSN Next to be Undone)

LSN of the next log record to be processed during rollback.

Whenever an update to a page p is performed,

a log record r is written to the WAL and

The LSN of r is recorded in the page header of p.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 351



Transaction Rollback

To roll back a transaction T after a transaction failure:

Process the log in a backward fashion.

Start the undo operation at the log entry pointed to by the UNxt

field in the transaction control block of T .

Find the remaining log entries for T by following the Prev and UNxt

fields in the log.

�
Undo operations modify pages, too!

→ Log all undo operations to the WAL.

→ Use compensation log records (CLRs) for this purpose.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 352



Transaction Rollback

1 Function: rollback (SaveLSN,T)

2 UndoNxt ← T .UNxt ;

3 while SaveLSN < UndoNxt do

4 LogRec ← read log entry with LSN UndoNxt ;

5 switch LogRec .Type do

6 case UPD

7 perform undo operation LogRec .Undo on page LogRec .Page ;

8 LSN ← write log entry

〈CLR,T ,T .LastLSN,LogRec .Page,LogRec .Prev, · · · ,∅〉 ;

9 set LSN = LSN in page header of LogRec .Page ;

10 T .LastLSN← LSN ;

11 case CLR

12 UndoNxt ← LogRec .UNxt ;

13 T .UNxt← UndoNxt ;

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 353



Undo Processing

Write compensation log records (CLRs) during undo.

The redo information in the CLR describes the performed undo

operation.

The undo operation increases the page’s LSN.

� Why?

Consider the following situation:

1 Page initially at LSN 0.

2 Transaction 1 inserts a record r1, increasing LSN to 3.

3 Transaction 2 inserts a record r2, increasing LSN to 7.

4 Transaction 1 rolls back (and removes r1 from the page again).

Assume the undo operation re-set the LSN to 0. In case of crash

recovery, the system cannot know whether r2 has been added to the

page already or not.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 354



Undo Processing

Undo need not precisely re-establish the page to the representation

before the corresponding ‘do’ operation.

E.g.,

The ‘undo’ for an ‘insert’ might be a ‘delete’.

→ The deleted record might remain as a ghost.

A B-tree node split might not be un-done at all.

An insert might have required page compaction.

Undo only needs to re-establish the logical contents of a page, but not

its physical representation.

→ This is the “logical” aspect of “physiological”.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 355



Transaction Rollback

Transaction can be rolled back partially (back to SaveLSN).

� Why is this useful?

Transactions can define savepoints, e.g.,

to unroll only the current SQL statement in a longer

transaction (if, e.g., an update violates constraints) or

to allow user-visible nested transactions.

The UNxt field in a CLR points to the log entry before the one that

has been undone.

UPD UPD UPD UPD CLR CLR UPD CLR CLR

sav1 sav2 rollback (sav2) rollback (sav1)

Log

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 356



Crash Recovery

Restart after a system failure is performed in three phases:

1 Analysis Phase:

Read log in forward direction.

Determine all transactions that were active when the failure

happened. Such transactions are called losers.

2 Redo Phase:

Replay the log (in forward direction) to bring the system into

the state as of the time of system failure.

3 Undo Phase:

Roll back all loser transactions, reading the log in a backward

fashion (similar to “normal” rollback).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 357



Analysis Phase

1 Function: analyze ()

2 foreach log entry record LogRec do

3 switch LocRec .Type do

4 create transaction control block for LogRec .TX if necessary ;

5 case UPD or CLR

6 LogRec .TX.LastLSN← LogRec .LSN ;

7 if LocRec .Type = UPD then

8 LogRec .TX.UNxt← LogRec .LSN ;

9 else

10 LogRec .TX.UNxt← LogRec .UNxt ;

11 case EOT

12 delete transaction control block for LogRec .TX ;

In practice, systems also use the analyze phase to collect further

information, e.g., to prefetch pages for redo.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 358



Redo Phase

1 Function: redo ()

2 foreach log entry record LogRec do

3 switch LocRec .Type do

4 case UPD or CLR

5 v ← pin (LogRec .Page) ;

6 if v .LSN < LogRec .LSN then

7 perform redo operation LogRec .Redo on v ;

8 v .LSN← LogRec .LSN ;

9 unpin (v, · · · ) ;

�
System crashes can occur during recovery!

Undo and redo of a transaction T must be idempotent:

undo(undo(T )) = undo(T )
redo(redo(T )) = redo(T )

Check LSN before performing the redo operation (line 6).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 359



Redo Phase

Note that we redo all operations (even those of losers) and in

chronological order.

After the redo phase, the system is in the same state as it was at

the time of the system failure.

Some log entries may not have found their way to the disk before the

failure. Committed operations would have been written to disk, though

(slide 350). All others would have to be undone anyway.

We’ll have to undo all effects of loser transactions afterwards.

As an optimization, the analyze pass could instruct the buffer

manager to prefetch dirty pages.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 360



Undo Phase

The undo phase is similar to the rollback during “normal

processing”.

This time we roll back several transactions (all losers) at once.

All loser transactions are rolled back completely (not just up to

some savepoint).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 361



1 Function: undo ()

2 while transactions (i.e., TCBs) left to roll back do

3 T ← TCB of loser transaction with greatest UNxt ;

4 LogRec ← read log entry with LSN T .UNxt ;

5 switch LogRec .Type do

6 case UPD

7 perform undo operation LogRec .Undo on page LogRec .Page ;

8 LSN ← write log entry

〈CLR,T ,T .LastLSN,LogRec .Page,LogRec .Prev, · · · ,∅〉 ;

9 set LSN = LSN in page header of LogRec .Page ;

10 T .LastLSN← LSN ;

11 case CLR

12 UndoNxt ← LogRec .UNxt ;

13 T .UNxt← UndoNxt ;

14 if T .UNxt = ‘–’ then

15 write EOT log entry for T ;

16 delete TCB for T ;

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 362



Forcing Log Records to Stable Storage

The effects of all committed transactions must be durable.

→ When committing a transaction T , force the log to stable storage

(at least) up until the commit record of T .

Conversely, in case of a crash recovery, any effects caused by

transactions that did not yet commit must be undone.

→ When evicting a page p from the buffer pool, first force the log to

stable storage until the LSN recorded in p.

� What about aborted transactions? Force abort records, too?

For two reasons the log does not have to be forced upon abort:

1 In case of doubt, the uncompleted transaction will be aborted

anyway.

2 The aborted transaction did not cause any user-visible content

changes (only the physical representation might have changed).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 363



Content vs. Representation

Logical (and mostly also physiological) logging protects only the logical

content of the database.

Physical logging, by contrast, also protects the physical representation.

We saw something similar before:

User transactions perform changes to the logical content of the

database.

System transactions only change the physical representation.

Indeed, the distinction allows us to reduce the overhead of logging.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 364



System Transactions

System transactions need to log their operations just like user

transactions.

Example: B-tree node split

Migration of tuples to new node changes (“logical”) content of

those pages (even if not of the B-tree overall), which thus has to be

logged.

Space allocation must be logged.

But:

Whether or not the system transaction Tx commits is immaterial

until a user transaction depends on changes done by Tx .

System transactions do not have to force the log to stable storage

at commit time.

A dependent user transaction (upon commit) will implicitly force the

effects of Tx to stable storage.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 365



System Transactions

In case the invoking user transaction aborts, system transactions do not

have to be rolled back.22

→ Reduced rollback overhead compared to alternative without system

transactions.

→ Other transactions that already saw the effects of invoked system

transactions need not be rolled back.

E.g., B-tree node split: other transactions might already have

put new entries on new node.

22In fact, they cannot be rolled back if they already committed.
© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 366



Nested Top Actions (Without System Transactions)

Similar effects can be achieved also without system transactions.

Trick:

When finishing a “nested top action,” write a dummy CLR to the

log:

UPD UPD UPD UPD UPD UPD CLR UPD UPD

nested top action

Log

In case of an undo, processing will skip over all actions of the

nested top action, thus preserve its effects.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 367



Logging Overhead for System Transactions

System transactions lead to additional log records.

→ At a minimum, there is the added commit record.

However, system transactions may also reduce log volume.

Example: Tuple deletion

Without sytem transactions:

Need to log deletion (for redo) and deleted tuple value (for

undo).

With system transactions:

Turn tuple in to ghost only (log only bit flip).

Once the user transaction has committed, the tuple is logically

NULL. A clean-up system transaction thus need not log

deleted tuple value (only the key).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 368



Log Fusion

Such delete operations can be optimized even further.

Step 1:

Merge UPD for ghost deletion and EOT (commit record) into single

log record.

(The operation occurs frequent enough to warrant a special entry type.)

There is now only a single log record when a system transaction

deletes a ghost.

Step 2:

Since there is only a single log record, the system transaction

cannot fail in-between deletion and commit.

Thus: omit logging undo operations altogether.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 369



Write Ordering

Log volume can further be reduced by careful write ordering.

Example: B-tree node split

→ A log record like “Move entries ki , . . . , kj from page x to page y .”

covers all information needed for the two split nodes x and y .

The operation is performed in memory first:

x y

x y

� If x is written back to disk before y , data behind ki , . . . , kj is no

longer persistent on disk!

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 370



Write Ordering

There is no problem if page y is written back first.

Thus: Add write order information to buffer pool meta data.

1 Let destination page y depend on x :

Add dependency pointer to y .

Increment a reference counter in x for each dependence;

decrement it when y is flushed to disk.

Flush pages only when their reference counter is 0.

2 Alternatively: For each page maintain a list of pages that have to

be flushed first.

Add pointer x → y to x .

When x is chosen for replacement, flush all referenced pages

first.

� For append-heavy indexes, write ordering can lead to “write

convoys”.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 371



Checkpointing

We’ve considered the WAL as an ever-growing log file that we read

from the beginning during crash recovery.

In practice, we do not want to replay a log that has grown over

days, months, or years.

Every now and then, write a checkpoint to the log.

(a) heavyweight checkpoints

Force all dirty buffer pages to disk, then write checkpoint.

Redo pass may then start at the checkpoint.

(b) lightweight checkpoints (or “fuzzy checkpoints”)

Do not force anything to disk, but write information about dirty

pages to the log. Allows redo pass to start from a log entry

shortly before the checkpoint.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 372



Fuzzy Checkpointing

Periodically write checkpoint in three steps:

1 Write begin checkpoint log entry BCK.

2 Collect information about

all dirty pages in the buffer manager and the LSN of the

oldest update operation that modified them and

all active transactions (and their LastLSN and UNxt TCB

entries).

Write this information into the end checkpoint log entry ECK.

3 Set master record at a known place on disk to point to the LSN of

the BCK log entry.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 373



Recovery with Fuzzy Checkpointing

During crash recovery

start analyze pass at the BCK entry recorded in the master record

(instead of from the beginning of the log).

When reading the ECK log entry,

Determine smallest LSN for redo processing and

Create TCBs for all transactions in the checkpoint.

Log
�

checkpoint

analyze pass

redo pass

undo pass

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 374



Media Recovery

To allow for recovery from media failure, periodically back up data

to stable storage.

Can be done during normal processing, if WAL is archived, too.

If the backup process uses the buffer manager, it is sufficient to

archive the log starting from the moment when the backup started.

Buffer manager already contains freshest versions.

Otherwise, log must be archived starting from the oldest write

to any page that is dirty in the buffer.

Other approach: Use log to mirror database on a remote host (send

log to network and to stable storage).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 375



Locking and Recovery: Transaction Rollback

� What locks have to be acquired during a transaction rollback?

In strict two-phase locking, all locks are kept until the transaction

commits.

→ Locks are still held, no new locks have to be acquired during

rollback.

This also means that a transaction cannot run into a deadlock

situation during rollback.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 376



Locking and Recovery: Crash Recovery

� And what about locking after a crash?

Concurrency issues have already been resolved when the

transactions were normally running.

→ No need to isolate them again during recovery.

New transactions, issued after restart, might conflict with those of

the recovery process.

→ If new transactions are allowed to enter the system during the

recovery process, locks must be acquired (for old and new

transactions).

→ Since “old” transactions don’t conflict with each other, they

can all run under the same recovery transaction.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 377



Locking and Recovery: Crash Recovery

The log analysis pass helps fast recovery/early restart of new

transactions.

With the analysis pass, determine which locks have to be acquired

for recovery.

→ Note that log analysis runs relatively fast, because it does only

a sequential read of the log.

→ Analysis runs faster if checkpoints are done more often.

→ To acquire locks, list locks held by indoubt transactions in

checkpoint information.

→ Locks cannot conflict at this stage (→ speed-up analysis)

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 378



Locking and Recovery: Fast Restart

Once all locks are acquired, new transactions can be allowed into

the system.

→ Locks for recovery need not (necessarily) be acquired at the

same granularity as the original transactions did.

(Again, this might help speed-up the analysis pass.)

The actual redo/undo takes much longer than log analysis.

→ Many data pages have to be fetched in random order.

Effectively, many pages will be read unnecessarily.

→ Often, the disk will already contain the latest version of the data.

But we cannot tell that in advance just from analyzing the log.

→ Possible improvement: Log write-back of pages, so analysis pass

can detect the situation and avoid unneccessary page reads.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 379



Wrap-Up

ACID and Serializability

To prevent from different types of anomalies, DBMSs guarantee

ACID properties. Serializability is a sufficient criterion to

guarantee isolation.

Two-Phase Locking

Two-phase locking is a practicable technique to guarantee

serializability. Most systems implement strict 2PL. SQL 92 allows

explicit relaxation of the ACID isolation constraints in the interest

of performance.

Concurrency in B-trees

Specialized protocols exist for concurrency control in B-trees (the

root would be a locking bottleneck otherwise).

Recovery (ARIES)

The ARIES technique aids to implement durability and atomicity

by use of a write-ahead log.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 380


	Recovery
	Introduction
	Types of Failures
	Types of Storage

	System R Shadow Pages Approach
	Illustration
	Forcing Page Write-Back
	Frame Stealing
	Steal/Force: Effects on Recovery

	Write-Ahead Logging (ARIES)
	Content of the Write-Ahead Log
	Log Information for Redo
	Writing Log Records
	Logging in Normal Processing

	Transaction Rollback (after transaction failure)
	Algorithm

	Crash Recovery
	Analysis Phase
	Redo Phase
	Undo Phase



