Architecture and Implementation of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group jens.teubner@cs.tu-dortmund.de

Winter 2015/16

Part VI

Query Optimization

Finding the "Best" Query Plan

- We already saw that there may be more than one way to answer a given query.
 - Which one of the join operators should we pick? With which parameters (block size, buffer allocation, ...)?
- The task of finding the best execution plan is, in fact, the **holy grail** of any database implementation.

Plan Generation Process

- **Parser:** syntactical/semantical analysis
- Rewriting: optimizations independent of the current database state (table sizes, availability of indexes, etc.)
- Optimizer: optimizations that rely on a cost model and information about the current database state
- The resulting plan is then evaluated by the system's execution engine.

Finding the right plan can dramatically impact performance.

SELECT	L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM	LINEITEM L, ORDERS O, CUSTOMER C
WHERE	L.L_ORDERKEY = O.O_ORDERKEY
AND	0.0_CUSTKEY = C.C_CUSTKEY
AND	C.C_NAME = 'IBM Corp.'

In terms of execution times, these differences can easily mean "seconds versus days."

The SQL Parser

- Besides some analyses regarding the syntactical and semantical correctness of the input query, the parser creates an internal representation of the input query.
- This representation still resembles the original query:
 - Each SELECT-FROM-WHERE clause is translated into a query block.

• Each R_i can be a base relation or another query block.

The parser output is fed into a **rewrite engine** which, again, yields a tree of query blocks.

It is then the **optimizer's** task to come up with the optimal **execution plan** for the given query.

Essentially, the optimizer

- 1 enumerates all possible execution plans,
- 2 determines the **quality** (cost) of each plan, then
- **3 chooses** the best one as the final execution plan.

Before we can do so, we need to answer the question

■ What is a "good" execution plan at all?

Database systems judge the quality of an execution plan based on a number of **cost factors**, *e.g.*,

- the number of **disk I/Os** required to evaluate the plan,
- the plan's CPU cost,
- the overall response time observable by the user as well as the total execution time.

A cost-based optimizer tries to **anticipate** these costs and find the cheapest plan before actually running it.

- All of the above factors depend on one critical piece of information: the size of (intermediate) query results.
- Database systems, therefore, spend considerable effort into accurate result size estimates.

Consider a query block corresponding to a simple SFW query Q.

We can estimate the result size of Q based on

- the size of the input tables, $|R_1|, \ldots, |R_n|$, and
- the selectivity sel(p) of the predicate predicate-list:

 $|Q| \approx |R_1| \cdot |R_2| \cdots |R_n| \cdot sel(predicate-list)$.

Table Cardinalities

If not coming from another query block, the size |R| of an input table R is available in the DBMS's **system catalogs**. *E.g.*, IBM DB2:

	=> WHERE TABSCHEMA = 'I	PCH';
TABNAME	CARD	NPAGES
ORDERS	1500000) 44331
CUSTOMER	150000) 6747
NATION	25	5 2
REGION	E	5 1
PART	200000) 7578
SUPPLIER	10000	406
PARTSUPP	800000	31679
LINEITEM	6001215	207888

To estimate the selectivity of a predicate, we look at its structure.

column = value $sel(\cdot) = \begin{cases} 1/|I| & \text{if there is an index } I \text{ on } column \\ 1/10 & \text{otherwise} \end{cases}$

 $column_1 = column_2$

$$sel(\cdot) = \begin{cases} \frac{1}{\max\{|l_1|, |l_2|\}} & \text{if there are indexes on both cols} \\ \frac{1}{|l_k|} & \text{if there is an index only on col. } k \\ \frac{1}{10} & \text{otherwise} \end{cases}$$

 $p_1 \text{ AND } p_2$

$$sel(\cdot) = sel(p_1) \cdot sel(p_2)$$

$$p_1 \text{ OR } p_2$$

$$sel(\cdot) = sel(p_1) + sel(p_2) - sel(p_1) \cdot sel(p_2)$$

The selectivity rules we saw make a fair amount of assumptions:

- uniform distribution of data values within a column,
- **independence** between individual predicates.

Since these assumptions aren't generally met, systems try to improve selectivity estimation by gathering **data statistics**.

 These statistics are collected offline and stored in the system catalog.

🖂 IBM DB2: RUNSTATS ON TABLE ...

• The most popular type of statistics are **histograms**.

← Example: Histograms in IBM DB2

SELECT FROM	C SEQNO, COLVALUE, A SYSCAT.COLDIST	VALCOUNT				
WHERE TABNAME = 'LINEITEM'						
ANI	COLNAME = 'L_EXT	ENDEDPRICE'				
ANI) TYPE = 'Q';					
SEQNO	COLVALUE	VALCOUNT				
	+0000000000996.01	3001				
2	+000000004513.26	315064				
3	+000000007367.60	633128				
4	+000000011861.82	948192				
5	+000000015921.28	1263256				
6	+000000019922.76	1578320				
7	+000000024103.20	1896384				
8	+000000027733.58	2211448				
9	+000000031961.80	2526512				
10	+000000035584.72	2841576				
11	+000000039772.92	3159640				
12	+000000043395.75	3474704				
13	+000000047013.98	3789768				

SYSCAT.COLDIST also contains information like

- the n most frequent values (and their frequency),
- the number of distinct values in each histogram bucket.

Histograms may even be manipulated **manually** to tweak the query optimizer.

Join Optimization

- We've now translated the query into a graph of **query blocks**.
 - Query blocks essentially are a multi-way Cartesian product with a number of selection predicates on top.
- We can estimate the **cost** of a given **execution plan**.
 - Use result size estimates in combination with the cost for individual join algorithms in the previous chapter.

We are now ready to **enumerate** all possible execution plans, *e.g.*, all possible **3-way** join combinations for a query block.

How Many Such Combinations Are There?

- A join over n + 1 relations R_1, \ldots, R_{n+1} requires *n* binary joins.
- Its **root-level operator** joins sub-plans of k and n k 1 join operators $(0 \le k \le n 1)$:

Let C_i be the number of possibilities to construct a binary tree of i inner nodes (join operators):

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} \quad .$$

This recurrence relation is satisfied by **Catalan numbers**:

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!}$$
,

describing the number of ordered binary trees with n + 1 leaves.

For **each** of these trees, we can **permute** the input relations R_1, \ldots, R_{n+1} , leading to

$$\frac{(2n)!}{(n+1)!n!} \cdot (n+1)! = \frac{(2n)!}{n!}$$

possibilities to evaluate an (n + 1)-way join.

The resulting search space is **enormous**:

number of relations n	C_{n-1}	join trees
2	1	2
3	2	12
4	5	120
5	14	1,680
6	42	30,240
7	132	665,280
8	429	17,297,280
10	4,862	17,643,225,600

And we haven't yet even considered the use of k different join algorithms (yielding another factor of k⁽ⁿ⁻¹⁾)!

The traditional approach to master this search space is the use of **dynamic programming**.

Idea:

- Find the cheapest plan for an *n*-way join in *n* **passes**.
- In each pass k, find the best plans for all k-relation **sub-queries**.
- **Construct** the plans in pass k from best *i*-relation and (k i)-relation sub-plans found in **earlier passes** $(1 \le i < k)$.

Assumption:

To find the optimal global plan, it is sufficient to only consider the optimal plans of its sub-queries.

Example: Four-Way Join

Pass 1 (best 1-relation plans)

Find the best **access path** to each of the R_i individually (considers index scans, full table scans).

Pass 2 (best 2-relation plans)

For each **pair** of tables R_i and R_j , determine the best order to join R_i and R_j ($R_i \bowtie R_j$ or $R_j \bowtie R_i$?):

 $optPlan(\{R_i, R_j\}) \leftarrow best of R_i \bowtie R_j and R_j \bowtie R_i$.

 \rightarrow 12 plans to consider.

Pass 3 (best 3-relation plans)

For each **triple** of tables R_i , R_j , and R_k , determine the best three-table join plan, using sub-plans obtained so far:

 $optPlan(\{R_i, R_j, R_k\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k\}), optPlan(\{R_j, R_k\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k\}), \dots$

 \rightarrow 24 plans to consider.

Pass 4 (best 4-relation plan) For each set of **four** tables R_i , R_j , R_k , and R_l , determine the best four-table join plan, using sub-plans obtained so far:

 $optPlan(\{R_i, R_j, R_k, R_l\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k, R_l\}), optPlan(\{R_j, R_k, R_l\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k, R_l\}), \dots, optPlan(\{R_i, R_j\}) \bowtie optPlan(\{R_k, R_l\}), \dots$

 \rightarrow 14 plans to consider.

- Overall, we looked at only **50** (sub-)plans (instead of the possible 120 four-way join plans; > slide 218).
- All decisions required the evaluation of simple sub-plans only (no need to re-evaluate the interior of optPlan(·)).

Dynamic Programming Algorithm

```
1 Function: find_join_tree_dp (q(R_1, \ldots, R_n))
2 for i = 1 to n do
3 \mid optPlan(\{R_i\}) \leftarrow access\_plans(R_i);
4 prune_plans (optPlan(\{R_i\}));
5 for i = 2 to n do
       foreach S \subseteq \{R_1, \ldots, R_n\} such that |S| = i do
6
           optPlan(S) \leftarrow \emptyset;
7
           foreach O \subset S do
8
               optPlan(S) \leftarrow optPlan(S) \cup
9
                     possible_joins (optPlan(O), optPlan(S \setminus O));
0
           prune_plans (optPlan(S)) ;
1
```

¹² return $optPlan(\{R_1,\ldots,R_n\})$;

- possible_joins (R, S) enumerates the possible joins between R and S (nested loops join, merge join, etc.).
- **prune_plans** (*set*) discards all but the best plan from *set*.

- find_join_tree_dp () draws its advantage from filtering plan candidates early in the process.
 - In our example on slide 220, pruning in Pass 2 reduced the search space by a factor of 2, and another factor of 6 in Pass 3.
- Some heuristics can be used to prune even more plans:
 - Try to avoid **Cartesian products**.
 - Produce left-deep plans only (see next slides).
- Such heuristics can be used as a handle to balance plan quality and optimizer runtime.

```
➡ DB2 UDB: SET CURRENT QUERY OPTIMIZATION = n
```

Left/Right-Deep vs. Bushy Join Trees

The algorithm on slide 222 explores all possible shapes a join tree could take:

Actual systems often prefer left-deep join trees.¹⁵

- The inner relation is always a base relation.
- Allows the use of **index nested loops join**.
- Easier to implement in a **pipelined** fashion.

¹⁵The seminal **System R** prototype, *e.g.*, considered only left-deep plans.

C) Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16

Join Order Makes a Difference

XPath evaluation over relationally encoded XML data¹⁶
 n-way self-join with a range predicate.

¹⁶ A Grust *et al.* Accelerating XPath Evaluation in Any RDBMS. TODS 2004. http://www.pathfinder-xquery.org/

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16

Contrast the execution plans for a 8- and a 9-step path.

left-deep join tree

bushy join tree

■ DB2's optimizer essentially gave up in the face of 9+ joins.

Dynamic programming still has **exponential** resource requirements:

- time complexity: $\mathcal{O}(3^n)$
- space complexity: $\mathcal{O}(2^n)$

This may still be to expensive

- for joins involving many relations (\sim 10–20 and more),
- for simple queries over well-indexed data (where the right plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.

Greedy Join Enumeration

- 1 **Function:** find_join_tree_greedy $(q(R_1, \ldots, R_n))$
- 2 worklist $\leftarrow \emptyset$:
- 3 for i = 1 to n do
- 4 worklist \leftarrow worklist \cup best_access_plan (R_i);
- 5 for i = n downto 2 do
- 6 // worklist = { P_1, \ldots, P_i } find $P_j, P_k \in$ worklist and \bowtie_{\ldots} such that $cost(P_j \bowtie_{\ldots} P_k)$ is minimal;
- 7 worklist \leftarrow worklist $\setminus \{P_i, P_k\} \cup \{(P_i \bowtie_i P_k)\}\}$;

// worklist = $\{P_1\}$

- 8 **return** single plan left in *worklist* ;
 - In each iteration, choose the **cheapest** join that can be made over the remaining sub-plans.
 - Observe that find_join_tree_greedy () operates similar to finding the optimum binary tree for **Huffman coding**.

Greedy join enumeration:

- The greedy algorithm has $\mathcal{O}(n^3)$ time complexity.
 - The loop has $\mathcal{O}(n)$ iterations.
 - Each iteration looks at all remaining pairs of plans in *worklist*. An $\mathcal{O}(n^2)$ task.

Other join enumeration techniques:

- Randomized algorithms: randomly rewrite the join tree one rewrite at a time; use hill-climbing or simulated annealing strategy to find optimal plan.
- Genetic algorithms: explore plan space by combining plans ("creating offspring") and altering some plans randomly ("mutations").

Consider the query

SELECT	O.O_ORDERKEY, L.L_EXTENDEDPRICE
FROM	ORDERS O, LINEITEM L
WHERE	O.O_ORDERKEY = L.L_ORDERKEY

where table ORDERS is indexed with a **clustered index** OK_IDX on column $O_ORDERKEY$.

Possible table access plans are:

ORDERS	 full table scan: estimated I/Os: N_{ORDERS} index scan: estimated I/Os: N_{OK_IDX} + N_{ORDERS}. 		
.INEITEM	full table scan : estimated I/Os: N _{LINEITEM} .		

Since the **full table scan** is the cheapest access method for both tables, our join algorithms will select them as the best 1-relation plans in Pass $1.^{17}$

To **join** the two scan outputs, we now have the choices

- nested loops join,
- **hash join**, or
- **sort** both inputs, then use **merge join**.

Hash join or sort-merge join are probably the preferable candidates here, incurring a cost of $\approx 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}})$.

 \rightarrow overall cost: $N_{\text{ORDERS}} + N_{\text{LINEITEM}} + 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}}).$

¹⁷Dynamic programming and the greedy algorithm happen to do the same in this example.

[©] Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16

It is easy to see, however, that there is a better way to evaluate the query:

- 1 Use an **index scan** to access ORDERS. This guarantees that the scan output is already **in O_ORDERKEY order**.
- 2 Then only **sort** LINEITEM and
- **3** join using **merge join**.

$$\rightarrow \text{ overall cost: } \underbrace{(N_{\text{OK}_{-IDX}} + N_{\text{ORDERS}})}_{1.} + \underbrace{2 \cdot N_{\text{LINEITEM}}}_{2./3.}.$$

Although more expensive as a standalone table access plan, the use of the index pays off in the overall plan.

- The advantage of the index-based access to ORDERS is that it provides beneficial **physical properties**.
- Optimizers, therefore, keep track of such properties by **annotating** candidate plans.
- System R introduced the concept of **interesting orders**, determined by
 - ORDER BY or GROUP BY clauses in the input query, or
 - join attributes of subsequent joins (~> merge join).
- In prune_plans (), retain
 - the cheapest "unordered" plan and
 - the cheapest plan for each interesting order.

Join optimization essentially takes a set of relations and a set of join predicates to find the best join order.

By **rewriting** query graphs beforehand, we can improve the effectiveness of this procedure.

The **query rewriter** applies (heuristic) rules, without looking into the actual database state (no information about cardinalities, indexes, etc.). In particular, it

- **rewrites predicates** and
- unnests queries.

Example: rewrite

into

*
LINEITEM L
L.L_TAX < 0.05

Predicate simplification may enable the use of indexes and simplify the detection of opportunities for join algorithms.

Additional Join Predicates

Implicit join predicates as in

SELECT * FROM A, B, C WHERE A.a = B.b AND B.b = C.c

can be turned into explicit ones:

SELECT * FROM A, B, C WHERE A.a = B.b AND B.b = C.c AND <u>A.a = C.c</u>

This enables plans like

 $(A \bowtie C) \bowtie B$.

 $((A \bowtie C)$ would have been a Cartesian product before.)

SQL provides a number of ways to write **nested queries**.

Uncorrelated sub-query:

```
SELECT *

FROM ORDERS 0

WHERE O_CUSTKEY IN (SELECT C_CUSTKEY

FROM CUSTOMER

WHERE C_NAME = 'IBM Corp.')
```

Correlated sub-query:

```
SELECT *

FROM ORDERS 0

WHERE 0.0_CUSTKEY IN

(SELECT C.C_CUSTKEY

FROM CUSTOMER C

WHERE C.C_ACCTBAL < 0.0_TOTALPRICE)
```

Taking query nesting literally might be expensive.

- An uncorrelated query, *e.g.*, need not be re-evaluated for every tuple in the outer query.
- Oftentimes, sub-queries are only used as a syntactical way to express a **join** (or a semi-join).
- The query rewriter tries to detect such situations and make the join explicit.
- This way, the sub-query can become part of the regular join order optimization.

 \nearrow Won Kim. On Optimizing an SQL-like Nested Query. ACM TODS, vol. 7, no. 3, September 1982.

Query Parser

Translates input query into (SFW-like) query blocks.

Rewriter

Logical (database state-independent) optimizations; predicate simplification; query unnesting.

(Join) Optimization

Find "best" query execution plan based on a **cost model** (considering I/O cost, CPU cost, ...); data statistics (histograms); dynamic programming, greedy join enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art...

"Picasso" Plan Diagrams

 \nearrow Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of Database Query Optimizers. *VLDB 2005*.

"Picasso" Plan Diagrams

Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.