
Architecture and Implementation

of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Winter 2015/16

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 1

Part VI

Query Optimization

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 203

Finding the “Best” Query Plan

SELECT · · ·
FROM · · ·
WHERE · · ·

π

1NL

1hash

R σ

S

T
?

We already saw that there may be more than one way to answer a

given query.

Which one of the join operators should we pick? With which

parameters (block size, buffer allocation, . . .)?

The task of finding the best execution plan is, in fact, the holy grail

of any database implementation.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 204

Plan Generation Process

SQL

Parser

Rewriting

Optimizer

Plan

Parser: syntactical/semantical analysis

Rewriting: optimizations independent of the

current database state (table sizes, availability

of indexes, etc.)

Optimizer: optimizations that rely on a cost

model and information about the current

database state

The resulting plan is then evaluated by the

system’s execution engine.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 205

Impact on Performance

Finding the right plan can dramatically impact performance.

SELECT L.L PARTKEY, L.L QUANTITY, L.L EXTENDEDPRICE

FROM LINEITEM L, ORDERS O, CUSTOMER C

WHERE L.L ORDERKEY = O.O ORDERKEY

AND O.O CUSTKEY = C.C CUSTKEY

AND C.C NAME = ’IBM Corp.’

1

1

L
6mio

O
1.5mio

6mio
σ

C
150,000

1

57
1

1

σ

C
150,000

1
O
1.5mio

14
L
6mio

57

In terms of execution times, these differences can easily mean

“seconds versus days.”

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 206

The SQL Parser

Besides some analyses regarding the syntactical and semantical

correctness of the input query, the parser creates an internal

representation of the input query.

This representation still resembles the original query:

Each SELECT-FROM-WHERE clause is translated into a query

block.

SELECT proj-list

FROM R1, R2, . . . , Rn
WHERE predicate-list

GROUP BY groupby-list

HAVING having-list

→

πproj-list

σhaving-list

grpbygroupby-list

σpredicate-list

×

R1 R2 · · · Rn

query block

Each Ri can be a base relation or another query block.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 207

Finding the “Best” Execution Plan

SQL

Parser

Rewriting

Optimizer

Plan

The parser output is fed into a rewrite engine which,

again, yields a tree of query blocks.

It is then the optimizer’s task to come up with the

optimal execution plan for the given query.

Essentially, the optimizer

1 enumerates all possible execution plans,

2 determines the quality (cost) of each plan, then

3 chooses the best one as the final execution plan.

Before we can do so, we need to answer the question

What is a “good” execution plan at all?

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 208

Cost Metrics

Database systems judge the quality of an execution plan based on a

number of cost factors, e.g.,

the number of disk I/Os required to evaluate the plan,

the plan’s CPU cost,

the overall response time observable by the user as well as the total

execution time.

A cost-based optimizer tries to anticipate these costs and find the

cheapest plan before actually running it.

All of the above factors depend on one critical piece of information:

the size of (intermediate) query results.

Database systems, therefore, spend considerable effort into accurate

result size estimates.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 209

Result Size Estimation

Consider a query block corresponding to a simple SFW query Q.

πproj-list

σpredicate-list

×

R1 R2 · · · Rn

We can estimate the result size of Q based on

the size of the input tables, |R1|, . . . , |Rn|, and

the selectivity sel(p) of the predicate predicate-list:

|Q| ≈ |R1| · |R2| · · · |Rn| · sel(predicate-list) .

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 210

Table Cardinalities

If not coming from another query block, the size |R| of an input table R

is available in the DBMS’s system catalogs.

E.g., IBM DB2:

db2 => SELECT TABNAME, CARD, NPAGES
db2 (cont.) => FROM SYSCAT.TABLES
db2 (cont.) => WHERE TABSCHEMA = ’TPCH’;

TABNAME CARD NPAGES
-------------- -------------------- --------------------
ORDERS 1500000 44331
CUSTOMER 150000 6747
NATION 25 2
REGION 5 1
PART 200000 7578
SUPPLIER 10000 406
PARTSUPP 800000 31679
LINEITEM 6001215 207888

8 record(s) selected.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 211

Estimating Selectivities

To estimate the selectivity of a predicate, we look at its structure.

column = value

sel(·) =
{
1/|I | if there is an index I on column
1/10 otherwise

column1 = column2

sel(·) =

1

max{|I1|,|I2|} if there are indexes on both cols.
1
|Ik | if there is an index only on col. k

1/10 otherwise

p1 AND p2
sel(·) = sel(p1) · sel(p2)

p1 OR p2
sel(·) = sel(p1) + sel(p2)− sel(p1) · sel(p2)

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 212

Improving Selectivity Estimation

The selectivity rules we saw make a fair amount of assumptions:

uniform distribution of data values within a column,

independence between individual predicates.

Since these assumptions aren’t generally met, systems try to improve

selectivity estimation by gathering data statistics.

These statistics are collected offline and stored in the system

catalog.

I IBM DB2: RUNSTATS ON TABLE ...

The most popular type of statistics are histograms.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 213

I Example: Histograms in IBM DB2

SELECT SEQNO, COLVALUE, VALCOUNT
FROM SYSCAT.COLDIST

WHERE TABNAME = ’LINEITEM’
AND COLNAME = ’L_EXTENDEDPRICE’
AND TYPE = ’Q’;

SEQNO COLVALUE VALCOUNT
----- ----------------- --------

1 +0000000000996.01 3001
2 +0000000004513.26 315064
3 +0000000007367.60 633128
4 +0000000011861.82 948192
5 +0000000015921.28 1263256
6 +0000000019922.76 1578320
7 +0000000024103.20 1896384
8 +0000000027733.58 2211448
9 +0000000031961.80 2526512

10 +0000000035584.72 2841576
11 +0000000039772.92 3159640
12 +0000000043395.75 3474704
13 +0000000047013.98 3789768

.

.

.

SYSCAT.COLDIST also contains

information like

the n most frequent values

(and their frequency),

the number of distinct

values in each histogram

bucket.

Histograms may even be

manipulated manually to tweak

the query optimizer.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 214

Join Optimization

We’ve now translated the query into a graph of query blocks.

Query blocks essentially are a multi-way Cartesian product

with a number of selection predicates on top.

We can estimate the cost of a given execution plan.

Use result size estimates in combination with the cost for

individual join algorithms in the previous chapter.

We are now ready to enumerate all possible execution plans, e.g., all

possible 3-way join combinations for a query block.

1
1

R S

T

1
1

S R

T

1
1

R T

S

1
1

S T

R

1
1

T R

S

1
1

T S

R

1

R 1

S T

1

S 1

R T

1

R 1

T S

1

S 1

T R

1

T 1

R S

1

T 1

S R

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 215

How Many Such Combinations Are There?

A join over n + 1 relations R1, . . . ,Rn+1 requires n binary joins.

Its root-level operator joins sub-plans of k and n − k − 1 join

operators (0 ≤ k ≤ n − 1):

1

k joins

R1, . . . ,Rk

n− k − 1 joins
Rk+1, . . . ,Rn+1

Let Ci be the number of possibilities to construct a binary tree of i

inner nodes (join operators):

Cn =

n−1∑
k=0

Ck · Cn−k−1 .

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 216

Catalan Numbers

This recurrence relation is satisfied by Catalan numbers:

Cn =

n−1∑
k=0

Ck · Cn−k−1 =
(2n)!

(n + 1)!n!
,

describing the number of ordered binary trees with n + 1 leaves.

For each of these trees, we can permute the input relations

R1, . . . ,Rn+1, leading to

(2n)!

(n + 1)!n!
· (n + 1)! =

(2n)!

n!

possibilities to evaluate an (n + 1)-way join.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 217

Search Space

The resulting search space is enormous:

number of relations n Cn−1 join trees

2 1 2

3 2 12

4 5 120

5 14 1,680

6 42 30,240

7 132 665,280

8 429 17,297,280

10 4,862 17,643,225,600

And we haven’t yet even considered the use of k different join

algorithms (yielding another factor of k(n−1))!

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 218

Dynamic Programming

The traditional approach to master this search space is the use of

dynamic programming.

Idea:

Find the cheapest plan for an n-way join in n passes.

In each pass k , find the best plans for all k-relation sub-queries.

Construct the plans in pass k from best i-relation and

(k − i)-relation sub-plans found in earlier passes (1 ≤ i < k).

Assumption:

To find the optimal global plan, it is sufficient to only consider the

optimal plans of its sub-queries.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 219

Example: Four-Way Join

Pass 1 (best 1-relation plans)

Find the best access path to each of the Ri individually (considers

index scans, full table scans).

Pass 2 (best 2-relation plans)

For each pair of tables Ri and Rj , determine the best order to join

Ri and Rj (Ri 1 Rj or Rj 1 Ri?):

optPlan({Ri ,Rj})← best of Ri 1 Rj and Rj 1 Ri .

→ 12 plans to consider.

Pass 3 (best 3-relation plans)

For each triple of tables Ri , Rj , and Rk , determine the best

three-table join plan, using sub-plans obtained so far:

optPlan({Ri ,Rj ,Rk})← best of Ri 1 optPlan({Rj ,Rk}),
optPlan({Rj ,Rk}) 1 Ri , Rj 1 optPlan({Ri ,Rk}),

→ 24 plans to consider.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 220

Example (cont.)

Pass 4 (best 4-relation plan)

For each set of four tables Ri , Rj , Rk , and Rl , determine the best

four-table join plan, using sub-plans obtained so far:

optPlan({Ri ,Rj ,Rk ,Rl})← best of Ri 1 optPlan({Rj ,Rk ,Rl}),
optPlan({Rj ,Rk ,Rl}) 1 Ri , Rj 1 optPlan({Ri ,Rk ,Rl}), . . . ,
optPlan({Ri ,Rj}) 1 optPlan({Rk ,Rl}),

→ 14 plans to consider.

Overall, we looked at only 50 (sub-)plans (instead of the possible

120 four-way join plans; ↗ slide 218).

All decisions required the evaluation of simple sub-plans only (no

need to re-evaluate the interior of optPlan(·)).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 221

Dynamic Programming Algorithm

1 Function: find join tree dp (q(R1, . . . ,Rn))

2 for i = 1 to n do

3 optPlan({Ri})← access plans (Ri) ;

4 prune plans (optPlan({Ri})) ;

5 for i = 2 to n do

6 foreach S ⊆ {R1, . . . ,Rn} such that |S | = i do

7 optPlan(S)← ∅ ;

8 foreach O ⊂ S do

9 optPlan(S)← optPlan(S)∪
10 possible joins (optPlan(O), optPlan(S \O));

11 prune plans (optPlan(S)) ;

12 return optPlan({R1, . . . ,Rn}) ;

possible joins (R, S) enumerates the possible joins between R

and S (nested loops join, merge join, etc.).

prune plans (set) discards all but the best plan from set.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 222

Dynamic Programming—Discussion

find join tree dp () draws its advantage from filtering plan

candidates early in the process.

In our example on slide 220, pruning in Pass 2 reduced the

search space by a factor of 2, and another factor of 6 in Pass 3.

Some heuristics can be used to prune even more plans:

Try to avoid Cartesian products.

Produce left-deep plans only (see next slides).

Such heuristics can be used as a handle to balance plan quality and

optimizer runtime.

I DB2 UDB: SET CURRENT QUERY OPTIMIZATION = n

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 223

Left/Right-Deep vs. Bushy Join Trees

The algorithm on slide 222 explores all possible shapes a join tree could

take:

1

1

1

· · · · · ·
· · ·
· · ·

left-deep

1

1

· · · · · ·
1

· · · · · ·
bushy

(everything else)

1

· · · 1

· · · 1

· · · · · ·
right-deep

Actual systems often prefer left-deep join trees.15

The inner relation is always a base relation.

Allows the use of index nested loops join.

Easier to implement in a pipelined fashion.

15The seminal System R prototype, e.g., considered only left-deep plans.
© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 224

Join Order Makes a Difference

XPath evaluation over relationally encoded XML data16

n-way self-join with a range predicate.

1 2 3 4 5 6 7 8 9 10 11 12
0 0

50 50

100 100

150 150

200 200

250 250

ex
ec

.
ti

m
e

[s
]

path length

3
5
M
B
X
M
L
·I
B
M
D
B
2
9
S
Q
L

16↗ Grust et al. Accelerating XPath Evaluation in Any RDBMS. TODS 2004.
http://www.pathfinder-xquery.org/

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 225

http://www.pathfinder-xquery.org/

Join Order Makes a Difference

Contrast the execution plans for a 8- and a 9-step path.

left-deep join tree bushy join tree

DB2’s optimizer essentially gave up in the face of 9+ joins.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 226

Joining Many Relations

Dynamic programming still has exponential resource requirements:

time complexity: O(3n)
space complexity: O(2n)

This may still be to expensive

for joins involving many relations (∼ 10–20 and more),

for simple queries over well-indexed data (where the right plan

choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 227

Greedy Join Enumeration

1 Function: find join tree greedy (q(R1, . . . ,Rn))

2 worklist ← ∅ ;

3 for i = 1 to n do

4 worklist ← worklist ∪ best access plan (Ri) ;

5 for i = n downto 2 do

// worklist = {P1, . . . ,Pi}
6 find Pj ,Pk ∈ worklist and 1... such that cost(Pj 1... Pk) is minimal ;

7 worklist ← worklist \ {Pj ,Pk} ∪ {(Pj 1... Pk)} ;

// worklist = {P1}
8 return single plan left in worklist ;

In each iteration, choose the cheapest join that can be made over

the remaining sub-plans.

Observe that find join tree greedy () operates similar to finding

the optimum binary tree for Huffman coding.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 228

Discussion

Greedy join enumeration:

The greedy algorithm has O(n3) time complexity.

The loop has O(n) iterations.

Each iteration looks at all remaining pairs of plans in worklist.

An O(n2) task.

Other join enumeration techniques:

Randomized algorithms: randomly rewrite the join tree one rewrite

at a time; use hill-climbing or simulated annealing strategy to find

optimal plan.

Genetic algorithms: explore plan space by combining plans

(“creating offspring”) and altering some plans randomly

(“mutations”).

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 229

Physical Plan Properties

Consider the query

SELECT O.O ORDERKEY, L.L EXTENDEDPRICE

FROM ORDERS O, LINEITEM L

WHERE O.O ORDERKEY = L.L ORDERKEY

where table ORDERS is indexed with a clustered index OK IDX on column

O ORDERKEY.

Possible table access plans are:

ORDERS full table scan: estimated I/Os: NORDERS
index scan: estimated I/Os: NOK IDX + NORDERS.

LINEITEM full table scan: estimated I/Os: NLINEITEM.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 230

Since the full table scan is the cheapest access method for both tables,

our join algorithms will select them as the best 1-relation plans in

Pass 1.17

To join the two scan outputs, we now have the choices

nested loops join,

hash join, or

sort both inputs, then use merge join.

Hash join or sort-merge join are probably the preferable candidates here,

incurring a cost of ≈ 2(NORDERS + NLINEITEM).

→ overall cost: NORDERS + NLINEITEM + 2(NORDERS + NLINEITEM).

17Dynamic programming and the greedy algorithm happen to do the same in this

example.
© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 231

A Better Plan

It is easy to see, however, that there is a better way to evaluate the

query:

1 Use an index scan to access ORDERS. This guarantees that the scan

output is already in O ORDERKEY order.

2 Then only sort LINEITEM and

3 join using merge join.

→ overall cost: (NOK IDX + NORDERS)︸ ︷︷ ︸
1.

+ 2 · NLINEITEM︸ ︷︷ ︸
2./3.

.

Although more expensive as a standalone table access plan, the use of

the index pays off in the overall plan.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 232

Interesting Orders

The advantage of the index-based access to ORDERS is that it

provides beneficial physical properties.

Optimizers, therefore, keep track of such properties by annotating

candidate plans.

System R introduced the concept of interesting orders, determined

by

ORDER BY or GROUP BY clauses in the input query, or

join attributes of subsequent joins (; merge join).

In prune plans (), retain

the cheapest “unordered” plan and

the cheapest plan for each interesting order.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 233

Query Rewriting

Join optimization essentially takes a set of relations and a set of join

predicates to find the best join order.

By rewriting query graphs beforehand, we can improve the effectiveness

of this procedure.

The query rewriter applies (heuristic) rules, without looking into the

actual database state (no information about cardinalities, indexes, etc.).

In particular, it

rewrites predicates and

unnests queries.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 234

Predicate Simplification

Example: rewrite

SELECT *

FROM LINEITEM L

WHERE L.L TAX * 100 < 5

into

SELECT *

FROM LINEITEM L

WHERE L.L TAX < 0.05

Predicate simplification may enable the use of indexes and simplify

the detection of opportunities for join algorithms.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 235

Additional Join Predicates

Implicit join predicates as in

SELECT *

FROM A, B, C

WHERE A.a = B.b AND B.b = C.c

can be turned into explicit ones:

SELECT *

FROM A, B, C

WHERE A.a = B.b AND B.b = C.c

AND
:::
A.a

:::
=

::::
C.c

This enables plans like
(A 1 C) 1 B .

((A 1 C) would have been a Cartesian product before.)

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 236

Nested Queries

SQL provides a number of ways to write nested queries.

Uncorrelated sub-query:

SELECT *

FROM ORDERS O

WHERE O_CUSTKEY IN (SELECT C_CUSTKEY

FROM CUSTOMER

WHERE C_NAME = ’IBM Corp.’)

Correlated sub-query:

SELECT *

FROM ORDERS O

WHERE O.O_CUSTKEY IN

(SELECT C.C_CUSTKEY

FROM CUSTOMER C

WHERE C.C_ACCTBAL < O.O_TOTALPRICE)

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 237

Query Unnesting

Taking query nesting literally might be expensive.

An uncorrelated query, e.g., need not be re-evaluated for every

tuple in the outer query.

Oftentimes, sub-queries are only used as a syntactical way to

express a join (or a semi-join).

The query rewriter tries to detect such situations and make the

join explicit.

This way, the sub-query can become part of the regular join order

optimization.

↗ Won Kim. On Optimizing an SQL-like Nested Query. ACM TODS, vol. 7,

no. 3, September 1982.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 238

Summary

Query Parser

Translates input query into (SFW-like) query blocks.

Rewriter

Logical (database state-independent) optimizations; predicate

simplification; query unnesting.

(Join) Optimization

Find “best” query execution plan based on a cost model

(considering I/O cost, CPU cost, . . .); data statistics (histograms);

dynamic programming, greedy join enumeration; physical plan

properties (interesting orders).

Database optimizers still are true pieces of art. . .

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 239

“Picasso” Plan Diagrams

(a) Plan Diagram (b) Cost Diagram

Figure 1:Smooth Plan and Cost Diagram (Query 7)

The Picasso Tool

As part of our ongoing project on developing value-
addition software for query optimization [24], we have cre-
ated a tool, calledPicasso, that given a query and a rela-
tional engine, automatically generates the associated plan
and cost diagrams. In this paper, we report on the fea-
tures of the plan/cost diagrams output by Picasso on a suite
of three popular commercial query optimizers for queries
based on the TPC-H benchmark. [Due to legal restrictions,
these optimizers are anonymously identified as OptA, OptB
and OptC, in the sequel.]

Our evaluation shows that a few queries in the bench-
mark do produce “well-behaved” or “smooth” plan dia-
grams, like that shown in Figure 1(a). A substantial remain-
der, however, result in extremely complex and intricate plan
diagrams that appear similar tocubist paintings3, providing
rich material for investigation. A particularly compelling
example is shown in Figure 2(a) for Query 8 of the bench-
mark with optimizer OptA4, where no less than 68 plans
cover the space in a highly convoluted manner! Further,
even this cardinality is aconservativeestimate since it was
obtained with a query grid of 100 x 100 – a finer grid size
of 300 x 300 resulted in the plan cardinality going up to 80
plans!

Before we go on, we hasten to clarify that our goal in
this paper is to provide a broad overview of the intrigu-
ing behavior of modern optimizers, butnot to make judge-
ments on specific optimizers, nor to draw conclusions about
the relative qualities of their execution plans. Further, not
being privy to optimizer internals, some of the remarks

3Hence, the name of our tool – Pablo Picasso is considered to bea
founder of the cubist painting genre [23].

4Operating at its highest optimization level.

made here are perforce speculative in nature and should
therefore be treated as such. Our intention is primarily to
alert database system designers and developers to the phe-
nomena that we have encountered during the course of our
study, with the hope that they may prove useful in building
the next generation of optimizers.

Features of Plan and Cost Diagrams

Analyzing the TPC-H-based query plan and cost diagrams
provides a variety of interesting insights, including the fol-
lowing:

Fine-grained Choices: Modern query optimizers often
make extremelyfine-grainedplan choices, exhibiting
a marked skew in the space coverage of the individual
plans. For example, 80 percent of the space is usu-
ally covered by less than 20 percent of the plans, with
many of the smaller plans occupying less thanone
percentof the selectivity space. Using the well-known
Gini index [22], which ranges over [0,1], to quantify
the skew, we find that all the optimizers,across the
board, exhibit a marked skew in excess of 0.5 for most
queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the
small-sized plans may often be supplanted by larger
siblings without substantively affecting the quality.
For example, the plan diagram of Figure 2(a) which
has 68 plans can be “reduced” to that shown in Fig-
ure 2(b) featuring as few assevenplans, without in-
creasing the estimated cost of any individual query
point by more than 10 percent.

Overall, this leads us to the hypothesis that current
optimizers may perhaps be over-sophisticated in that

(a) Complex Plan Diagram (b) Reduced Plan Diagram

Figure 2:Complex Plan and Reduced Plan Diagram (Query 8, OptA)

they are “doing too good a job”, not merited by the
coarseness of the underlying cost space. Moreover,
if it were possible to simplify the optimizer to pro-
duce only reduced plan diagrams, it is plausible that
the considerable processing overheads typically asso-
ciated with query optimization could be significantly
lowered.

Complex Patterns: The plan diagrams exhibit a variety
of intricate tessellated patterns, includingspeckles,
stripes, blinds, mosaicsandbands, among others. For
example, witness the rapidly alternating choices be-
tween plans P12 (dark green) and P16 (light gray)
in the bottom left quadrant of Figure 2(a). Further,
the boundaries of the plan optimality regions can be
highly irregular – a case in point is plan P8 (dark
pink) in the top right quadrant of Figure 2(a). These
complex patterns appear to indicate the presence of
strongly non-linear and discretized cost models, again
perhaps an over-kill in light of Figure 2(b).

Non-Monotonic Cost Behavior: We have found quite a
few instances where, although the base relation selec-
tivities and the result cardinalities are monotonically
increasing, the cost diagram doesnot show a corre-
sponding monotonic behavior.5 Sometimes, the non-
monotonic behavior arises due to a change in plan,
perhaps understandable given the restricted search
space evaluated by the optimizer. But, more surpris-
ingly, we have also encountered situations where a
plan shows such behavior eveninternal to its optimal-
ity region.

5Our query setup is such that in addition to the result cardinality mono-
tonically increasing as we travel outwards along the selectivity axes, the
result tuples are alsosupersetsof the previous results.

Validity of PQO: A rich body of literature exists onpara-
metric query optimization(PQO) [1, 2, 7, 8, 3, 4, 10,
11, 12]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space
at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the
best plan – the expectation is that this would be much
faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
do not find to hold true,even approximately, in the
plan diagrams produced by the commercial optimiz-
ers.

For example, one of the assumptions is that a plan is
optimal within theentire regionenclosed by its plan
boundaries. But, in Figure 2(a), this is violated by the
small (brown) rectangle of plan P14, close to coordi-
nates (60,30), in the (light-pink) optimality region of
plan P3, and there are several other such instances.

On the positive side, however, we show that some
of the important PQO assumptions do hold approxi-
mately forreducedplan diagrams.

1.1 Organization

The above effects are described in more detail in the re-
mainder of this paper, which is organized as follows: In
Section 2, we present the Picasso tool and the testbed en-
vironment. Then, in Section 3, the skew in the plan space
distribution, as well as techniques for reducing the plan set
cardinalities, are discussed. The relationship to PQO is ex-
plored in Section 4. Interesting plan diagram motifs are
presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize

↗ Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of Database

Query Optimizers. VLDB 2005.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 240

“Picasso” Plan Diagrams
Figure 6:Duplicates and Islands (Query 5, OptC)

Databases # Duplicates # Islands
Original Reduced Original Reduced

OptA 136 14 38 3
OptB 80 15 1 0
OptC 55 7 8 3

Table 3: Duplicates and Islands

PQO, which, as mentioned in the previous section, appears
ill-suited to directly capture the complexities of modern op-
timizers, may turn out to be a more viable proposition in the
space of reduced plan diagrams.

5.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes
that run through theentire selectivity space, with a plan
shift occurring forall plans bordering the line, when we
move across the line. We will hereafter refer to such lines
as “plan switch-points”.

In the plan diagram of Figure 7, obtained with Q9 on
OptA, an example switch-point appears at approximately
30% selectivity of theSUPPLIERrelation. Here, we found
acommon changein all plans across the switch-point – the
hash-join sequencePARTSUPP./ SUPPLIER./ PART is al-
tered toPARTSUPP./ PART ./ SUPPLIER, suggesting an in-
tersection of the cost function of the two sequences at this
switch-point.

For the same Q9 query, an even more interesting switch-
point example is obtained with OptB, shown in Figure 8.
Here we observe, between 10% and 35% on theSUPPLIER

axis,six planssimultaneously changing with rapid alterna-
tions to produce a “Venetian blinds” effect. Specifically,
the optimizer changes from P6 to P1, P16 to P4, P25 to
P23, P7 to P18, P8 to P9, and P42 to P47, from one vertical
strip to the next.

The reason for this behavior is that the optimizer alter-
nates between aleft-deephash join and aright-deephash

Figure 7:Plan Switch-Point (Query 9, OptA)

Figure 8:Venetian Blinds Pattern (Query 9, OptB)

join across theNATION , SUPPLIER and LINEITEM rela-
tions. Both variations have almost equal estimated cost,
and their cost-models are perhaps discretized in a step-
function manner, resulting in the observed blinds.

5.3 Footprint Pattern

A curious pattern, similar to footprints on the beach, shows
up in Figure 9, obtained with Q7 on the OptA optimizer,
where we see plan P7 exhibiting a thin (cadet-blue) bro-
ken curved pattern in the middle of plan P2’s (orange) re-
gion. The reason for this behavior is that both plans are of
roughly equal cost, with the difference being that in plan
P2, theSUPPLIER relation participates in asort-merge-
join at the top of the plan tree, whereas in P7, thehash-join
operator is used instead at the same location. This is con-
firmed in the corresponding reduced plan diagram where
the footprints disappear.

Figure 9:Footprint Pattern (Query 7, OptA)

Figure 10:Speckle Pattern (Query 17, OptA)

5.4 Speckle Pattern

Operating Picasso with Q17 on OptA (at its highest opti-
mization level) results in Figure 10. We see here that the
entire plan diagram is divided into just two plans, P1 and
P2, occupying nearly equal areas, but that plan P1 (bright
green) also appears as speckles sprinkled in P2’s (red) area.

The only difference between the two plans is that an ad-
ditional SORT operation is present in P2 on thePART rela-
tion. However, the cost of this sort is very low, and there-
fore we find intermixing of plans due to the close and per-
haps discretized cost models.

5.5 Non-Monotonic Cost Behavior

The example switch-points shown earlier, were allcost-
basedswitch-points, where plans were switched to de-
rive lower execution costs. Yet another example of such
a switch-point is seen in Figure 11(a), obtained with query
Q2 on OptA, at 97% selectivity of thePART relation. Here,

the common change in all plans across the switch-point is
that thehash-join between relationsPART andPARTSUPP

is replaced by asort-merge-join.
But, in the same picture, there are switch-points occur-

ring at 26% and 50% in thePARTSUPPselectivity range,
that result in a counter-intuitivenon-monotoniccost behav-
ior, as shown in the corresponding cost diagram of Fig-
ure 11(b). Here, we see that although the result cardi-
nalities are monotonically increasing, the estimated costs
for producing these results show a marked non-monotonic
step-down behavior in the middle section. Specifically,
at the 26% switch-point, an additional‘sort’ operator
(on ps supplycost) is added, which substantially de-
creases the overall cost – for example, in moving from plan
P2 to P3 at 50%PART selectivity, the estimated cost de-
creases by a factor of 50! Conversely, in moving from P3
to P1 at the 50% switch-point, the cost of the optimal plan
jumps up by a factor of 70 at 50%PART selectivity.

Step-function upward jumps in the cost with increas-
ing input cardinalities are known to occur – for example,
when one of the relations in a join ceases to fit completely
within the available memory – however, what is surprising
in the above is the step-function costdecreaseat the 26%
switch-point. We conjecture that such disruptive cost be-
havior may arise either due to the presence of rules in the
optimizer, or due to parameterized changes in the search
space evaluated by the optimizer.

The above example showed non-monotonic behavior
arising out of a plan-switch. However, more surprisingly,
we have also encountered situations where a plan shows
non-monotonic behaviorinternal to its optimality region.
A specific example is shown in Figure 12 obtained for Q21
with OptA. Here, the plans P1, P3, P4 and P6, show a re-
duction in their estimated costs with increasing input and
result cardinalities. An investigation of these plans showed
that all of them feature anested-loops join, whose esti-
mated costdecreaseswith increasing cardinalities of its in-
put relations – this may perhaps indicate an inconsistency
in the associated cost model. Further, such instances of
non-monotonic behavior were observed with all three opti-
mizers.

6 Related Work

To the best of our knowledge, there has been no prior work
on the analysis of plan diagrams with regard toreal-world
industrial-strengthquery optimizers. However, similar is-
sues have been studied in the parametric query optimization
(PQO) literature in the context of simplified self-crafted op-
timizers. Specifically, in [1, 11, 12], an optimizer modeled
along the lines of the original System R optimizer [16] is
used, with the search space restricted to left-deep join trees,
and the workload comprised of pure SPJ queries with “star”
or “linear” join-graphs. The metrics considered include
the cardinality and spatial distribution of the set of optimal
plans – while [1] considered only single-relation selectivi-
ties, [11, 12] evaluated two-dimensional relational selectiv-
ity spaces, similar to those considered in this paper. Their

Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 241

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html

	Query Optimization
	Dynamic Programming
	Greedy join enumeration

