Architecture and Implementation of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group jens.teubner@cs.tu-dortmund.de

Winter 2015/16

Part XI

Online Analytical Processing (OLAP)

Scenario: A bookstore chain collects sales data:

Sales				
Book	City	Month	Units Sold	
Arlington Road Atlas	Arlington	January	134	
Arlington Road Atlas	Arlington	February	327	
:	÷	÷	÷	
Arlington Road Atlas	Springfield	December	193	
Gone With the Wind	Arlington	January	9	
:	÷	÷	÷	
Tropical Food	Springfield	December	374	

Goal: Spread sheet-style analyses (→ "Pivot Table")

	January	February		Grand Total
Arlington	198	449	•••	1022
Boston	226	212	• • •	707
Miami	152	130	• • •	467
Springfield	304	498	• • •	1303
Grand Total	880	1289	•••	3499

Challenge: Large data volumes

- \rightarrow How do we **model** such data (*e.g.*, in a relational system)?
- \rightarrow How can we **implement** pivot tables efficiently?
- \rightarrow What about *k*-dimensional data?

Idea: Model data as a multi-dimensional cube

January February March 134 Arlington Boston Miami Springfield Rind Cole Logi

Data cube:

- Facts are stored as cells of the cube.
- Facts have measures associated with them (here: sales counts).
- Cells may be empty.

Real-world:

- 4–12 dimensions
- Project to 2 or 3 for analysis/viewing

Relational Representation: Star Schema

Star Schema:

BookID

- One dimension table per dimension
- Fact table entries reference dimension table entries.

Fact Table:

- One row per multidimensional fact.
- This table will hold the lion's share of the entire database.

Dimension Tables:

- **Key:** Artificial key (usually an integer number)
- Typically: One column per level if dimension is **hierarchical**
 - \rightarrow Redundancy

OLAP is ran on data **extracted** from transactional system.

- Load data in **batches**; most of it goes into **fact table**.
- Fact table ends up approximately **ordered by date**.

Typical queries: **aggregate** over **sub-ranges** of the full cube.

SELECT SUM (Sold)
FROM Sales AS s, Books AS b
WHERE s.BookID = b.BookID
AND b.Title = "Gone..."

Roll-Up, Drill-Down, Pivot Tables

Analysts will want to look at aggregates from many different angles.

Roll-Up / Drill-Down:

- $\rightarrow\,$ For hierarchical dimensions, move up or down the hierarchy
- $\rightarrow\,$ See more or less details, "zoom" in or out

Pivot Tables:

 \rightarrow Visualize roll-up/drill-down (\rightsquigarrow dedicated OLAP tools)

	January	February	•••	Grand Total
Arlington	198	449	• • •	1022
Boston	226	212	•••	707
Fiction	121	98	•••	346
Cooking	105	114	•••	361
Miami	152	130	•••	467
Springfield	304	498	•••	1303
Grand Total	880	1289	•••	3499

SQL OLAP Extensions

A number of **SQL extensions** ease these tasks.

E.g., multi-dimensional grouping (\sim Pivot Table):

SELECT c.City, t.Month, SUM (s.Sold)
FROM Sales AS s, Cities AS c, Time AS t
WHERE s.DayID = t.DayID AND s.CityID = c.CityID
GROUP BY CUBE (City, Month)

 \rightarrow Likewise: GROUP BY ROLLUP ()

E.g., ranking, partitioning

SELECT c.City, t.Day, RANK() OVER (PARTITION BY City ORDER BY Sold) FROM Sales AS s, Cities AS c, Time AS t, Books AS b WHERE s.DayID = t.DayID AND s.CityID = c.CityID AND s.BookID = b.BookID AND b.Title = "Gone..."

Star Join

The common query pattern is the **star join**.

How will a standard RDBMS execute such a query?

Strategy 1: Index on value columns of dimension tables

- 1. For each **dimension table** D_i :
 - a. Use index to find matching dimension table rows $d_{i,j}$.
 - b. Fetch those $d_{i,j}$ to obtain key columns of D_i .
 - c. Collect a list of **fact table rids** that reference those dimension keys.
 - low?
- 2. **Intersect** lists of fact table *rids*.
- 3. Fetch remaining fact table rows, group, and aggregate.

Strategy 2: Index on primary key of dimension tables

1. Scan fact table

- 2. For each fact table row f:
 - a. **Fetch** corresponding dimension table row *d*.
 - b. Check slice and dice conditions on d; skip to next fact table row if predicate not met.
 - c. Repeat 2.a for each dimension table.
- 3. Group and aggregate all remaining fact table rows.

Problems and advantages of Strategy 1?

- + Fetch only **relevant** fact table rows (good for selective queries).
- Index \rightarrow fetch \rightarrow index \rightarrow intersect \rightarrow fetch is cumbersome. \star
- List intersection is expensive.
 - 1. Again, lists may be large, intersection small.
 - 2. Lists are generally **not sorted**.

Problem \star can be reduced with a trick:

- Create an index that contains value **and** key column of the dimension table.
 - $\rightarrow\,$ No fetch needed to obtain dimension key.
- Such indexes allow for **index-only querying** (\nearrow slide 174).
 - $\rightarrow\,$ Acess only index, but not data pages of a table.

E.g.,

CREATE INDEX QuarterIndex ON DateDimension (Quarter, DateKey)

 \rightarrow Will only use *Quarter* as a **search criterion** (but not *DateKey*).

Problems and advantages of Strategy 2?

- + For small dimension tables, all indexes might fit into memory.
 - $\rightarrow\,$ On the other hand, indexes might not be worth it; can simply build a hash table on the fly.
- Fact table is $\textbf{large} \rightarrow \textbf{many}$ index accesses.
- Individually, each dimension predicate may have low selectivity.
 - *E.g.*, four dimensions, each restricted with 10 % selectivity:
 - $\rightarrow\,$ Overall selectivity as low as 0.01 %.
 - \rightarrow But as many as 10 %/1 %/... of fact table tuples pass individual dimension filters (and fact table is huge).

Together, dimension predicates may still be highly selective.

• Cost is independent of predicate selecitivites.

Implementing Star Join Using Hash Joins

• (Hopefully) dimension subsets are small enough

 \rightarrow Hash table(s) fit into memory.

Here, hash joins effectively act like a **filter**.

Problems:

- Which of the filter predicates is most restrictive? Tough optimizer task!
- A lot of processing time is invested in tuples that are eventually discarded.
- This strategy will have real trouble as soon as not all hash tables fit into memory.

Hash-Based Filters

 $\rightarrow\,$ Use compact bit vector to $\ensuremath{\text{pre-filter}}$ data.

- Size of bit vector is independent of dimension tuple size.
 - $\rightarrow\,$ And bit vector is $much\ smaller$ than dimension tuples.
- Filtering may lead to false positives, however.
 - $\rightarrow\,$ Must still do hash join in the end.
- Key benefit: **Discard tuples early**.

Nice side effect:

- In practice, will do pre-filtering according to all dimensions involved.
 - $\rightarrow\,$ Can re-arrange filters according to actual(!) selectivity.

Bloom Filters

Bloom filters can improve filter efficiency.

Idea:

- Create (empty) bit field *B* with *m* bits.
- Choose k independent hash functions.
- For every dim. tuple, set k bits in B, according to hashed key values.

 $\langle 1735, \text{ Gone With the Wind, Fiction} \rangle$

- To probe a fact tuple, check *k* bit positions
 - $\rightarrow\,$ Discard tuple if any of these bits is 0.

Parameters:

- Number of bits in B: m
 - $\rightarrow\,$ Typically measured in "bits per stored entry"
- Number of hash functions: *k*
 - \rightarrow Optimal: about 0.7 times number of bits per entry.
 - $\rightarrow\,$ Too many hash functions may lead to high CPU load!

Example:

■ 10 bits per stored entry lead to a filter accuracy of about 1%.

Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version 2008.

Hub Star Join

What do you think about this query plan?

Join dimension tables first, then fact table as last relation. \sim

Joins between dimension tables are effectively **Cartesian products**.

 \rightarrow Clearly won't work if (filtered) dimension tables are large.

Hub Star Join

Idea:

- Cartesian product approximates the set of foreign key values relevant in the fact table.
- Join Cartesian product with fact table using index nested loops join (multi-column index on foreign keys).

Advantages:

- + Fetch only **relevant** fact table rows.
- + No **intersection** needed.
- + No sorting or duplicate removal needed.

Down Sides:

- Cartesian product **overestimates** foreign key combinations in the fact table.
 - $\rightarrow\,$ Many key combinations won't exist in the fact table.
 - $\rightarrow\,$ Many unnecessary index probes.

Overall:

Hub Join works well if Cartesian product is small.

Zigzag Join

Join Indices

To reduce join cost, we could **pre-compute** (partial) join results.

- → Database terminology: "materialize"
- \rightsquigarrow More generally: "materialized views"

Pre-computed join results are also called **join indices**.

Example: Cities \bowtie Sales

Type 1: *join key* $\rightarrow \langle \{ rid_{Cities} \}, \{ rid_{Sales} \} \rangle$ (Record ids from *Cities* and *Sales* that contain given join key value.)

RID lists

- Type 2: rid_{Cities} → {rid_{Sales}}
 (Record ids from Sales that match given record in Cities.)
- Type 3: dim value → {rid_{Sales}} (Record ids from Sales that join with Cities tuples that have given dimension value.)

(Conventional B⁺-trees are often *value* \rightarrow {*rid*} mappings; cf. slide 79.)

Cities			
rid	CtyID	City	State
<i>C</i> ₁	6371	Arlington	VA
C ₂	6590	Boston	MA
<i>C</i> 3	7882	Miami	FL
<i>C</i> 4	7372	Springfield	MA
:	:	:	:
-			-

	Sales			
rid	BkID	CtyID	DayID	Sold
S_1	372	6371	95638	17
S 2	372	6590	95638	39
S 3	1930	6371	95638	21
S 4	2204	6371	95638	29
S 5	2204	6590	95638	13
<i>S</i> ₆	1930	7372	95638	9
S 7	372	7882	65748	53
:	:	:	:	:

Star Join with Join Indices

1 For each of the dimensions, find matching *Sales* rids.

2 Intersect rid lists to determine relevant *Sales*.

The strategy makes **rid list intersection** a critical operation.

- \rightarrow Rid lists may be **sorted**.
- $\rightarrow\,$ Efficient implementation is (still) active research topic.

Down side:

Rid list sorted only for (per-dimension) point lookups.

Challenge:

• Efficient rid list implementation.

Idea: Create bit vector for each possible column value.

Example: Relation that holds information about students:

Students		
LegiNo	Name	Program
1234	John Smith	Bachelor
2345	Marc Johnson	Master
3456	Rob Mercer	Bachelor
4567	Dave Miller	PhD
5678	Chuck Myers	Master

Program Index			
BSd	MSc	PhD	Dipl
$ 1\rangle$	0	0	0
0	1	0	0
1	0	0	0
0	0	1	0
0 1 0 0			
bit vector			

Query Processing with Bitmap Indexes

Benefit of bitmap indexes:

Boolean query operations (and, or, etc.) can be performed directly on bit vectors.

> SELECT ... FROM Cities WHERE State = 'MA'AND (City = 'Boston' OR City = 'Springfield') \downarrow $B_{MA} \land (B_{Boston} \lor B_{Springfield})$

■ Bit operations are well-supported by modern computing hardware (*∧*SIMD).

Alternative encoding for ordered domains:

Students		
LegiNo	Name	Semester
1234	John Smith	3
2345	Marc Johnson	2
3456	Rob Mercer	4
4567	Dave Miller	1

S	eme	ster	Inde	ex
1	2	3	4	5
1	1	1	0	0
1	1	0	0	0
1	1	1	1	0
1	0	0	0	0

(set $B_{c_i}[k] = 1$ for all c_i smaller or equal than the attribute value a[k]).

Why would this be useful? Range predicates can be evaluated more efficiently:

$$c_i > a[k] \ge c_j \iff (\neg B_{c_i}[k]) \land B_{c_j}[k]$$
.

(but equality predicates become more expensive).

Data Warehousing Example

Bitmap Index: D4.brand

B _{Sam}	
0	1
0	1
1	1
0	1
1	1
0	

B _{Dell}	B _{Len}
1	0
0	1
0	0
1	0
0	0
0	0

B _{Com}	B _{Hand}
1	0
1	0
0	1
0	1
0	0
0	0

Index:	D4.brand	->	{RID
--------	----------	----	------

RID	D4.id	D4.product	D4.brand	D4.group
0	1	Latitude E6400	Dell	Computers
1	2	Lenovo T61	Lenovo	Computers
2	3	SGH-i600	Samsung	Handheld
3	4	Axim X5	Dell	Handheld
4	5	i900 OMNIA	Samsung	Mobile
5	6	XPERIA X1	Sony	Mobile

Index: D4.group -> {RID}

	map
L	Index
	:: D4.(
	grou

Biti

Sales in group 'Computers' for brands 'Dell', 'Lenovo'?

 \rightarrow Calculate bit-wise operation

 $B_{Com} \land (B_{Dell} \lor B_{Len})$

to find matching records.

Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.

Here: Type 2 index for *Cities* ⋈ *Sales*

Cities							
rid	CtyID	City	State				
C_1	6371	Arlington	VA				
<i>C</i> ₂	6590	Boston	MA				
<i>C</i> ₃	7882	Miami	FL				
<i>C</i> ₄	7372	Springfield	MA				
:		:	•				

		ldx					
rid	BkID	CtyID	DayID	Sold	<i>C</i> ₁	<i>C</i> ₂	•••
S_1	372	6371	95638	17	1	0	• • •
s ₂	372	6590	95638	39	0	1	• • •
S 3	1930	6371	95638	21	1	0	
<i>S</i> 4	2204	6371	95638	29	1	0	
S 5	2204	6590	95638	13	0	1	
<i>S</i> ₆	1930	7372	95638	9	0	0	
S 7	372	7882	65748	53	0	0	• • •
÷	÷	÷	:	÷	÷	÷	·

- \rightarrow One bit vector per RID in *Cities*.
- \rightarrow Length of bit vector \equiv length of fact table (*Sales*).

Similarly: Type 3 index $State \rightarrow {Sales.rid}$

Cities				Sales					ldx			
rid	CtyID	City	State	rid	BkID	CtyID	DayID	Sold	VA	MA	FL	• • •
C_1	6371	Arlington	VA	S 1	372	6371	95638	17	1	0	0	• • •
<i>C</i> ₂	6590	Boston	MA	s ₂	372	6590	95638	39	0	1	0	
<i>C</i> ₃	7882	Miami	FL	S 3	1930	6371	95638	21	1	0	0	
<i>C</i> 4	7372	Springfield	MA	S 4	2204	6371	95638	29	1	0	0	
				<i>S</i> 5	2204	6590	95638	13	0	1	0	
:	:	:	:	<i>S</i> ₆	1930	7372	95638	9	0	1	0	
				S 7	372	7882	65748	53	0	0	1	•••
				÷	÷	÷	÷	÷	÷	÷	·	

 \rightarrow One bit vector per *State* value in *Cities*.

 \rightarrow Length of bit vector \equiv length of fact table (*Sales*).

For a column with *n* **distinct values**, *n* bit vectors are required to build a bitmap index.

For a table wit N rows, this leads to a **space consumption** of

$N \cdot n$ bits

for the full bitmap index.

This suggests the use of bitmap indexes for low-cardinality attributes.

 \rightarrow *e.g.*, product categories, sales regions, etc.

For comparison: A 4-byte integer column needs $N \cdot 32$ bits.

 \rightarrow For $n \lesssim 32$, a bitmap index is more compact.

For larger n, space consumption can be reduced by

- 1 alternative bit vector representations or
- **2** compression.

Both may be a **space/performance trade-off**.

Decomposed Bitmap Indexes:

Express all attribute values v as a linear combination

$$v = v_0 + \underbrace{c_1}_{v_1} v_1 + \underbrace{c_1 c_2}_{v_2} v_2 + \dots + \underbrace{c_1 \cdots c_k}_{v_k} v_k \quad (c_1, \dots, c_k \text{ constants}).$$

Create a **separate bitmap index** for each variable *v_i*.

Example: Index column with domain [0, ..., 999].

- Regular bitmap index would require 1000 bit vectors.
- Decomposition ($c_1 = c_2 = 10$):

$$v = 1v_1 + 10v_2 + 100v_3$$
.

- Need to create **3 bitmap indexes** now, each for **10 different values** → 30 bit vectors now instead of 1000.
- However, need to read 3 bit vectors now (and and them) to answer point query.

Decomposed Bitmap Indexes

- Query: a=576=5*100+ 7*10+6*1
- RIDs:
 - B_{v3,5} ∧ B_{v2,7} ∧ B_{v1,6} = [0010...0]

=> RID 3, ...

RID	а
0	998
1	999
2	576
3	578
1000	976

+ 0 0 0 0 0 0	B _{v1.1} 0 0 0 0	B _{v1.2} 0 0 0 0 0	B _{v1.3} 0 0 0 0 0	B _{v1.4} 0 0 0 0 0	B _{v1.5} 0 0 0 0 0	B _{v1.6} 0 1 0 1	B _{v1.7} 0 0 0 0 0	B _{v1.8} 1 0 1 1 0
B _{v2,0} 0 0 0 0 0	B _{v2.1} 0 0 0 0	B _{v2,2} 0 0 0 0 0	B _{v2.3} 0 0 0 0 0	B _{v2.4} 0 0 0 0 0	B _{v2,5} 0 0 0 0 0	B _{v2,6} 0 0 0 0 0	B _{v2.7} 0 1 1 1 1	B _{v2.8} 0 0 0 0 0
B _{v3.0} 0 0 0 0 0	B _{v3.1} 0 0 0 0	B _{v3.2} 0 0 0 0 0	B _{v3.3} 0 0 0 0 0	B _{v3.4} 0 0 0 0 0	B _{v3.5} 0 1 1 0	B _{v3.6} 0 0 0 0 0	B _{v3.7} 0 0 0 0 0	B _{v3.8} 0 0 0 0 0

0

0

0

0

Space/Performance Trade-Offs

Setting c_i parameters allows to trade space and performance:

source: Chee-Yong Chan and Yannis Ioannidis. Bitmap Index Design and Evaluation. *SIGMOD 1998.*

Orthogonal to bitmap decomposition: Use compression.

■ *E.g.*, straightforward equality encoding for a column with cardinality *n*: 1/*n* of all entries will be 0.

Solution Which compression algorithm would you choose?

Problem: Complexity of (de)compression \leftrightarrow simplicity of bit operations.

- Extraction and manipulation of individual bits during (de)compression can be expensive.
- Likely, this would off-set any efficiency gained from logical operations on large CPU words.

Thus:

- Use (rather simple) run-length encoding,
- but respect **system word size** in compression scheme.

 \nearrow Wu, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient Compression. *TODS*, vol. 31(1). March 2006.

Word-Aligned Hybrid (WAH) Compression

Compress into a sequence of 32-bit words:

Bit tells whether this is a **fill word** or a **literal word**.

Fill word (
$$\blacksquare = 1$$
):

- Bit tells whether to fill with 1s or 0s.
- Remaining 30 bits indicate the number of fill bits.
 - $\rightarrow~$ This is the number of 31-bit blocks with only 1s or 0s.
 - \rightarrow e.g., = 3: represents 93 1s/0s.

Literal word (= 0):

Copy 31 bits directly into the result.

WAH: Effectiveness of Compression

WAH is good to counter the space explosion for **high-cardinality attributes**.

- At most 2 words per '1' bit in the data set
 - → At most $\approx 2 \cdot N$ words for a table with N rows, even for large n (assuming a bitmap that uses equality encoding).

WAH: Effectiveness of Compression

If (almost) all values are distinct, additional **bookkeeping** may need some more space (→ 4 · 10⁸ bits for cardinality 10⁸).

Bitmap Indexes in Oracle 8

The most space-efficient bitmap representation depends on the **number** of distinct values (*i.e.*, the sparseness of the bitmap).

- Iow attribute cardinality (dense bitmap)
 - \rightarrow can use **un-compressed bitmap** WAH compression won't help much (but also won't hurt much)
- medium attribute cardinality
 - \rightarrow use (WAH-)compressed bitmap
- high attribute cardinality (many distinct values; sparse bitmap)
 - \rightarrow Encode "bitmap" as list of bit positions

In addition, compressed bitmaps may be a good choice for data with **clustered content** (this is true for many real-world data).

 $^{\textcircled{}}$ Bitvectors encode a list of integer positions. But we need RIDs. What gives?

Conversely, bitmaps may be a good way to encode lists of rows.

 \rightarrow Represent RID lists in B-tree leaves as (compressed) bit vectors.

In practice:

- Divide table into segments (\approx 32,000 tuples/segment).
- Separate bitmap for each segment.
- Per segment can decide on WAH \leftrightarrow RID list.
- \rightarrow *E.g.*, Oracle's bitmap indexes are essentially that (though exact encoding is proprietary).

Benefits:

- May be able to **skip** over entire segments.
- Keep **update** cost reasonable.