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Part XI

Online Analytical Processing (OLAP)
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Motivation

Scenario: A bookstore chain collects sales data:

Sales

Book City Month Units Sold

Arlington Road Atlas Arlington January 134

Arlington Road Atlas Arlington February 327
...

...
...

...

Arlington Road Atlas Springfield December 193

Gone With the Wind Arlington January 9
...

...
...

...

Tropical Food Springfield December 374
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Motivation

Goal: Spread sheet-style analyses (; “Pivot Table”)

January February · · · Grand Total

Arlington 198 449 · · · 1022

Boston 226 212 · · · 707

Miami 152 130 · · · 467

Springfield 304 498 · · · 1303

Grand Total 880 1289 · · · 3499

Challenge: Large data volumes

→ How do we model such data (e.g., in a relational system)?

→ How can we implement pivot tables efficiently?

→ What about k-dimensional data?
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Data Cubes

Idea: Model data as a multi-dimensional cube
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Data cube:

Facts are stored as cells

of the cube.

Facts have measures

associated with them

(here: sales counts).

Cells may be empty.

Real-world:

4–12 dimensions

Project to 2 or 3 for

analysis/viewing
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Relational Representation: Star Schema

Star Schema:

One dimension table per dimension

Fact table entries reference

dimension table entries.

Sales

BookID CityID DayID Sold
...

...
...

...

Cities

CityID City State
...

...
...

Time

DayID Day Month Year
...

...
...

...

Books

BookID Title Genre
...

...
...
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Star Schema

Fact Table:

One row per multidimensional fact.

This table will hold the lion’s share of the entire database.

Dimension Tables:

Key: Artificial key (usually an integer number)

Typically: One column per level if dimension is hierarchical

→ Redundancy

OLAP is ran on data extracted from transactional system.

Load data in batches; most of it goes into fact table.

Fact table ends up approximately ordered by date.
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“Slicing and Dicing”

Typical queries: aggregate over sub-ranges of the full cube.
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SELECT SUM (Sold)

FROM Sales AS s, Books AS b

WHERE s.BookID = b.BookID

AND b.Title = “Gone. . . ”
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Roll-Up, Drill-Down, Pivot Tables

Analysts will want to look at aggregates from many different angles.

Roll-Up / Drill-Down:

→ For hierarchical dimensions, move up or down the hierarchy

→ See more or less details, “zoom” in or out

Pivot Tables:

→ Visualize roll-up/drill-down (; dedicated OLAP tools)

January February · · · Grand Total

Arlington 198 449 · · · 1022

Boston 226 212 · · · 707

Fiction 121 98 · · · 346

Cooking 105 114 · · · 361

Miami 152 130 · · · 467

Springfield 304 498 · · · 1303

Grand Total 880 1289 · · · 3499
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SQL OLAP Extensions

A number of SQL extensions ease these tasks.

E.g., multi-dimensional grouping (; Pivot Table):

SELECT c .City, t.Month, SUM (s.Sold)

FROM Sales AS s, Cities AS c, Time AS t

WHERE s.DayID = t.DayID AND s.CityID = c .CityID

GROUP BY CUBE (City, Month)

→ Likewise: GROUP BY ROLLUP (·)

E.g., ranking, partitioning

SELECT c .City, t.Day,

RANK () OVER (PARTITION BY City ORDER BY Sold)

FROM Sales AS s, Cities AS c, Time AS t, Books AS b

WHERE s.DayID = t.DayID AND s.CityID = c .CityID

AND s.BookID = b.BookID AND b.Title = “Gone. . . ”
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Star Join

The common query pattern is the star join.

Sales

Cities

TimeBooks

1

11

� How will a standard RDBMS execute such a query?
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Indexes and Star Queries

Strategy 1: Index on value columns of dimension tables

1. For each dimension table Di :

a. Use index to find matching dimension table rows di ,j .

b. Fetch those di ,j to obtain key columns of Di .

c. Collect a list of fact table rids that reference those

dimension keys.

� How?

→ Need index on foreign key column of the fact table for this.

2. Intersect lists of fact table rids.

3. Fetch remaining fact table rows, group, and aggregate.
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Indexes and Star Queries

Strategy 2: Index on primary key of dimension tables

1. Scan fact table

2. For each fact table row f :

a. Fetch corresponding dimension table row d .

b. Check slice and dice conditions on d ;

skip to next fact table row if predicate not met.

c. Repeat 2.a for each dimension table.

3. Group and aggregate all remaining fact table rows.
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Indexes and Star Queries

� Problems and advantages of Strategy 1?

+ Fetch only relevant fact table rows (good for selective queries).

– Index → fetch → index → intersect → fetch is cumbersome. ?
– List intersection is expensive.

1. Again, lists may be large, intersection small.

2. Lists are generally not sorted.
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Index-Only Queries

Problem ? can be reduced with a trick:

Create an index that contains value and key column of the

dimension table.

→ No fetch needed to obtain dimension key.

Such indexes allow for index-only querying (↗ slide 174).

→ Acess only index, but not data pages of a table.

E.g.,

CREATE INDEX QuarterIndex

ON DateDimension (Quarter, DateKey )

→ Will only use Quarter as a search criterion (but not DateKey).
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Indexes and Star Queries

� Problems and advantages of Strategy 2?

+ For small dimension tables, all indexes might fit into memory.

→ On the other hand, indexes might not be worth it; can simply

build a hash table on the fly.

– Fact table is large → many index accesses.

– Individually, each dimension predicate may have low selectivity.

E.g., four dimensions, each restricted with 10 % selectivity:

→ Overall selectivity as low as 0.01 %.

→ But as many as 10 %/1 %/. . . of fact table tuples pass

individual dimension filters (and fact table is huge).

Together, dimension predicates may still be highly selective.

• Cost is independent of predicate selecitivites.
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Implementing Star Join Using Hash Joins

GRPBY

HSJOIN

σ

Books

HSJOIN

σ

Time

HSJOIN

σ

Cities

Sales

(Hopefully) dimension subsets are small enough

→ Hash table(s) fit into memory.

Here, hash joins effectively act like a filter.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 497



Implementing Star Join Using Hash Joins

Problems:

Which of the filter predicates is most restrictive? — Tough optimizer

task!

A lot of processing time is invested in tuples that are eventually

discarded.

This strategy will have real trouble as soon as not all hash tables fit

into memory.
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Hash-Based Filters

GRPBY

HSJOIN

σ

Books

HSJOIN

σ

Time

HSJOIN

σ

Cities

FILTER

Sales

0

1

0

1 1284 Salads Cooking

1930 Tropical Food Cooking 474 Italian Cooking Cooking

→ Use compact bit vector to pre-filter data.
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Hash-Based Filters

Size of bit vector is independent of dimension tuple size.

→ And bit vector is much smaller than dimension tuples.

Filtering may lead to false positives, however.

→ Must still do hash join in the end.

Key benefit: Discard tuples early.

Nice side effect:

In practice, will do pre-filtering according to all dimensions involved.

→ Can re-arrange filters according to actual(!) selectivity.
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Bloom Filters

Bloom filters can improve filter efficiency.

Idea:

Create (empty) bit field B with m bits.

Choose k independent hash functions.

For every dim. tuple, set k bits in B, according to hashed key values.

〈1284, Salads, Cooking〉

1 1 1

〈1930, Tropical Food, Cooking〉

1 11

〈1735, Gone With the Wind, Fiction〉
? ? ?

To probe a fact tuple, check k bit positions

→ Discard tuple if any of these bits is 0.
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Bloom Filters

Parameters:

Number of bits in B: m

→ Typically measured in “bits per stored entry”

Number of hash functions: k

→ Optimal: about 0.7 times number of bits per entry.

→ Too many hash functions may lead to high CPU load!

Example:

10 bits per stored entry lead to a filter accuracy of about 1 %.
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Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version 2008.
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Hub Star Join

� What do you think about this query plan?

; Join dimension tables first, then fact table as last relation.

GRPBY

1

1

1

1

σ

dim1

σ

dim2

σ

dim3

σ

dim4

σ

fact
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Hub Star Join

Joins between dimension tables are effectively Cartesian products.

GRPBY

1

×

×

×

σ

dim1

σ

dim2

σ

dim3

σ

dim4

σ

fact

→ Clearly won’t work if (filtered) dimension tables are large.
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Hub Star Join

Idea:

GRPBY

INLJ

×

×

σ

product

σ

store

σ

date

sales

Prod Key
42
75

Prod Key Store Key
42 101
75 101
42 103
75 103

Prod Key Store Key Date Key
42 101 70
75 101 70
42 103 70
75 103 70
75 103 129...

...
...

Cartesian product approximates the set of foreign key values

relevant in the fact table.

Join Cartesian product with fact table using index nested loops

join (multi-column index on foreign keys).
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Hub Star Join

Advantages:

+ Fetch only relevant fact table rows.

+ No intersection needed.

+ No sorting or duplicate removal needed.

Down Sides:

– Cartesian product overestimates foreign key combinations in the

fact table.

→ Many key combinations won’t exist in the fact table.

→ Many unnecessary index probes.

Overall:

Hub Join works well if Cartesian product is small.
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Zigzag Join
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Join Indices

To reduce join cost, we could pre-compute (partial) join results.

; Database terminology: “materialize”

; More generally: “materialized views”

Pre-computed join results are also called join indices.

Example: Cities 1 Sales

Type 1: join key → 〈{ridCities} , {ridSales}〉

RID lists

(Record ids from Cities and Sales that contain given join key value.)

Type 2: ridCities → {ridSales}
(Record ids from Sales that match given record in Cities.)

Type 3: dim value → {ridSales}
(Record ids from Sales that join with Cities tuples that have given

dimension value.)

(Conventional B+-trees are often value → {rid} mappings; cf. slide 79.)
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Example: Cities 1 Sales Join Index

Cities
rid CtyID City State
c1 6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
c4 7372 Springfield MA
...

...
...

...

Sales
rid BkID CtyID DayID Sold
s1 372 6371 95638 17
s2 372 6590 95638 39
s3 1930 6371 95638 21
s4 2204 6371 95638 29
s5 2204 6590 95638 13
s6 1930 7372 95638 9
s7 372 7882 65748 53
...

...
...

...
...
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Star Join with Join Indices

GRPBY

FETCH

∩

IXSCAN

Cities/Sales

IXSCAN

Time/Sales

IXSCAN

Books/Sales

Sales

rid list
intersection

1 For each of the dimensions, find matching Sales rids.

2 Intersect rid lists to determine relevant Sales.
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Star Join with Join Indices

The strategy makes rid list intersection a critical operation.

→ Rid lists may be sorted.

→ Efficient implementation is (still) active research topic.

Down side:

Rid list sorted only for (per-dimension) point lookups.

Challenge:

Efficient rid list implementation.
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Bitmap Indices

Idea: Create bit vector for each possible column value.

Example: Relation that holds information about students:

Students

LegiNo Name Program

1234 John Smith Bachelor

2345 Marc Johnson Master

3456 Rob Mercer Bachelor

4567 Dave Miller PhD

5678 Chuck Myers Master

Program Index

BSc MSc PhD Dipl

1 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 1 0 0

bit vector
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Query Processing with Bitmap Indexes

Benefit of bitmap indexes:

Boolean query operations (and, or, etc.) can be performed directly

on bit vectors.

SELECT · · ·
FROM Cities

WHERE State = ‘MA’

AND (City = ‘Boston’ OR City = ‘Springfield’)

↓

BMA ∧
(
BBoston ∨ BSpringfield

)
Bit operations are well-supported by modern computing hardware

(↗ SIMD).
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Equality vs. Range Encoding

Alternative encoding for ordered domains:

Students

LegiNo Name Semester

1234 John Smith 3

2345 Marc Johnson 2

3456 Rob Mercer 4

4567 Dave Miller 1

Semester Index

1 2 3 4 5

1 1 1 0 0

1 1 0 0 0

1 1 1 1 0

1 0 0 0 0

(set Bci [k ] = 1 for all ci smaller or equal than the attribute value a[k ]).

� Why would this be useful?

Range predicates can be evaluated more efficiently:

ci > a[k ] ≥ cj ↔ (¬Bci [k ]) ∧ Bcj [k ] .

(but equality predicates become more expensive).
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Data Warehousing Example
Example: Bitmap-Index

0

0

1

0

0

1

BDell

0

0

0

0

1

0

BLen

0

1

0

1

0

0

BSam

1

0

0

0

0

0

BSony

0

0

0

0

1

1

BCom

0

0

1

1

0

0

BHand

1

1

0

0

0

0

BMob

6

5

4

3

2
1
D4.id

MobileSonyXPERIA X15

MobileSamsungi900 OMNIA4

HandheldDellAxim X53

Samsung

Lenovo
Dell
D4.brand

HandheldSGH-i6002

ComputersLenovo T611
ComputersLatitude E64000
D4.groupD4.productRID

Bitm
ap Index: D

4.brand

Bitm
ap Index: D

4.group
Index:  D4.brand -> {RID}

Index:  D4.group -> {RID}
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Query Processing: Example

Sales in group ‘Computers’ for brands ‘Dell’, ‘Lenovo’ ?

SELECT SUM (F.price)

FROM D4

WHERE group = ’Computer’

AND (brand = ’Dell’

OR brand = ’Lenovo’)

Example: Bitmap-Index
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SELECT SUM(F.price)
FROM F, D4 WHERE F.D4 = D4.id
AND D4.group = 'Computer'
AND (D4.brand = 'Dell'
OR D4.brand = 'Lenovo')

• In order to find all relevant RIDs of
dimension D4 for that query:
– Calculate B = BCom � ( BDell � BLen )
– B indicates RIDs that need to be read

• Query: Sales in group ‘Computers’
for brands ‘Dell’, ‘Lenovo’)

B = [110000] � ([100100] �
[010000]) = [110000]

=> RIDs 0,1 of D4 need to be read
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→ Calculate bit-wise operation

BCom ∧ (BDell ∨ BLen)

to find matching records.

Example: Bitmap-Index
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SELECT SUM(F.price)
FROM F, D4 WHERE F.D4 = D4.id
AND D4.group = 'Computer'
AND (D4.brand = 'Dell'
OR D4.brand = 'Lenovo')

• In order to find all relevant RIDs of
dimension D4 for that query:
– Calculate B = BCom � ( BDell � BLen )
– B indicates RIDs that need to be read

• Query: Sales in group ‘Computers’
for brands ‘Dell’, ‘Lenovo’)

B = [110000] � ([100100] �
[010000]) = [110000]

=> RIDs 0,1 of D4 need to be read
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Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.

Here: Type 2 index for Cities 1 Sales

Cities
rid CtyID City State
c1 6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
c4 7372 Springfield MA
...

...
...

...

Sales Idx
rid BkID CtyID DayID Sold c1 c2 · · ·
s1 372 6371 95638 17 1 0 · · ·
s2 372 6590 95638 39 0 1 · · ·
s3 1930 6371 95638 21 1 0 · · ·
s4 2204 6371 95638 29 1 0 · · ·
s5 2204 6590 95638 13 0 1 · · ·
s6 1930 7372 95638 9 0 0 · · ·
s7 372 7882 65748 53 0 0 · · ·
...

...
...

...
...

...
...

. . .

→ One bit vector per RID in Cities.

→ Length of bit vector ≡ length of fact table (Sales).
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Bitmap Indices for Star Joins

Similarly: Type 3 index State → {Sales.rid}

Cities
rid CtyID City State
c1 6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
c4 7372 Springfield MA
...

...
...

...

Sales Idx
rid BkID CtyID DayID Sold VA MA FL · · ·
s1 372 6371 95638 17 1 0 0 · · ·
s2 372 6590 95638 39 0 1 0 · · ·
s3 1930 6371 95638 21 1 0 0 · · ·
s4 2204 6371 95638 29 1 0 0 · · ·
s5 2204 6590 95638 13 0 1 0 · · ·
s6 1930 7372 95638 9 0 1 0 · · ·
s7 372 7882 65748 53 0 0 1 · · ·
...

...
...

...
...

...
...

. . .

→ One bit vector per State value in Cities.

→ Length of bit vector ≡ length of fact table (Sales).
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Space Consumption

For a column with n distinct values, n bit vectors are required to build a

bitmap index.

For a table wit N rows, this leads to a space consumption of

N · n bits

for the full bitmap index.

This suggests the use of bitmap indexes for low-cardinality attributes.

→ e.g., product categories, sales regions, etc.

For comparison: A 4-byte integer column needs N · 32 bits.

→ For n . 32, a bitmap index is more compact.
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Reducing Space Consumption

For larger n, space consumption can be reduced by

1 alternative bit vector representations or

2 compression.

Both may be a space/performance trade-off.

Decomposed Bitmap Indexes:

Express all attribute values v as a linear combination

v = v0 + c1︸︷︷︸ v1 +c1c2︸︷︷︸ v2 + · · ·+c1 · · · ck︸ ︷︷ ︸ vk (c1, . . . , ck constants).

Create a separate bitmap index for each variable vi .
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Decomposed Bitmap Indexes

Example: Index column with domain [0, . . . , 999].

Regular bitmap index would require 1000 bit vectors.

Decomposition (c1 = c2 = 10):

v = 1v1 + 10v2 + 100v3 .

Need to create 3 bitmap indexes now, each for 10 different values

→ 30 bit vectors now instead of 1000.

However, need to read 3 bit vectors now (and and them) to

answer point query.
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Decomposed Bitmap Indexes
Example: Decomposed Bitmap-Index
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a=576=5*100+
7*10+6*1

• Query:

• RIDs:
Bv3,5 �
Bv2,7 �
Bv1,6 =
[0010…0]

=> RID 3, ...
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Space/Performance Trade-Offs

Setting ci parameters allows to trade space and performance:

(c) c = 1000 (c) c = 1000 

Figure 9: Comparison of Space-Time Tradeoff of Range- and Equality-Encoded Bitmap Indexes. 

with Ij-r and I,+,, respectively. LG, and RG, are defined as 
follows: 

RG, = TiVLe(lj) - ?‘i?TK(lj+l) x F and 

SpUCe(lj+l) - Space(l,) 

LGj = Ti77E(lj-1) - Time(lj) x F 
SpUCe(lj) - Space(l,-1) 

where F = Space(l,,)/Time(lr) is a normalizing factor. The 
index Ik E {I3 E S : LG, > 1, RGj < 1) with the maximum 
ratio LGk/RGk is the knee index. 

Figure 10: Space-Time Tradeoff of Bitmap Indexes, C = 
1000. 

/ 
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Figure II: Space-Time Tradeoff of Space-Optimal Bitmap 
Indexes, C = 1000. 

We now motivate our approximate characterization, which is 
based on the results of Theorem 6.1, Figure 10 compares the space- 

time tradeoff graphs for three classes of indexes: the class of space- 
optimal indexes, the class of time-optimal indexes, and the en- 
tire class of indexes, for C = 1000; similar results are obtained 
for other values of C. The graph for space-optimal (respectively, 
time-optimal) indexes consist of at most [logz(C)l points, where 
each point corresponds to an n-component space-optimal (respec- 
tively, time-optimal) index, 1 5 n 5 [Zogz(C)l. Note that since 
the space-optimal index is generally not unique, each point in the 
space-optimal graph shown corresponds to the most time-efficient 
index among all equally space-efficient indexes with the same num- 
ber of components, Figure 10 shows that the tradeoff graph for 
space-optimal indexes provides a good approximation to that for 
all indexes. In particular, the set of points on the graph for space- 
optimal indexes is a subset of the set of points on the graph for all 
indexes. 

Figure 11 shows the same space-optimal tradeoff graph as in 
Figure 10 but with each point labelled with the number of compo- 
nents of the corresponding space-optimal index. We observe that 
the knee of the space-time tradeoff graph for the space-optimal in- 
dex corresponds to a 2-component index, something that was con- 
sistent throughout our experimentation. Hence, we characterize the 
knee index as the most time-efficient 2-component space-optimal 
index, which is obtained from the following result. 

Theorem 7.1 The base of the most time-efficient 2-component space- 
optimal index is given by < bz - 6, bl + 6 >, where bl = [q, 

bz = I$], and 6 = max{O, 
L 

b2mb1+J(~+b1)2-4C 1). 

We have compared the knee index based on our approximate char- 
acterization with that based on the definition for various values of 
attribute cardinality; the results show that both knee indexes match 
exactly for all the cases that we compared. 

8 Time-Optimal Bitmap Index Under Space Constraint 

In this section, we consider the following practical optimization 
problem (point (B) in Figure 2): Given a constraint on the available 
disk space to store an index, say at most M bitmaps (or equiva- 
lently, at most MN bits, where N is the number of records), deter- 
mine the most time-efficient index. We first present an algorithm 
that finds the optimal solution, and then present a more efficient 
heuristic approach, which is near-optimal. Both algorithms are 
shown in Figure 12. In the,following, let I, denote an n-component 
index; and IApace and I:‘,’ denote the n-component space- and 
time-optimal indexes, respectively. 
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source: Chee-Yong Chan and Yannis Ioannidis. Bitmap Index Design and

Evaluation. SIGMOD 1998.
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Compression

Orthogonal to bitmap decomposition: Use compression.

E.g., straightforward equality encoding for a column with cardinality

n: 1/n of all entries will be 0.

� Which compression algorithm would you choose?

run-length encoding

→ simple, yet effective, e.g., for many successive 0s.

general-purpose compression algorithms (e.g., zip, bzip2)

→ higher compression rates, typically at the expense of higher

(de)compression cost
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Compression

Problem: Complexity of (de)compression ↔ simplicity of bit operations.

Extraction and manipulation of individual bits during

(de)compression can be expensive.

Likely, this would off-set any efficiency gained from logical

operations on large CPU words.

Thus:

Use (rather simple) run-length encoding,

but respect system word size in compression scheme.

↗ Wu, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient

Compression. TODS, vol. 31(1). March 2006.
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Word-Aligned Hybrid (WAH) Compression

Compress into a sequence of 32-bit words:

Bit tells whether this is a fill word or a literal word.

Fill word ( = 1):

Bit tells whether to fill with 1s or 0s.
Remaining 30 bits indicate the number of fill bits.
→ This is the number of 31-bit blocks with only 1s or 0s.

→ e.g., = 3: represents 93 1s/0s.

Literal word ( = 0):

Copy 31 bits directly into the result.
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WAH: Effectiveness of Compression

WAH is good to counter the space explosion for high-cardinality

attributes.

At most 2 words per ‘1’ bit in the data set

; At most ≈ 2 · N words for a table with N rows, even for large n

(assuming a bitmap that uses equality encoding).
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Fig. 7. The expected size of bitmap indices on random data and Markov data with various clus-
tering factors.

of bitmaps have three regular words plus the active word.6 There are a few
bitmaps using two or three words rather than four.7 For a large range of high-
cardinality attributes, say c < N/10, the maximum size of WAH compressed
bitmap indices is about 2N words.

For attributes with a clustering factor f greater than one, the stable plateau
is reduced by a factor close to 1/ f . Another factor that reduces the total size of
the compressed bitmap index is that the cardinality of an attribute is usually
much smaller than N . For attributes with Zipf distribution, the stable plateau
is the same as the uniform random attribute. However, because the actual
cardinality is much less than N , it is very likely that the size of the compressed
bitmap index would be about 2N words. For example, for an attribute with Zipf
distribution with z = 1 and i < 109, among 100 million values, we see about
27 million distinct values, and the index size is about 2.3N words. Clearly,
for Zipf distributions with larger z, we expect to see fewer distinct values and
the index size would be smaller. For example, for z = 2, we see about 14,000
distinct values for nearly any limit on i that is larger than 14,000. In these
cases, the index size is about 2N words. The following proposition summarizes
these observations.

PROPOSITION 4. Let N be the number of rows in a table, and let c be the
cardinality of the attribute to be indexed. Then the total size s of all compressed
bitmaps in an index is such that

(1) it never takes more than 4N words,
(2) if c < N/10, the maximum size of the compressed bitmap index of the at-

tribute is about 2N words,

6Since all active words have the same number of bits, one word is sufficient to store this number.
7The three regular words in the majority of the bitmaps represents a 0-fill, a literal group, and a
0-fill. There are w bitmaps without the first 0-fill and w bitmaps without the last 0-fill. The 2w
bitmaps use three words each. There are also (N%(w − 1)) bitmaps whose 1 bits are in their active
words. In these bitmaps, only one regular word representing a 0-fill is used.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.
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bitmap indices is about 2N words.

For attributes with a clustering factor f greater than one, the stable plateau
is reduced by a factor close to 1/ f . Another factor that reduces the total size of
the compressed bitmap index is that the cardinality of an attribute is usually
much smaller than N . For attributes with Zipf distribution, the stable plateau
is the same as the uniform random attribute. However, because the actual
cardinality is much less than N , it is very likely that the size of the compressed
bitmap index would be about 2N words. For example, for an attribute with Zipf
distribution with z = 1 and i < 109, among 100 million values, we see about
27 million distinct values, and the index size is about 2.3N words. Clearly,
for Zipf distributions with larger z, we expect to see fewer distinct values and
the index size would be smaller. For example, for z = 2, we see about 14,000
distinct values for nearly any limit on i that is larger than 14,000. In these
cases, the index size is about 2N words. The following proposition summarizes
these observations.

PROPOSITION 4. Let N be the number of rows in a table, and let c be the
cardinality of the attribute to be indexed. Then the total size s of all compressed
bitmaps in an index is such that

(1) it never takes more than 4N words,
(2) if c < N/10, the maximum size of the compressed bitmap index of the at-

tribute is about 2N words,

6Since all active words have the same number of bits, one word is sufficient to store this number.
7The three regular words in the majority of the bitmaps represents a 0-fill, a literal group, and a
0-fill. There are w bitmaps without the first 0-fill and w bitmaps without the last 0-fill. The 2w
bitmaps use three words each. There are also (N%(w − 1)) bitmaps whose 1 bits are in their active
words. In these bitmaps, only one regular word representing a 0-fill is used.
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If (almost) all values are distinct, additional bookkeeping may need

some more space (; 4 · 108 bits for cardinality 108).
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Bitmap Indexes in Oracle 8
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Encoding ↔ Bitmap Sparseness/Attribute Cardinality

The most space-efficient bitmap representation depends on the number

of distinct values (i.e., the sparseness of the bitmap).

low attribute cardinality (dense bitmap)

→ can use un-compressed bitmap

WAH compression won’t help much (but also won’t hurt much)

medium attribute cardinality

→ use (WAH-)compressed bitmap

high attribute cardinality (many distinct values; sparse bitmap)

→ Encode “bitmap” as list of bit positions

In addition, compressed bitmaps may be a good choice for data with

clustered content (this is true for many real-world data).
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Bitmaps ↔ Row IDs?

� Bitvectors encode a list of integer positions. But we need RIDs.

What gives?

Interpret 〈PageNo,SlotNo〉 as a long integer (e.g., 48 + 16 bits),

the row’s position in the bit map.

Better: Determine maximum slot number for this table beforehand

(rather than reserving 256 or more positions per page).

Either way: Compression deals with resulting ‘0’ bits.
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RID Lists

Conversely, bitmaps may be a good way to encode lists of rows.

→ Represent RID lists in B-tree leaves as (compressed) bit vectors.

In practice:

Divide table into segments (≈ 32,000 tuples/segment).

Separate bitmap for each segment.

Per segment can decide on WAH↔RID list.

→ E.g., Oracle’s bitmap indexes are essentially that (though exact

encoding is proprietary).

Benefits:

May be able to skip over entire segments.

Keep update cost reasonable.
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