Architecture and Implementation of Database Systems (Winter 2015/16)

Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Winter 2015/16

Part IV

Multi-Dimensional Indexing

More Dimensions. . .

```
SELECT *
        FROM CUSTOMERS
    WHERE ZIPCODE BETWEEN 8000 AND 8999
    AND REVENUE BETWEEN 3500 AND 6000
```

This query involves a range predicate in two dimensions.
Typical use cases with multi-dimensional data include
■ geographical data (GIS: Geographical Information Systems),
■ multimedia retrieval (e.g., image or video search),
■ OLAP (Online Analytical Processing).

More Challenges. . .

Queries and data can be points or regions.

most interesting: k-nearest-neighbor search (k-NN)
... and you can come up with many more meaningful types of queries over multi-dimensional data.

Note: All equality searches can be reduced to one-dimensional queries.

Points, Lines, and Regions

More Solutions

Quad Tree [Finkel 1974]
R-tree [Guttman 1984]
R^{+}-tree [Sellis 1987]
R*-tree [Geckmann 1990]
Vp-tree [Chiueh 1994]
UB-tree [Bayer 1996]
SS-tree [White 1996]
M-tree [Ciaccia 1996]
Pyramid [Berchtold 1998]
DABS-tree [Böhm 1999]
Slim-tree [Faloutsos 2000]
P-Sphere-tree [Goldstein 2000]

K-D-B-Tree [Robinson 1981]
Grid File [Nievergelt 1984]
LSD-tree [Henrich 1989]
hB-tree [Lomet 1990]
TV-tree [Lin 1994]
hB- - -tree [Evangelidis 1995]
X-tree [Berchtold 1996]
SR-tree [Katayama 1997]
Hybrid-tree [Chakrabarti 1999]
IQ-tree [Böhm 2000]
landmark file [Böhm 2000]
A-tree [Sakurai 2000]

Note that none of these is a "fits all" solution.

Can't We Just Use a B^{+}-tree?

■ Maybe two B^{+}-trees, over ZIPCODE and REVENUE each?

- Can only scan along either index at once, and both of them produce many false hits.

■ If all you have are these two indices, you can do index intersection: perform both scans in separation to obtain the rids of candidate tuples. Then compute the (expensive!) intersection between the two rid lists (DB2: IXAND).

Hmm, ... Maybe With a Composite Key?

■ Exactly the same thing!
Indices over composite keys are not symmetric: The major attribute dominates the organization of the B^{+}-tree.

■ Again, you can use the index if you really need to. Since the second argument is also stored in the index, you can discard non-qualifying tuples before fetching them from the data pages.

Multi-Dimensional Indices

- B^{+}-trees can answer one-dimensional queries only. ${ }^{7}$

■ We'd like to have a multi-dimensional index structure that

- is symmetric in its dimensions,
- clusters data in a space-aware fashion,
- is dynamic with respect to updates, and
- provides good support for useful queries.

■ We'll start with data structures that have been designed for in-memory use, then tweak them into disk-aware database indices.
${ }^{7}$ Toward the end of this chapter, we'll see UB-trees, a nifty trick that uses
B^{+}-trees to support some multi-dimensional queries.

"Binary" Search Tree

In k dimensions, a "binary tree" becomes a 2^{k}-ary tree.

■ Each data point partitions the data space into 2^{k} disjoint regions.
■ In each node, a region points to another node (representing a refined partitioning) or to a special null value.

- This data structure is a point quad tree.
\nearrow Finkel and Bentley. Quad Trees: A Data Structure for Retrieval on Composite Keys. Acta Informatica, vol. 4, 1974.

Searching a Point Quad Tree

1 Function: p_search (q, node)
if q matches data point in node then
3 return data point ;
4 else
$5 \mid P \leftarrow$ partition containing q;

7
8
9
10

1 Function: pointsearch (q)
2 return p_search (q, root) ;

Inserting into a Point Quad Tree

Inserting a point $q_{\text {new }}$ into a quad tree happens analogously to an insertion into a binary tree:

1 Traverse the tree just like during a search for $q_{\text {new }}$ until you encounter a partition P with a null pointer.
2 Create a new node n^{\prime} that spans the same area as P and is partitioned by $q_{\text {new }}$, with all partitions pointing to null.
3 Let P point to n^{\prime}.
Note that this procedure does not keep the tree balanced.

Range Queries

To evaluate a range query ${ }^{8}$, we may need to follow several children of a quad tree node node:

1 Function: r_search (Q, node)
2 if data point in node is in Q then
3 append data point to result ;
4 foreach partition P in node that intersects with Q do
$5 \mid \quad$ node ${ }^{\prime} \leftarrow$ node pointed to by P;
$6 \quad r_{-}$search (Q, node ${ }^{\prime}$) ;

1 Function: regionsearch (Q)
2 return r_search (Q, root) ;
${ }^{8}$ We consider rectangular regions only; other shapes may be answered by querying for the bounding rectangle and post-processing the output.

Point Quad Trees-Discussion

Point quad trees
\checkmark are symmetric with respect to all dimensions and
\checkmark can answer point queries and region queries.

But

X the shape of a quad tree depends on the insertion order of its content, in the worst case degenerates into a linked list, null pointers are space inefficient (particularly for large k).

In addition,
; they can only store point data.

Also remember that quad trees are designed for main memory.

k-d Trees

■ Index k-dimensional data, but keep the tree binary.
■ For each tree level / use a different discriminator dimension d_{l} along which to partition.

- Typically: round robin

■ This is a k-d tree.
\nearrow Bentley. Multidimensional Binary Search Trees Used for Associative Searching. Comm. ACM, vol. 18, no. 9, Sept. 1975.

k-d Trees

k-d trees inherit the positive properties of the point quad trees, but improve on space efficiency.
For a given point set, we can also construct a balanced k-d tree: ${ }^{9}$
1 Function: kdtree (pointset, level)
2 if pointset is empty then
3 Leturn null ;
4 else
$5 \mid p \leftarrow$ median from pointset (along $d_{l \text { level }}$);
$6 \quad$ points ${ }_{\text {left }} \leftarrow\left\{v \in\right.$ pointset where $\left.v_{d_{\text {level }}}<p_{d_{\text {level }}}\right\}$;
$7 \quad$ points $_{\text {right }} \leftarrow\left\{v \in\right.$ pointset where $\left.v_{d_{\text {level }}} \geq p_{d_{d_{\text {evel }}}}\right\}$;
$8 \quad n \leftarrow$ new k-d tree node, with data point p;
$9 \quad$ n.left \leftarrow kdtree (points ${ }_{\text {left }}$, level +1);
$10 \quad$ n.right \leftarrow kdtree (points $_{\text {right }}$, level +1);
11 return n;

[^0]
Balanced k-d Tree Construction

Resulting tree shape:

K-D-B-Trees

k-d trees improve on some of the deficiencies of point quad trees:
\checkmark We can balance a k-d tree by re-building it. (For a limited number of points and in-memory processing, this may be sufficient.)
\checkmark We're no longer wasting big amounts of space.
$X k$-d trees are not really symmetric with respect to space dimensions.

It's time to bring k-d trees to the disk. The K-D-B-Tree
■ uses pages as an organizational unit
(e.g., each node in the K-D-B-tree fills a page) and

■ uses a k-d tree-like layout to organize each page.
\nearrow John T. Robinson. The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes. SIGMOD 1981.

K-D-B-Tree Idea

region pages:

■ contain entries $\langle r e g i o n$, pageID \rangle

- no null pointers
- form a balanced tree
- all regions disjoint and rectangular

point pages:

- contain entries〈point, rid〉
■ $\sim \mathrm{B}^{+}$-tree leaf nodes

K-D-B-Tree Operations

■ Searching a K-D-B-Tree works straightforwardly:

- Within each page determine all regions R_{i} that contain the query point q (intersect with the query region Q).
■ For each of the R_{i}, consult the page it points to and recurse.
■ On point pages, fetch and return the corresponding record for each matching data point p_{i}.
■ When inserting data, we keep the K-D-B-Tree balanced, much like we did in the \mathbf{B}^{+}-tree:

■ Simply insert a $\langle r e g i o n, ~ p a g e I D\rangle(\langle$ point, rid \rangle) entry into a region page (point page) if there's sufficient space.
■ Otherwise, split the page.

Splitting a Point Page

Splitting a point page p :
1 Choose a dimension i and an i-coordinate x_{i} along which to split, such that the split will result in two pages that are not overfull.
2 Move data points p with $p_{i}<x_{i}$ and $p_{i} \geq x_{i}$ to new pages $p_{\text {left }}$ and $p_{\text {right }}$ (respectively).
3 Replace $\langle r e g i o n, p\rangle$ in the parent of p with 〈left region, $\left.p_{\text {left }}\right\rangle$ $\left\langle r i g h t\right.$ region, $\left.p_{\text {right }}\right\rangle$.

Step 3 may cause an overflow in p 's parent and, hence, lead to a split of a region page.

Splitting a Region Page

■ Splitting a point page and moving its data points to the resulting pages is straightforward.
■ In case of a region page split, by contrast, some regions may intersect with both sides of the split (e.g., page 0 on slide 131).

■ Such regions need to be split, too.
■ This can cause a recursive splitting downward (!) the tree.

Example: Page 0 Split in Tree on Slide 131

■ Root page $0 \rightarrow$ pages 0 and $6(\sim$ creation of new root).
■ Region page $1 \rightarrow$ pages 1 and 7 (point pages not shown).

K-D-B-Trees—Discussion

K-D-B-Trees
\checkmark are symmetric with respect to all dimensions, ${ }^{10}$
\checkmark cluster data in a space-aware and page-oriented fashion,
\checkmark are dynamic with respect to updates, and
\checkmark can answer point queries and region queries.

However,

; ; we still don't have support for region data and
; K-D-B-Trees (like k-d trees) won't handle deletes dynamically.
This is because we always partitioned the data space such that
■ every region is rectangular and

- regions never intersect.
${ }^{10}$ However, split dimensions must be chosen, which re-introduces asymmetry.

R-trees do not have the disjointness requirement.
■ R-tree inner or leaf nodes contain $\langle r e g i o n$, pagelD \rangle or $\langle r e g i o n$, rid \rangle entries (respectively). region is the minimum bounding rectangle that spans all data items reachable by the respective pointer.
■ Every node contains between d and $2 d$ entries ($\sim \mathrm{B}^{+}$-tree)..11
■ Insertion and deletion algorithms keep an R-tree balanced at all times.

R-trees allow the storage of point and region data.
\nearrow Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD 1984.

[^1]
R-Tree: Example

- order: $d=2$
- region data

R-Tree: Searching and Inserting

While searching an R-tree, we may have to descend into more than one child node for point and region queries (\nearrow range search in point quad trees, slide 125).

Inserting into an R-tree very much resembles B^{+}-tree insertion:
1 Choose a leaf node n to insert the new entry.

- Try to minimize the necessary region enlargement(s).

2 If n is full, split it (resulting in n and n^{\prime}) and distribute old and new entries evenly across n and n^{\prime}.

- Splits may propagate bottom-up and eventually reach the root ($\nearrow \mathrm{B}^{+}$-tree).
3 After the insertion, some regions in the ancestor nodes of n may need to be adjusted to cover the new entry.

Splitting an R-Tree Node

To split an R-tree node, we have more than one alternative.

bad split*

good split*
*according to Guttman

Heuristic: Minimize the totally covered area.
■ Exhaustive search for the best split infeasible.
■ Guttman proposes two ways to approximate the search.
■ Follow-up papers (e.g., the R^{*}-tree) aim at improving the quality of node splits.

R-Tree: Deletes

All R-tree invariants (slide 137) are maintained during deletions.
1 If an R-tree node n underflows (i.e., less than d entries are left after a deletion), the whole node is deleted.
2 Then, all entries that existed in n are re-inserted into the R-tree (as discussed before).

Note that Step 1 may lead to a recursive deletion of n's parent.
■ Deletion, therefore, is a rather expensive task in an R-tree.

m Spacial indexing in mainstream database implementations.

■ Indexing in commodity systems is typically based on R-trees.
■ Yet, only few systems implement them out of the box (e.g., PostgreSQL).

Bit Interleaving

■ We saw earlier that a B^{+}-tree over concatenated fields $\langle a, b\rangle$ doesn't help our case, because of the asymmetry between the role of a and b in the index.

- What happens if we interleave the bits of a and b (hence, make the B^{+}-tree "more symmetric")?

Z-Ordering

■ Both approaches linearize all coordinates in the value space according to some order.
\nearrow see also slide 120
■ Bit interleaving leads to what is called the Z-order.
■ The Z-order (largely) preserves spacial clustering.

B^{+}-trees Over Z-Codes

■ Use a \mathbf{B}^{+}-tree to index Z-codes of multi-dimensional data.
■ Each leaf in the B^{+}-tree describes an interval in the \mathbf{Z}-space.

- Each interval in the Z -space describes a region in the multi-dimensional data space.

■ To retrieve all data points in a query region Q, try to touch only those leave pages that intersect with Q.

UB-Tree Range Queries

After each page processed, perform an index re-scan (\nearrow) to fetch the next leaf page that intersects with Q.

1 Function: ub_range (Q)
2 cur $\leftarrow z\left(Q_{\text {bottom,left }}\right)$;
3 while true do
// search B^{+}-tree page containing cur (\nearrow slide 70)
page \leftarrow search (cur);
foreach data point p on page do if p is in Q then
\square append p to result ;
if region in page reaches beyond $Q_{\text {top, right }}$ then break ;
// compute next Z-address using Q and data on current page cur \leftarrow get_next_z_address (Q, page);

UB-Trees-Discussion

- The cost of a region query is linear in the size of the result Q and logarithmic with respect to the stored data volume N $\left(\frac{4 \cdot Q}{2 d} \cdot \mathcal{O}\left(\log _{d} N\right)\right)$.
■ UB-trees are fully dynamic, a property inherited from the underlying B^{+}-trees.
■ The use of other space-filling curves to linearize the data space is discussed in the literature, too. E.g., Hilbert curves.
m UB-trees have been commercialized in the Transbase $®$ database system.

Spaces with High Dimensionality

For large k, all the techniques we discussed become ineffective:

- E.g., for $k=100$, we'd get $2^{100} \approx 10^{30}$ partitions per node in a point quad tree. Even with billions of data points, almost all of these are empty.
■ Consider a really big search region, cube-sized covering 95% of the range along each dimension:

For $k=100$, the probability of a point being in this region is still only $0.95^{100} \approx 0.59 \%$.

■ We experience the curse of dimensionality here.

Page Selectivty for k-NN Search

Data: Stephen Bloch. What's Wrong with High-Dimensionality Search. VLDB 2008.

Query Performance in High Dimensions

■ VA-File: vector approximation file (|VA-File $|\ll|$ data file \mid)
■ Scan VA-File and use it as a filter for actual disk pages.

Wrap-Up

Point Quad Tree
k-dimensional analogy to binary trees; main memory only.
k-d Tree, K-D-B-Tree
k-d tree: partition space one dimension at a time (round-robin); K-D-B-Tree: B^{+}-tree-like organization with pages as nodes, nodes use a k-d-like structure internally.
R-Tree
regions within a node may overlap; fully dynamic; for point and region data.
UB-Tree
use space-filling curve (Z-order) to linearize k-dimensional data, then use B^{+}-tree.

Curse Of Dimensionality

most indexing structures become ineffective for large k; fall back to seq. scanning and approximation/compression.

[^0]: ${ }^{9} v_{i}$: coordinate i of point v.

[^1]: ${ }^{11}$ except the root node

