
Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Winter 2015/16
Part III

Indexing
How could we prepare for such queries and evaluate them efficiently?

We could

1. **sort** the table on disk (in ZIPCODE order).

2. To answer queries, then use **binary search** to find first qualifying tuple, and **scan** as long as ZIPCODE < 8999.

$k*$ denotes the full data record with search key k.
We get **sequential access** during the **scan phase**.

We need to read \(\log_2(\# \text{ tuples}) \) tuples during the **search phase**.

We need to read about as many **pages** for this.

(The whole point of binary search is that we make far, unpredictable jumps. This largely defeats prefetching.)
Binary Search and Database Pages

Observations:

- Make rather far jumps initially.
 - For each step read full page, but inspect only one record.
- After $\mathcal{O}(\log_2 \text{pagesize})$, search stays within one page.
 - I/O cost is used much more efficiently here.
Idea: “Cache” those records that might be needed for the first phase.

→ If we can keep the cache in memory, we can find any record with just a single I/O.

💡 Is this assumption reasonable?
What if my data set is really large?

- “Cache” will span many pages, too.
 (In practice, we'll organize the cache just like any other database object.)
- Thus: “cache the cache” \rightarrow hierarchical “cache”
Idea: Accelerate the search phase using an index.

- All nodes are the size of a page
 - hundreds of entries per page
 - large fanout, low depth
- Search effort: \(\log_{\text{fanout}}(\# \text{ tuples}) \)
ISAM Index: Updates

ISAM indexes are inherently static.

- **Deletion** is not a problem: delete record from data page.
- **Inserting** data can cause more effort:
 - If space is left on respective leaf page, insert record there (e.g., after a preceding deletion).
 - Otherwise, **overflow pages** need to be added. (Note that these will violate the sequential order.)
 - ISAM indexes degrade after some time.
Leaving some free space during index creation reduces the insertion problem (typically $\approx 20\%$ free space).

Since ISAM indexes are static, pages need not be locked during index access.

- Locking can be a serious bottleneck in dynamic tree indexes (particularly near the root node).

ISAM may be the index of choice for relatively static data.
The **B⁺-tree** is derived from the ISAM index, but is fully dynamic with respect to updates.

- **No overflow chains**: B⁺-trees remain **balanced** at all times.
- Gracefully adjusts to **inserts** and **deletes**.
- **Minimum occupancy** for all B⁺-tree nodes (except the root): 50% (typically: 67%).

B+-trees look like ISAM indexes, where

- leaf nodes are, generally, **not** in sequential order on disk,
- leaves are connected to form a **double-linked list**:2

![Diagram of B+-tree](image)

- leaves may contain **actual data** (like the ISAM index) or just **references** to data pages (e.g., rids). ↗ slides 79 and 86
 - We assume the **latter** case in the following, since it is the more common one.

- each B+-tree node contains between d and $2d$ entries (d is the **order** of the B+-tree; the root is the only exception)

2 This is not really a B+-tree requirement, but some systems implement it.
Searching a B^+-tree

Function: search (k)

\[
\text{return } \text{tree_search} (k, root);
\]

Function: tree_search (k, node)

if node is a leaf then
\[
\text{return node;}
\]

switch k do

\[
\begin{align*}
\text{case } k & < k_1 \\
& \text{return } \text{tree_search} (k, p_0);
\end{align*}
\]

\[
\begin{align*}
\text{case } k_i & \leq k < k_{i+1} \\
& \text{return } \text{tree_search} (k, p_i);
\end{align*}
\]

\[
\begin{align*}
\text{case } k_{2d} & \leq k \\
& \text{return } \text{tree_search} (k, p_{2d});
\end{align*}
\]

- Function $\text{search} (k)$ returns a pointer to the leaf node that contains potential hits for search key k.

node page layout

index entry separator key

$p_0 \ k_1 \ p_1 \ k_2 \ p_2 \ \cdots \ k_{2d} \ p_{2d}$
Insert: Overview

- The \mathbb{B}^+-tree needs to remain **balanced** after every update.\(^3\)
 - *We cannot* create overflow pages.

- Sketch of the insertion procedure for entry $\langle k, p \rangle$
 (key value k pointing to data page p):

 1. **Find leaf page** n where we would expect the entry for k.
 2. If n has **enough space** to hold the new entry (i.e., at most $2d - 1$ entries in n), **simply insert** $\langle k, p \rangle$ into n.
 3. Otherwise node n must be **split** into n and n' and a new **separator** has to be inserted into the parent of n.

 Splitting happens recursively and may eventually lead to a split of the root node (increasing the tree height).

\(^3\) *i.e.*, every root-to-leaf path must have the same length.
Insert new entry with key 4222.

→ Enough space in node 3, simply insert.

→ Keep entries sorted within nodes.
Insert keys are in the range 4123 to 9016.

Insert key 6330.

→ Must split node 4.

→ New separator goes into node 1 (including pointer to new page).
After 8180, 8245, insert key 4104.

→ Must **split** node 3.
→ Node 1 overflows → split it
→ **New separator** goes into root

Unlike during leaf split, separator key does **not** remain in inner node. ✍️ Why?
Insert: Root Node Split

- Splitting starts at the leaf level and continues upward as long as index nodes are fully occupied.
- Eventually, this can lead to a split of the root node:
 - Split like any other inner node.
 - Use the separator to create a new root.
- The root node is the only node that may have an occupancy of less than 50%.
- This is the only situation where the tree height increases.

faq How often do you expect a root split to happen?
 Insertion Algorithm

1 Function: tree_insert(k, rid, node)

2 if node is a leaf then

3 return leaf_insert(k, rid, node);

4 else

5 switch k do

6 case k < k_1

7 ⟨sep, ptr⟩ ← tree_insert(k, rid, p_0);

8 case k_i ≤ k < k_{i+1}

9 ⟨sep, ptr⟩ ← tree_insert(k, rid, p_i);

10 case k_{2d} ≤ k

11 ⟨sep, ptr⟩ ← tree_insert(k, rid, p_{2d});

12 if sep is null then

13 return ⟨null, null⟩;

14 else

15 return split(sep, ptr, node);
Function: leaf_insert \((k, rid, node)\)

1. if another entry fits into \(node\) then
 2. insert \(\langle k, rid \rangle\) into \(node\);
 3. return \(\langle \text{null, null} \rangle\);

else

4. allocate new leaf page \(p\);
5. take \(\{\langle k_1^+, p_1^+ \rangle, \ldots, \langle k_{2d+1}^+, p_{2d+1}^+ \rangle \}\) := entries from \(node \cup \{\langle k, ptr \rangle\}\)
6. leave entries \(\langle k_1^+, p_1^+ \rangle, \ldots, \langle k_d^+, p_d^+ \rangle\) in \(node\);
7. move entries \(\langle k_{d+1}^+, p_{d+1}^+ \rangle, \ldots, \langle k_{2d+1}^+, p_{2d+1}^+ \rangle\) to \(p\);
8. return \(\langle k_{d+1}^+, p \rangle\);

Function: split \((k, ptr, node)\)

1. if another entry fits into \(node\) then
 2. insert \(\langle k, ptr \rangle\) into \(node\);
 3. return \(\langle \text{null, null} \rangle\);

else

4. allocate new leaf page \(p\);
5. take \(\{\langle k_1^+, p_1^+ \rangle, \ldots, \langle k_{2d+1}^+, p_{2d+1}^+ \rangle \}\) := entries from \(node \cup \{\langle k, ptr \rangle\}\)
6. leave entries \(\langle k_1^+, p_1^+ \rangle, \ldots, \langle k_d^+, p_d^+ \rangle\) in \(node\);
7. move entries \(\langle k_{d+2}^+, p_{d+2}^+ \rangle, \ldots, \langle k_{2d+1}^+, p_{2d+1}^+ \rangle\) to \(p\);
8. set \(p_0 \leftarrow p_{d+1}^+\) in \(node\);
9. return \(\langle k_{d+1}^+, p \rangle\);
Insertion Algorithm

1. **Function**: \(\text{insert} (k, \text{rid}) \)

2. \(\langle \text{key}, \text{ptr} \rangle \leftarrow \text{tree_insert} (k, \text{rid}, \text{root}); \)

3. **if** \(\text{key} \) is not **null** **then**

4. allocate new root page \(r; \)

5. **populate** \(n \) with

6. \(p_0 \leftarrow \text{root}; \)

7. \(k_1 \leftarrow \text{key}; \)

8. \(p_1 \leftarrow \text{ptr}; \)

9. \(\text{root} \leftarrow r; \)

- \(\text{insert} (k, \text{rid}) \) is called from outside.

- Note how leaf node entries point to rids, while inner nodes contain pointers to other \(B^+ \)-tree nodes.
B-trees use slotted pages, too.

Inner Nodes:

- record $\equiv \langle \text{key}, \text{childPage} \rangle$ pairs.
- Additional key value to hold extra child pointer
 - e.g., key value from reference in parent
 - “dummy key” for far-left or far-right end
- Similar to leaves, $\langle \text{key}, \text{childPage-list} \rangle$ might make sense, too.
Leaf Nodes: Three options:

1. Store full data records in B-tree leaf
 → B-tree becomes a method to physically organize the table’s data pages.
 → “clustered index” or “index-organized table”

2. record \(\equiv \langle \text{key}, \text{rid-list} \rangle \)
 → There could be more than one tuple for same key.

3. record \(\equiv \langle \text{key}, \text{rid} \rangle \)
 → Easier when keys are unique.

Why?

Options 2 and 3 are reasons why want record ids to be stable.
→ slides 51 ff.
E.g., index on VARCHAR field with random content:

Hi Key 0:
Offset Location = 668 (x29C)
Record Length = 455 (x1C7)
Key Part 1:
 Variable Length Character String
 Actual Length = 0
Child Pointer => Page 24694
Table RID: x(0000 03C6 0027) r(000003C6;0027) d(966;39)
Child Pointer => Page 24695
Table RID: x(0000 0514 0018) r(00000514;0018) d(1300;24)
...
Hi Key 1:
Offset Location = 1123 (x463)
Record Length = 31 (x1F)
Key Part 1:
 Variable Length Character String
 Actual Length = 16
 2B2B357A 5169792F 31307556 73513D3D ++5zQiy/10uVsQ==
Child Pointer => Page 24739
Table RID: x(FFFF FFFF FFFF) r(FFFFFFFF;FFFF) d(4294967295;65535)
Data Pages:
- Move record without changing its slot/RID.

Index Pages:
- Also: change slots without moving data.

 Erotic?
A typical situation according to alternative 2 looks like this:

What are the implications when we want to execute

```
SELECT * FROM CUSTOMERS ORDER BY ZIPCODE
```
If the data file was sorted, the scenario would look different:

We call such an index a **clustered index**.

- Scanning the index now leads to **sequential access**.
- This is particularly good for **range queries**.

Why don’t we make all indexes clustered?
DB2 does **not** offer clustered indexes in the sense discussed here.

But:

- Can declare one “clustering index” per table.

```sql
CREATE INDEX IndexName
ON TableName (col1, col2, ..., coln) CLUSTER
```

- DB2 will attempt (!) to cluster the table’s **data pages** according to the key of the index.
 - Table **re-organization** will re-establish clustering if necessary.
 - Use `ALTER TABLE` and `PCTFREE` to ease future inserts.
Alternative 1 (slide 79) is a special case of a clustered index.

- index file ≡ data file
- Such a file is often called an **index organized table**.

E.g., Oracle8i

```sql
CREATE TABLE (... 
  ..., 
  PRIMARY KEY ( ... ))

ORGANIZATION INDEX;
```
Option A: Heap file for data, indexes with RIDs

Can have arbitrarily many indexes of this kind.
Indexes on Tables

Option B: Data sits in clustered index

unique index on k
(clustered; contains data)

secondary index on a
(non-clustered)

- Secondary indexes use key values to reference tuples.
What about this setup?

unique index on k
(clustered; contains data)

secondary index on a
(non-clustered)

RIDs in leaf nodes
Address book of Berlin, anno 1858:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poplawski</td>
<td>E. Drechsel in Horn und Holz, Schornsteinsegergasse 1.</td>
</tr>
<tr>
<td>Poplawski</td>
<td>W., Uhrmacher, Leipzigerstr. 43.</td>
</tr>
<tr>
<td>Popowitsch</td>
<td>K., Kürschner, Ziegelstr. 11. 12.</td>
</tr>
<tr>
<td>Popowski</td>
<td>M., Haushofmeisterfrau, Kochstr. 43.</td>
</tr>
<tr>
<td>Poppy</td>
<td>E., Schlosser, Schöpsgasse 7.</td>
</tr>
<tr>
<td></td>
<td>M., Schneider f. D., Kommandantenstr. 31.</td>
</tr>
<tr>
<td></td>
<td>A. C., Seidenwirker, Prinzen-Allee 74.</td>
</tr>
<tr>
<td>Poppe</td>
<td>E. T., Diätar, I., Wihelmstr. 92.</td>
</tr>
<tr>
<td></td>
<td>W., Cafetier, Scherbergasse 1.</td>
</tr>
<tr>
<td></td>
<td>E., Holz- und Hornbresler, Wahlstr. 34.</td>
</tr>
<tr>
<td></td>
<td>Eduard, Filz- und Filzschuhfabrik, Balsdruckerei u. Lager von Filzschuh-Dobrath, Flügelband und aller Arten Filzwaren, Friedrichstr. 109. E.</td>
</tr>
<tr>
<td></td>
<td>W., Kupferpapier, Neu-Kolln a. R. 21.</td>
</tr>
<tr>
<td>Porath</td>
<td>H., Oberfauermann, Landwehrstr. 3.</td>
</tr>
<tr>
<td></td>
<td>W., Gärtners und Blumenhändler, Dranienburgerstr. 57.</td>
</tr>
<tr>
<td></td>
<td>J., Tuchmacher, Weberstr. 34.</td>
</tr>
<tr>
<td>Parawsky</td>
<td>G., Eisenbahn-Zugführer, Louisenplatz 12.</td>
</tr>
<tr>
<td>Porepp</td>
<td>C., Zimmer-Bernietter, Unter den Linden 47.</td>
</tr>
<tr>
<td>Pormetzer</td>
<td>F. W., Buchdruckereibesitzer, Kommandantenstr. 7.</td>
</tr>
<tr>
<td>Porsch</td>
<td>H., Kunstmaler, Seiligeis-Befreiungstr. 25.</td>
</tr>
<tr>
<td>Porschien</td>
<td>G., Schneider, Friedrichsgracht 59.</td>
</tr>
<tr>
<td>Port</td>
<td>E., Tapisierer, Fruchtstr. 58.</td>
</tr>
<tr>
<td>Portefiet</td>
<td>J., Polizei - Wachtmeister, Charlottenstr. 37.</td>
</tr>
<tr>
<td>Porth</td>
<td>H., Hoffhauspieler, Friedrichstr. 195.</td>
</tr>
<tr>
<td></td>
<td>S., Tischler, Markgrafstr. 18.</td>
</tr>
<tr>
<td>Portier</td>
<td>E., Dicke, Lindenstr. 18.</td>
</tr>
<tr>
<td>Possart</td>
<td>J., Intendantur - Applicant, Schumannstr. 9. 2-4.</td>
</tr>
<tr>
<td></td>
<td>J. C., Kaufmann, Schumannstr. 9. 12-2.</td>
</tr>
<tr>
<td>Possfeld</td>
<td>E., Schankwirch, Köpnerstr. 129.</td>
</tr>
<tr>
<td>Possel</td>
<td>E., Barbier, Mauerstr. 33.</td>
</tr>
<tr>
<td></td>
<td>L., Schneider f. S., Krausenstr. 4-5.</td>
</tr>
<tr>
<td>Posselt</td>
<td>J., Handelsmann, Dresdnerstr. 97.</td>
</tr>
<tr>
<td></td>
<td>J., Mutter, Lindenstr. 56.</td>
</tr>
<tr>
<td>Possfeldt</td>
<td>J., Geh. Registratur-Assistent im Ministerium für Handel u. Gewerbe, Grabenstr. 3. 4-5.</td>
</tr>
<tr>
<td>Posselt</td>
<td>J., Kanzlei- und Wirtschaftsgehilfe, Alte Jakobsbrücke 5.</td>
</tr>
<tr>
<td></td>
<td>E., Modellier, Straße u. Platz 4.</td>
</tr>
<tr>
<td></td>
<td>E., Porzellinmaler, Alte Jakobsbrücke 5.</td>
</tr>
<tr>
<td></td>
<td>E., Koch und Restaurateur, Charitéstraße 5.</td>
</tr>
<tr>
<td></td>
<td>E., Restaurateur, Mittelstraße 57.</td>
</tr>
</tbody>
</table>

[^4]: http://adressbuch.zlb.de/
Prefix Truncation

Address book:
- To save space, common last names are printed only once.

Such **prefix truncation** can also be applied to B-trees:\(^5\)

<table>
<thead>
<tr>
<th>Prefix: Smith, J</th>
</tr>
</thead>
<tbody>
<tr>
<td>ack</td>
</tr>
<tr>
<td>ane</td>
</tr>
<tr>
<td>ason</td>
</tr>
<tr>
<td>eremy</td>
</tr>
<tr>
<td>ill</td>
</tr>
<tr>
<td>ohn</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>une</td>
</tr>
</tbody>
</table>

The advantage is **two-fold**:

1. save space → more keys fit on one page → higher fanout
2. need **fewer comparisons**

Prefix truncation is most effective near or in leaf pages. Why?
Elsewhere, by contrast, the leading key parts are most discriminative.
In fact, a key’s suffix might not be needed to guide navigation at all.

This motivates suffix truncation:
- Store keys only as far as needed to guide search.
- Remember: key values in inner tree nodes do not have to be contained in the actual data set.
Suffix Truncation

Example:

- Daniel
- Jennifer
- Oliver
- Peter
- Steve
- David
- John
- Paul
- Rachel
- Thomas
- Jason
- Marc
- Ron
- Michael
- Steve
- Thomas
Suffix truncation beyond the bottom-most level is difficult/dangerous.

→ Shortening ‘Pe’ to ‘P’ would be incorrect!
The effect of discriminative prefixes can also be exploited as follows:

- Store a **fixed-length prefix** as an additional field in every entry of the slot directory.
- Need to follow the pointer only if the prefix is not enough to decide on the comparison outcome.
Most accesses are to an array of fixed-length elements (Pointer chasing in memory is relatively expensive on modern hardware.)

Can use, e.g., integer comparisons to evaluate four-byte prefix comparisons.

May need to **re-order** bytes for this.

CPU cache efficient: When a slot entry is read, likely the prefix is in the same cache line.
Key Normalization

In practice, key comparisons are not as simple as they look on slides:

- language-specific **collation**
- representations as different **character sets**
- **NULL** values

Plus, keys might be composed of **multiple columns**.

Thus:

- **Normalize** keys and represent any key as a **bit string**.
 - All of the above issues only affect normalization, but not B-tree operations themselves.
- Can prepare, *e.g.*, for integer (rather than bit or byte) comparisons.
Key Normalization

Examples:

- Map upper and lower case letters to same bit string if collation is case insensitive.
- Use bit representations for characters according to collation. E.g., ö < z in German; z < ö in Swedish.
- To sort NULL before any value: Prepend any valid value with a ‘1’ bit and represent NULL as a ‘0’ bit.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>normalized key</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>‘Smith’</td>
<td>‘John’</td>
<td>100...0000010 1 Smith‘\0’ 1 John‘\0’</td>
</tr>
<tr>
<td>3</td>
<td>‘Miller’</td>
<td>‘’</td>
<td>100...0000011 1 Miller‘\0’ 1 ‘\0’</td>
</tr>
<tr>
<td>64</td>
<td>‘Dave’</td>
<td>‘’</td>
<td>100...00100000 0 1 Dave‘\0’</td>
</tr>
<tr>
<td>–</td>
<td>‘’</td>
<td>–</td>
<td>0 1 ‘\0’</td>
</tr>
</tbody>
</table>
Key Normalization

Information might get lost during normalization (e.g., capitalization)

→ Store normalized and original key (redundantly) in leaf nodes or
→ Use normalization only in inner nodes

Keys tend to become larger due to normalization.

→ Order-preserving compression might be useful.

Key normalization and prefix/suffix truncation go particularly well together.
If a node is sufficiently full (i.e., contains at least $d + 1$ entries, we may simply remove the entry from the node.

- Note: Afterward, inner nodes may contain keys that no longer exist in the database. This is perfectly legal.

- **Merge** nodes in case of an **underflow** ("undo a split"):

 ![Diagram](image)

 - "Pull" separator into merged node.
It’s not quite that easy...

- Merging only works if **two** neighboring nodes were 50% full.
- Otherwise, we have to **re-distribute**:
 - “rotate” entry through parent
- Actual systems often avoid the cost of merging and/or redistribution, but relax the minimum occupancy rule.
- To improve **concurrency**, systems sometimes only **mark** index entries as deleted and physically remove them later (e.g., IBM DB2 UDB “type-2 indexes”)
 - “Ghost bits” / “ghost records”
 - Often kept around for a while → re-use on next insert.
Ghost Records — IBM DB2

Before key deletion:

Key 64:

Offset Location = 3710 (xE7E)
Record Length = 40 (x28)

Key Part 1:

Variable Length Character String
Actual Length = 28

44516A6B 7A334650 76724471 534B7767 DQjkz3FPvrDqSKwg
58432B59 345A7837 4852383D XC+Y4Zx7HR8=

Table RID: x(0000 1237 0001) r(00001237;0001) d(4663;1) ridFlags=x0

After key deletion:

Key 64:

Offset Location = 3710 (xE7E)
Record Length = 40 (x28)

Key Part 1:

Variable Length Character String
Actual Length = 28

44516A6B 7A334650 76724471 534B7767 DQjkz3FPvrDqSKwg
58432B59 345A7837 4852383D XC+Y4Zx7HR8=

Table RID: x(0000 1237 0001) r(00001237;0001) d(4663;1) ridFlags=x3 Punc Deleted
In IBM DB2, redistribution and merging are **only** applied if

- the page is a **leaf node** and
 (Remember the pointers between adjacent leaf nodes, \(\uparrow\) slide 69.)
- the fill degree of the page falls below **MINPCTUSED** and
 (That also means that **MINPCTUSED** must have a value greater than its default, which is 0.)
- the transaction holds an **exclusive lock on the table**.

This is called **online index defragmentation** in DB2.

Otherwise, “clean-up” only happens during explicit index maintenance.

- Use **REORG INDEX** to trigger maintenance.
- Use **REORGCHK** to check whether index(es) need maintenance.
Ghost records turn out to be useful for a number of purposes.

E.g., fence keys

- Keep a copy of parent’s separator keys in every node

![Diagram](image)

- Fence keys span range of *possible* key values in this node
 → Avoids problems with *prefix truncation*.
- One key is an *exclusive bound*, thus *must* be a ghost record.
- The other one may or may not be a ghost record.
- Can be used, *e.g.*, to check *integrity* of B-tree.
Variable-Length Keys

With **variable-length keys**, the original B-tree property

\[d \leq \text{number of keys in a node} \leq 2d \]

is not practical any more.

→ Real-world systems do not really care about this “50 % rule.”

With truncation, the storage space for a key might even **change** during re-organizations.

- 🎧 Will this cause any trouble during updates?
Composite Keys

B^+-trees can (in theory6) be used to index everything with a defined total order, e.g.:

- integers, strings, dates, . . . , and
- concatenations thereof (based on lexicographical order).

E.g., in most SQL dialects:

```
CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME);
```

A useful application are, e.g., partitioned B-trees:

- Leading index attributes effectively partition the resulting B^+-tree.

6Some implementations won’t allow you to index, e.g., large character fields.
CREATE INDEX ON TABLE STUDENTS (SEMESTER, ZIPCODE);

What types of queries could this index support?
Building a B^+-tree is particularly easy when the input is sorted.

- Build B^+-tree **bottom-up** and **left-to-right**.
- Create a parent for every $2d + 1$ unparented nodes.
 (Actual implementations typically leave some space for future updates. e.g., DB2’s PCTFREE parameter)

✍ What use cases could you think of for bulk-loading?
In the foregoing we described the \(B^+ \)-tree.

Bayer and McCreight originally proposed the \(B \)-tree:
- Inner nodes contain data entries, too.

There is also a \(B^* \)-tree:
- Keep non-root nodes at least \(\frac{2}{3} \) full (instead of \(\frac{1}{2} \)).
- Need to \textit{redistribute on inserts} to achieve this.
 (Whenever \textit{two} nodes are full, split them into \textit{three}.)

Most people say “\(B \)-tree” and mean any of these variations. Real systems typically implement \(B^+ \)-trees.

“\(B \)-trees” are also used outside the database domain, \textit{e.g.}, in modern \textit{file systems} (ReiserFS, HFS, NTFS, \ldots).
Hash-Based Indexing

B^+-trees are **by far** the predominant type of indices in databases. An alternative is **hash-based indexing**.

- Hash indices can only be used to answer **equality predicates**.
- Particularly good for strings (even for very long ones).
Dynamic Hashing

Problem: How do we choose \(n \) (the number of buckets)?

- \(n \) too large → space wasted, poor space locality
- \(n \) too small → many overflow pages, degrades to linked list

Database systems, therefore, use **dynamic hashing** techniques:

- extendible hashing,
- linear hashing.

Few systems support true hash indices (*e.g.*, PostgreSQL).

More popular uses of hashing are:

- support for **B\(^+\)-trees** over hash values (*e.g.*, SQL Server)
- the use of hashing during query processing → **hash join**.
Indexed Sequential Access Method (ISAM)

A static, tree-based index structure.

B^+-trees

The database index structure; indexing based on any kind of (linear) order; adapts dynamically to inserts and deletes; low tree heights ($\sim 3–4$) guarantee fast lookups.

Clustered vs. Unclustered Indices

An index is clustered if its underlying data pages are ordered according to the index; fast sequential access for clustered B^+-trees.

Hash-Based Indices

Extendible hashing and linear hashing adapt dynamically to the number of data entries.