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Part VII

Concurrency Control
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The “Hello World” of Transaction Management

My bank issued me a debit card to access my account.

Every once in a while, I’d use it at an ATM to draw some money

from my account, causing the ATM to perform a transaction in the

bank’s database.

1 bal ← read bal (acct no) ;

2 bal ← bal − 100 CHF ;

3 write bal (acct no, bal) ;

My account is properly updated to reflect the new balance.
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Concurrent Access

The problem is: My wife has a card for the account, too.

We might end up using our cards at different ATMs at the same

time.

me my wife DB state

bal ← read (acct) ; 1200

bal ← read (acct) ; 1200

bal ← bal − 100 ; 1200

bal ← bal − 200 ; 1200

write (acct, bal) ; 1100

write (acct, bal) ; 1000

The first update was lost during this execution. Lucky me!

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 244



Another Example

This time, I want to transfer money over to another account.

// Subtract money from source (checking) account

1 chk bal ← read bal (chk acct no) ;

2 chk bal ← chk bal − 500 CHF ;

3 write bal (chk acct no, chk bal) ;

// Credit money to the target (saving) account

4 sav bal ← read bal (sav acct no) ;

5 sav bal ← sav bal + 500 CHF ;

6 write bal (sav acct no, sav bal) ;

Before the transaction gets to step 6, its execution is

interrupted/cancelled (power outage, disk failure, software bug,

. . . ). My money is lost /.
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ACID Properties

One of the key benefits of a database system are the transaction

properties guaranteed to the user:

AtomicityA Either all or none of the updates in a database transaction

are applied.

ConsistencyC Every transaction brings the database from one consistent

state to another.

IsolationI A transaction must not see any effect from other

transactions that run in parallel.

DurabilityD The effects of a successful transaction maintain persistent

and may not be undone for system reasons.

A challenge is to preserve these guarantees even with multiple users

accessing the database concurrently.
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Anomalies: Lost Update

We already saw a lost update example on slide 244.

The effects of one transaction are lost, because of an uncontrolled

overwriting by the second transaction.
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Anomalies: Inconsistent Read

Consider the money transfer example (slide 245), expressed in SQL

syntax:

Transaction 1 Transaction 2
UPDATE Accounts
SET balance = balance - 500
WHERE customer = 4711

AND account_type = ’C’;

SELECT SUM(balance)
FROM Accounts
WHERE customer = 4711;

UPDATE Accounts
SET balance = balance + 500
WHERE customer = 4711

AND account_type = ’S’;

Transaction 2 sees an inconsistent database state.
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Anomalies: Dirty Read

At a different day, my wife and me again end up in front of an ATM at

roughly the same time:

me my wife DB state

bal ← read (acct) ; 1200

bal ← bal − 100 ; 1200

write (acct, bal) ; 1100

bal ← read (acct) ; 1100

bal ← bal − 200 ; 1100

abort ; 1200

write (acct, bal) ; 900

My wife’s transaction has already read the modified account balance

before my transaction was rolled back.
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Concurrent Execution

The scheduler decides the execution order of concurrent database

accesses.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2
1

2

1

3
2

1

2

1

1
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Database Objects and Accesses

We now assume a slightly simplified model of database access:

1 A database consists of a number of named objects. In a given

database state, each object has a value.

2 Transactions access an object o using the two operations

read o and write o.

In a relational DBMS we have that

object ≡ attribute .
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Transactions

A database transaction T is a (strictly ordered) sequence of steps.

Each step is a pair of an access operation applied to an object.

Transaction T = 〈s1, . . . , sn〉
Step si = (ai , ei)

Access operation ai ∈ {r(ead), w(rite)}
The length of a transaction T is its number of steps |T | = n.

We could write the money transfer transaction as

T = 〈 (read,Checking), (write,Checking),
(read,Saving), (write,Saving) 〉

3
2
1

or, more concisely,

T = 〈r(C ),w(C ), r(S),w(S)〉 .
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Schedules

A schedule S for a given set of transactions T = {T1, . . . ,Tn} is an

arbitrary sequence of execution steps

S(k) = (Tj , ai , ei) k = 1 . . .m ,
2

1

1

such that

1 S contains all steps of all transactions an nothing else and

2 the order among steps in each transaction Tj is preserved:

(ap, ep) < (aq, eq) in Tj ⇒ (Tj , ap, ep) < (Tj , aq, eq) in S .

We sometimes write

S = 〈r1(B), r2(B),w1(B),w2(B)〉

to mean
S(1) = (T1, read,B) S(3) = (T1, write,B)
S(2) = (T2, read,B) S(4) = (T2, write,B)
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Serial Execution

One particular schedule is serial execution.

A schedule S is serial iff, for each contained transaction Tj , all its

steps follow each other (no interleaving of transactions).

Consider again the ATM example from slide 244.

S = 〈r1(B), r2(B),w1(B),w2(B)〉
This schedule is not serial.

2

2

1

1

If my wife had gone to the bank one hour later, “our” schedule probably

would have been serial.

S = 〈r1(B),w1(B), r2(B),w2(B)〉
2

1

2

1
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Correctness of Serial Execution

Anomalies such as the “lost update” problem on slide 244 can only

occur in multi-user mode.

If all transactions were fully executed one after another (no

concurrency), no anomalies would occur.

Any serial execution is correct.

Disallowing concurrent access, however, is not practical.

Therefore, allow concurrent executions if they are equivalent to a

serial execution.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 256



Conflicts

What does it mean for a schedule S to be equivalent to another schedule

S ′?

Sometimes, we may be able to reorder steps in a schedule.

We must not change the order among steps of any transaction

Tj (↗ slide 254).

Rearranging operations must not lead to a different result.

Two operations (a, e) and (a′, e ′) are said to be in conflict

(a, e)= (a′, e ′) if their order of execution matters.

When reordering a schedule, we must not change the relative

order of such operations.

Any schedule S ′ that can be obtained this way from S is said to be

conflict equivalent to S .
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Conflicts

Based on our read/write model, we can come up with a more

machine-friendly definition of a conflict.

Two operations (Ti , a, e) and (Tj , a
′, e ′) are in conflict in S if

1 they belong to two different transactions (Ti 6= Tj),

2 they access the same database object, i.e., e = e ′, and

3 at least one of them is a write operation.

This inspires the following conflict matrix:

read write

read ×
write × ×

Conflict relation ≺S :

(Ti , a, e) ≺S (Tj , a
′, e ′)

:=
(a, e)= (a′, e ′) ∧ (Ti , a, e) occurs before (Tj , a

′, e ′) in S ∧ Ti 6= Tj
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Conflict Serializability

A schedule S is conflict serializable iff it is conflict equivalent to

some serial schedule S ′.

The execution of a conflict-serializable S schedule is correct.

S does not have to be a serial schedule.

This allows us to prove the correctness of a schedule S based on its

conflict graph G (S) (also: serialization graph).

Nodes are all transactions Ti in S .

There is an edge Ti → Tj iff S contains operations (Ti , a, e)
and (Tj , a

′, e ′) such that (Ti , a, e) ≺S (Tj , a
′, e ′).

S is conflict serializable if G (S) is acyclic.18

18A serial execution of S could be obtained by sorting G(S) topologically.
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Serialization Graph

Example: ATM transactions (↗ slide 244)

S = 〈r1(A), r2(A),w1(A),w2(A)〉
Conflict relation:

(T1, r,A) ≺S (T2, w,A)
(T2, r,A) ≺S (T1, w,A)
(T1, w,A) ≺S (T2, w,A)

T1

T2

→ not serializable

Example: Two money transfers (↗ slide 245)

S = 〈r1(C ),w1(C ), r2(C ),w2(C ), r1(S),w1(S), r2(S),w2(S)〉
Conflict relation:

(T1, r,C ) ≺S (T2, w,C )
(T1, w,C ) ≺S (T2, r,C )
(T1, w,C ) ≺S (T2, w,C )

...

T1

T2

→ serializable
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Query Scheduling

Can we build a scheduler that always emits a serializable schedule?

Idea:

Require each transaction to obtain

a lock before it accesses a data

object o:

1 lock o ;

2 . . . access o . . . ;

3 unlock o ;

This prevents concurrent access to

o.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2
1

2

1

3
2
1

2

1

1

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 261



Locking

If a lock cannot be granted (e.g., because another transaction T ′

already holds a conflicting lock) the requesting transaction Ti gets

blocked.

The scheduler suspends execution of the blocked transaction T .

Once T ′ releases its lock, it may be granted to T , whose execution

is then resumed.

Since other transactions can continue execution while T is blocked,

locks can be used to control the relative order of operations.
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Locking and Serializability

� Does locking guarantee serializable schedules, yet?

� No! Imagine all transactions would just wrap each read/write

operation tightly into lock/unlock calls.

1 lock (acct) ;

2 bal ← read bal (acct) ;

3 unlock (acct) ;

4 bal ← bal − 100 CHF ;

5 lock (acct) ;

6 write bal (acct, bal) ;

7 unlock (acct) ;
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ATM Transaction with Locking

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200

read (acct) ;

unlock (acct) ;
lock (acct) ;

read (acct) ;

unlock (acct) ;
lock (acct) ;

write (acct) ; 1100

unlock (acct) ;
lock (acct) ;

write (acct) ; 1000

unlock (acct) ;
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Two-Phase Locking (2PL)

The two-phase locking protocol poses an additional restriction:

Once a transaction has released any lock, it must not acquire any

new lock.

lock phase release phase

# of

locks held

time

Two-phase locking is the concurrency control protocol used in

database systems today.
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Again: ATM Transaction

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200

read (acct) ;

unlock (acct) ;
lock (acct) ;

read (acct) ;

unlock (acct) ;
lock (acct) ; �
write (acct) ; 1100

unlock (acct) ;
lock (acct) ; �
write (acct) ; 1000

unlock (acct) ;
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A 2PL-Compliant ATM Transaction

To comply with the two-phase locking protocol, the ATM

transaction must not acquire any new locks after a first lock has

been released.

1 lock (acct) ;

2 bal ← read bal (acct) ;

3 bal ← bal − 100 CHF ;

4 write bal (acct, bal) ;

5 unlock (acct) ;

lock phase

unlock phase

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 267



Resulting Schedule

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200

read (acct) ;

lock (acct) ;

write (acct) ; 1100

unlock (acct) ;

read (acct) ;

write (acct) ; 900

unlock (acct) ;

Transaction

blocked

The use of locking lead to a correct (and serializable) schedule.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 268



Lock Modes

We saw earlier that two read operations do not conflict with each

other.

Systems typically use different types of locks (“lock modes”) to

allow read operations to run concurrently.

read locks or shared locks: mode S

write locks or exclusive locks: mode X

Locks are only in conflict if at least one of them is an X lock:

shared (S) exclusive (X)

shared (S) ×
exclusive (X) × ×

It is a safe operation in two-phase locking to convert a shared lock

into an exclusive lock during the lock phase.

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2015/16 269



Deadlocks

Like many lock-based protocols, two-phase locking has the risk of

deadlock situations:

Transaction 1 Transaction 2

lock (A) ;
... lock (B)

do something
...

... do something

lock (B)
...

[ wait for T2 to release lock ] lock (A)

[ wait for T1 to release lock ]

Both transactions would wait for each other indefinitely.
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Deadlock Handling

A typical approach to deal with deadlocks is deadlock detection:

The system maintains a waits-for graph, where an edge T1 → T2
indicates that T1 is blocked by a lock held by T2.

Periodically, the system tests for cycles in the graph.

If a cycle is detected, the deadlock is resolved by aborting one or

more transactions.

Selecting the victim is a challenge:

Blocking young transactions may lead to starvation: the same

transaction is cancelled again and again.

Blocking an old transaction may cause a lot of investment to

be thrown away.
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Deadlock Handling

Other common techniques:

Deadlock prevention: e.g., by treating handling lock requests in an

asymmetric way:

wait-die: A transaction is never blocked by an older

transaction.

wound-wait: A transaction is never blocked by a younger

transaction.

Timeout: Only wait for a lock until a timeout expires. Otherwise

assume that a deadlock has occurred and abort.

I E.g., IBM DB2 UDB:

db2 => GET DATABASE CONFIGURATION;
...

Interval for checking deadlock (ms) (DLCHKTIME) = 10000
Lock timeout (sec) (LOCKTIMEOUT) = -1
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Variants of Two-Phase Locking

The two-phase locking protocol does not prescribe exactly when

locks have to acquired and released.

Possible variants:

“lock phase” release phase

locks

held

time

preclaiming 2PL

lock phase “release phase”

locks

held

time

strict 2PL

� What could motivate either variant?
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Cascading Rollbacks

Consider three transactions:

�
abort ;w(x)

r(x)

r(x)

T1

T2

T3
time

t2t1

When transaction T1 aborts, transactions T2 and T3 have already

read data written by T1 (↗ dirty read, slide 250)

T2 and T3 need to be rolled back, too.

T2 and T3 cannot commit until the fate of T1 is known.

two-phase locking vs. strict two-phase locking
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Implementing a Lock Manager

We’d like the Lock Manager to do three tasks very efficiently:

1 Check which locks are currently held for a given resource (in order

to decide whether another lock request can be granted).

2 When a lock is released, transactions that requested locks on the

same resource have to be identified and granted the lock.

3 When a transaction terminates, all held locks must be released.

What is a good data structure to accommodate these needs?
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Bookkeeping

...

...
Resource ID

Hash Chain

First In Queue

...

Transaction ID

Resource ID

Lock Mode

Lock Status

Next in Queue

LCB Chain

Transaction ID

Resource ID

Lock Mode

Lock Status

Next in Queue

LCB Chain

Transaction ID

Update Flag

TX Status

# of Locks

LCB Chain

...

. . .

. . .

hash table,

indexed by resource ID

Resource Control Block

(RCB)

Lock Control Blocks (LCBs)

Transaction

Control Block

(TCB)
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Implementing Lock Manager Tasks

1 The locks held for a given resource can be found using a hash

lookup.

Linked list of Lock Control Blocks via ‘First In Queue’/‘Next in

Queue’

The list contains all lock requests, granted or not.

The transaction(s) at the head of the list are the ones that

currently hold a lock on the resource.

2 When a lock is released (i.e., its LCB removed from the list), the

next transaction(s) in the list are considered for granting the lock.

3 All locks held by a single transaction can be identified via the linked

list ‘LCB Chain’ (and easily released upon transaction termination).
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Granularity of Locking

The granularity of locking is a trade-off:

database level

tablespace level

table level

page level

row-level high concurrency

low concurrency

high overhead

low overhead

Idea: multi-granularity locking
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Multi-Granularity Locking

Decide the granularity of locks held for each transaction

(depending on the characteristics of the transaction).

A row lock, e.g., for

SELECT * FROM CUSTOMERS Q1
WHERE C CUSTKEY = 42

and a table lock for

SELECT * FROM CUSTOMERS Q2

How do such transactions know about each others’ locks?

Note that locking is performance-critical. Q2 doesn’t want to

do an extensive search for row-level conflicts.
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Intention Locks

Databases use an additional type of locks: intention locks.

Lock mode intention share: IS

Lock mode intention exclusive: IX

Conflict matrix:

S X IS IX

S × ×
X × × × ×
IS ×
IX × ×

A lock I� on a coarser level means that there’s some � lock on a

lower level.
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Intention Locks

Protocol for multi-granularity locking:

1 A transaction can lock any granule g in � ∈ {S, X} mode.

2 Before a granule g can be locked in � mode, it has to obtain an I�
lock on all coarser granularities than contain g.

Query Q1 would, e.g.,

obtain an IS lock on table CUSTOMERS

(also on on tablespace and database) and

obtain an S lock on the tuple(s) with C CUSTKEY = 42.

Query Q2 would place an

S lock on table CUSTOMERS

(and an IS lock on tablespace and database).
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Detecting Conflicts

Now suppose a write query comes in:

UPDATE CUSTOMERS Q3
SET NAME = ’John Doe’

WHERE C CUSTKEY = 17

It’ll want to place

an IX lock on table CUSTOMER (and . . . ) and

an X lock on the row holding customer 17.

As such it is

compatible with Q1
(there’s no conflict between IX and IS on the table level),

but incompatible with Q2
(the S lock held by Q2 is in conflict with Q3’s IX lock).
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Consistency Guarantees and SQL 92

Sometimes, some degree of inconsistency may be acceptable for specific

applications:

“Mistakes” in few data sets, e.g., will not considerably affect the

outcome of an aggregate over a huge table.

; Inconsistent read anomaly

SQL 92 specifies different isolation levels.

E.g.,

SET ISOLATION SERIALIZABLE;

Obviously, less strict consistency guarantees should lead to increased

throughput.
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SQL 92 Isolation Levels

read uncommitted (also: ‘dirty read’ or ‘browse’)

Only write locks are acquired (according to strict 2PL).

read committed (also: ‘cursor stability’)

Read locks are only held for as long as a cursor sits on the

particular row. Write locks acquired according to strict 2PL.

repeatable read (also: ‘read stability’)

Acquires read and write locks according to strict 2PL.

serializable

Additionally obtains locks to avoid phantom reads.
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Resulting Consistency Guarantees

isolation level dirty read non-repeat. rd phantom rd

read uncommitted possible possible possible

read committed not possible possible possible

repeatable read not possible not possible possible

serializable not possible not possible not possible

Some implementations support more, less, or different levels of

isolation.

Few applications really need serializability.
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Locking and B-Trees

Transaction 1 Transaction 2 Result

SELECT COUNT (*)

FROM Customers

WHERE Name = ’Sam’

2

INSERT INTO Customers

VALUES (..., ’Sam’, ...)
ok

SELECT COUNT (*)

FROM Customers

WHERE Name = ’Sam’

3 �

Transaction 1 “sees” the concurrent insert done by Transaction 2.

→ Isolation property violated.

This is an instance of the phantom problem.
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Avoiding Phantoms

Locking only tuples cannot avoid the phantom problem.

The tuple added by T2 is new; T1 could never have locked it before.

To avoid the phantom problem, we also have to lock absent tuples.

Phantoms can be avoided with:

Predicate Locking: For each query, lock the predicates that it uses.

� Representing, finding, and comparing predicates can be difficult

and inefficient.

Key-Range Locking: Lock index entries that match the predicate.

E.g., in the previous example, lock the index key Sam.
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Key-Range Locking

Use B-trees to lock key values, not tuples!

→ This is somewhat orthogonal to regular data locking.

In general, we want to lock ranges of key values.

→ Including absence of key values.

→ Lock existing key values and gaps.
4
1
2
3

4
2
2
2

4
4
5
0

key value gap

→ The current index content determines which ranges can be locked.
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Key-Range Locking

Typically:

Acquire one lock to mean a key value and its neighboring gap:

4
1
2
3

4
2
2
2

4
4
5
0

→ Previous key locking:

Lock covers key value x and the gap that follows x .

→ Next key locking:

Lock covers key value x and the gap that precedes x .

This way, existing key values can be used as lookup keys in the system’s

lock manager (which is typically organized as a hash table).
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Reading Transactions

Idea:

Queries acquire S locks for all key ranges that intersect with ranges

in query predicates.

E.g., scan range [4200, 5000]:

4
1
0
4

4
1
2
3

4
2
2
2

4
4
5
0

4
5
2
8

5
0
1
2

6
3
3
0

6
4
2
3

→ Ranges ]4123, 4200[ and ]5000, 5012] locked “too much”!
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Inserts

Inserts need to acquire a lock on the gap into which they want to

insert.

Thus, with next key locking: acquire lock on next-largest key.

E.g., insert 4500:

4
1
0
4

4
1
2
3

4
2
2
2

4
4
5
0

4
5
0
0

4
5
2
8

5
0
1
2

6
3
3
0

6
4
2
3

→ Acquire X lock on 4528 (which covers range ]4450, 4528]).

→ If the reading transaction from the previous slide still holds its locks,

a conflict on 4528 will be detected (and the insert will have to wait).

→ Insert new key and X lock it immediately.
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Lock Duration

Readers:

Keep the range locked until the transaction commits.

This is to make sure the range can be re-read at any time without

seeing phantoms.

Inserts:

Keep newly inserted entry X locked until commit time.

→ This prevents others from reading un-committed data.

The lock on the next key (4528 here), however, can be released

immediately.

→ Acquiring the lock with “instant duration” ensures there is no

co-running reader for that range.

→ Once the new key is inserted, readers (or writers) are free to

lock the next key (4528), since its associated range

(]4500, 4528] now) only covers the gap without the newly

inserted key.
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Why Bother?

This ability to lock with instant duration is very relevant in practice.

Inserts at the right end of a B-tree are a very common pattern.

→ Next key locking requires an extra +∞ index entry, by the way.

→ All append queries will lock this +∞ entry.

→ When the lock on +∞ is an instant lock, other inserts can

proceed immediately.

→ Note how this also favors next key locking over previous key locking.
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Deletions

To delete an entry x , the transaction has to obtain

an X lock on the to-be-deleted entry x ,

→ Make sure no other transaction still depends on x .

→ The lock is effectively instant, since the transaction is about to

remove x anyway.

an X lock on x ’s next key until commit time.

→ � Why?

→ Prevent others from “reading” an un-committed delete.

→ Be prepared to re-insert x in case the transaction aborts.
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Key-Value Locks in Practice

IBM DB2 does not lock index entries explicitly.

Instead, DB2 performs data-only locking.

A locked tuple implies a key-range lock in all indexes on the table.

When checking for lock compatibility, DB2 looks for already held

locks, but also considers the isolation level of the lock holder.

Data-only locking may lead to unexpected side effects:

E.g., a scan criterion on one column may lead to locks in scattered

regions of other attributes.

On the positive side, deriving key-range locks from row locks reduces the

number of locks to maintain (and thus the complexity of the lock

manager).
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Ghost Records

Support for ghost records may ease key-range locking considerably.

Deletes will not actually remove the index entry, but only turn the

record into a ghost.

The ghost still represents a valid range boundary (locks can be

acquired on ghosts just as on normal records).

Flipping the ghost bit is merely a form of value update of the

record.

→ Value updates do not need range locks as long as they do not

modify the key value.
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Ghost Records and Inserts

The same advantages also hold for inserts if a ghost with the right key

value already exists.

→ Need to lock only the key value itself (neighboring range is often

implicit, but not strictly required).

Existence of a matching ghost need not be a coincidence.

Trick:

Invoke a short, separate transaction that creates the ghost for us.

The transaction will have to acquire range locks. But it will commit

immediately (and release its locks).
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Locking in Practice—SQL Server
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Multi-User and Multi-Thread Support

So far we looked at ill effects between user transactions.

→ Locks on data objects helped to isolate transactions.

Parallel threads might cause additional problems:

→ Two writers, different data objects, same page ; corrupted data.

→ Locks will not isolate threads that belong to the same transaction.

→ How do we protect internal data structures (lock table, buffer

pool, etc.)?

Lock manager can only lock user data objects!

This calls for a mechanism to isolate threads (not transactions).

→ Short-lived, in-memory “locks” or latches.

(The term “lock” is reserved for transaction-level locking.)
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Page Latches

Latches protect data at a page granularity.

→ This has also been called storage-layer concurrency.

To achieve high concurrency:

Hold latches as short as possible.

Hold few latches only (and/or latch at fine granularities).

In addition:

Choose a fast implementation for latches.

→ no frills like deadlock checking

→ instead: avoid deadlocks by coding discipline
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Page Latches (Data Pages)

Example:

Latches on data pages make page modifications appear as an

atomic operation.

→ Protect from, e.g., observing a corrupt page.

Latching is in-memory only.

→ No I/O while holding a page latch.

→ Latches are not flushed to disk.

Only hold one latch at a time.

→ � Why?

Avoid deadlocks.
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Latches and B-Trees (Search)

� Order for latch acquisition/release during a B-tree search?

�
During parent→ child navigation, child must not be split in-between.

1 n ← root page ;

2 read-latch n ;

3 while n is not a leaf do

4 locate child n′ of n ;

5 read-latch n′ obtain new latch first!;

6 un-latch n ;

7 n ← n′ ;

8 return matching records (if any) ;

9 un-latch n ;

This is also known as latch coupling (or lock coupling).
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Latch Coupling

With latch coupling, a thread may hold more than one latch at a time.

→ A deadlock still cannot occur:

Every thread will navigate/acquire latches top-down.

All threads acquire latches in same order → no deadlock.
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Latches and B-Trees (Updates)

Updates to B-trees operate bottom-up.

Possible strategy:

Acquire read latches as during search, but keep all latches.

→ Ensure that the parent (grandparent, . . . ) is still the parent

during bottom-up processing.

Acquire write latches bottom-up.

→ Latch conversion: read latch ; write latch.

→ Write-latch parent before splitting a child.

Release write latches when all necessary changes to the page are

applied; release ancestor read latches when no more splits are

necessary.

If the B-tree implementation uses sibling pointers, additional locks may

have to be acquired on sibling nodes.
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Latches and B-Trees (Updates)

The strategy on the previous slide guarantees correctness.

All tree modifications are write-latched, and released latches always

leave behind a consistent B-tree.

But:

�
The strategy entails a danger of deadlocks.

Searches acquire their latches top-down.

Updates acquire their (write) latches bottom-up.

Remember: We want latches to be lightweight → no deadlock checking.
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Latching B-Trees Without Deadlocks

Deadlocks can be avoided when all operations acquire latches either

top-down or bottom-up.

Thus:

Let insert operations acquire write latches right away.

� What do you think of this strategy?

→ All updates will hold a write latch on the B-tree root.

→ Very low concurrency will be the result.
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Latching B-Trees Without Deadlocks

Chances that a write latch on a parent is actually needed are really low.

→ E.g., B-tree with up to 100 entries/node → chance of a split: 2 %

Idea: (Try to) keep write latch only when really necessary.

During tree descent, observe space utilization in visited nodes.

When a node n has enough space to hold another entry, n

definitely won’t have to be split.

For such nodes n, the parent node p will not have to be updated.

→ p is then called split safe.

The latch on that parent p can be released safely.
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Lock Coupling Protocol (Variant 1)

1 place S lock on root ;

2 current ← root ;

3 while current is not a leaf node do

4 place S lock on appropriate son of current ;

5 release S lock on current ;

6 current ← son of current ;

readers

1 place X lock on root ;

2 current ← root ;

3 while current is not a leaf node do

4 place X lock on appropriate son of current ;

5 current ← son of current ;

6 if current is safe then

7 release all locks held on ancestors of current ;

writers
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Increasing Concurrency for Common Scenarios

Even with lock coupling there’s a considerable amount of locks on

inner tree nodes (reducing concurrency).

Chances that inner nodes are actually affected by updates are very

small.

Back-of-the-envelope calculation:

d = 50⇒ every 50th insert causes a split (2 % chance).

An insert transaction could thus optimistically assume that no leaf

split is going to happen.

On inner nodes, only read locks acquired during tree navigation

(plus a write lock on the affected leaf).

If assumption is wrong, re-traverse the tree and obtain write

locks.
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Lock Coupling Protocol (Variant 2)

Modified protocol for writers:19

1 place S lock on root ;

2 current ← root ;

3 while current is not a leaf node do

4 son ← appropriate son of current ;

5 if son is a leaf then

6 place X lock on son ;

7 else

8 place S lock on son ;

9 release lock on current ;

10 current ← son ;

11 if current is unsafe then

12 release all locks and repeat with protocol Variant 1 ;

19Reader protocol remains unchanged.
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B-Tree Latching and High Concurrency

Deciding split safety can be difficult for variable-length keys.

The strategy on the previous slide thus has to be very conservative.

Effectively, many latches are still held unnecessarily.

Ways to improve concurrency (by holding fewer latches):

split proactively: When a node is not split safe, split it right away.

At least the system then suffers the unnecessary latch only once.

repeated root-to-leaf passes: Descend with only read latches first.

Re-traverse the tree with full write latches when a split is necessary.

giveup technique: hold only single-node read latches (and risk

inconsistencies); detect conflicts and re-traverse in case of a conflict.

Blink-trees: slightly relax some B-tree rules.
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Giveup Technique

A deadlock can only arise when a thread acquires (or tries to) a new

latch before releasing an old one.

→ A thread that always only holds a single latch at a time can never

deadlock.

Search routine with only a single latch held at any time:

1 n ← root page ;

2 while n is not a leaf do

3 read-latch n ;

4 determine child n′ of n ;

5 un-latch n ;

6 n ← n′ ;

7 read-latch n ;

8 return matching records (if any) ;

9 un-latch n ;
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Giveup Technique

There is a risk of inconsistencies when only a single latch is held.

Between determining the child page n′ and latching it, a concurrent

update might have split n′.

The search might miss an entry that is now on a new page.

Thus: Detect when a conflicting update has happened.

When descending, remember the two separator keys kmin and kmax
in n that guided to n′.

When looking at n′, first check whether kmin and kmax are still the

correct separator keys for that page.

→ Keep copies of parent’s separator keys in each node.

→ Such copies are also called fence keys.

If a conflict is detected, abort and re-try a moment later.
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Blink-Trees

Lehman and Yao20 proposed a B-tree variant, usually referred to as

Blink-tree, where writes must latch at most two nodes at a time.

Idea:

Assume a B-tree with forward sibling pointers.

Relax B-tree structure: Allow parent→ child to be missing when

the child is reachable via the sibling pointer of its predecessor.

. . . . . . . . .

. . .

This situation

is allowed!

20Lehman and Yao. Efficient Locking for Concurrent Operations on B-Trees, TODS

6(4), 1981.
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Blink-Trees

With the relaxation, node splitting and parent updates can be separated.

1 latch & read page B ;

2 create new page D and latch it ;

3 populate page D ;

4 set next pointer D → C ;

5 un-latch D ;

6 set next pointer B → D ;

7 adjust content of B ;

8 un-latch B ;

9 latch & read A ;

10 adjust content of A ;

11 un-latch A ;

8
5
0
0
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2

6
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2
3

8
1
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8
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8
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0
0
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1
6
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1
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8
2
8
0

A

B C

D

→ Lines 9–11 can be deferred to a later time.
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Blink-Trees

With the relaxation stated before, lines 1–8 already represent a correct

Blink-tree.

Lines 9–11 are, in a sense, only applied for performance reasons.

The parent could be updated also at a later time:

As a “clean-up process” triggered when the update has completed.

When the next search traverses the tree.

During database maintenance.

In fact, even the page latches can be avoided when pointer updates and

record deletions can be done atomically.

I PostgreSQL, e.g., uses Blink-Trees.
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Optimistic Concurrency Control

So far we’ve been rather pessimistic:

we’ve assumed the worst and prevented that from happening.

In practice, conflict situations are not that frequent.

Optimistic concurrency control: Hope for the best and only act in

case of conflicts.
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Optimistic Concurrency Control

Handle transactions in three phases:

1 Read Phase. Execute transaction, but do not write data back to

disk immediately. Instead, collect updates in a private workspace.

2 Validation Phase. When the transaction wants to commit, test

whether its execution was correct. If it is not, abort the transaction.

3 Write Phase. Transfer data from private workspace into database.
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Validating Transactions

Validation is typically implemented by looking at transactions’

Read Sets RS(Ti): (attributes read by transaction Ti) and

Write Sets WS(Ti): (attributes written by transaction Ti).

backward-oriented optimistic concurrency control (BOCC):

Compare T against all committed transactions Tc .

Check succeeds if

Tc committed before T started or RS(T ) ∩WS(Tc) = ∅ .

forward-oriented optimistic concurrency control (FOCC):

Compare T against all running transactions Tr .

Check succeeds if

WS(T ) ∩ RS(Tr ) = ∅ .
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Multiversion Concurrency Control

Consider the schedule

r1(x),w1(x), r2(x),

t

w2(y), r1(y),w1(z) .

� Is this schedule serializable?

No! E.g., w1(x) < r2(x) and w2(y) < r1(y)

Now suppose when T1 wants to read y , we’d still have the “old”

value of y , valid at time t, around.

We could then create a history equivalent to

r1(x),w1(x), r2(x), r1(y),w2(y),w1(z) ,

which is serializable.
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MVCC in Practice—Read-Only MVCC

A simple form of MVCC is the Read-Only MVCC:

Read/write transactions use concurrency control as before (e.g.,

2PL)

Read-only transactions do not acquire any locks. For each read

operation r(x) of a read-only transaction TRO , read the version of x

that existed when TRO started.

That is, read-only transactions see a snapshot of the database as of the

time when they started.

Problem:

Must mark each data object with commit time of transaction.
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“Read-Consistency” MVCC

Oracle implements “read committed” (↗ slide 284) using the

“Read-Consistency” protocol:

read-only transactions are treated as in the Read-Only protocol.

writes in read/write transactions acquire long-duration write locks.

reads in read/write transactions do not acquire read locks; they

read the most recent version of any data object.

→ Reads only return committed values (; read committed).

→ Read-only transactions see consistent state (unlike in read

committed).

→ Readers never block writers and vice versa.
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Snapshot Isolation

A modification of the same idea yields snapshot isolation.

All reads of any transaction T see the version that was current

when T started.

All writes must satisfy the “first committer wins” property. A

transaction T is allowed to commit only if there is no other

transaction T ′ such that

(a) T ′ committed between the start and commit time of T and

(b) T ′ updated a data object that T also updated.

Otherwise, T aborts.

To test “first committer wins,” compare write sets of T and T ′.

I Snapshot isolation is implemented, e.g., in Oracle, SQL Server,

PostgreSQL
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Wrap-Up

ACID and Serializability

To prevent from different types of anomalies, DBMSs guarantee

ACID properties. Serializability is a sufficient criterion to

guarantee isolation.

Two-Phase Locking

Two-phase locking is a practicable technique to guarantee

serializability. Most systems implement strict 2PL. SQL 92 allows

explicit relaxation of the ACID isolation constraints in the interest

of performance.

Concurrency in B-trees

Specialized protocols exist for concurrency control in B-trees (the

root would be a locking bottleneck otherwise).
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