Architecture and Implementation of Database Systems (Winter 2013/14)

Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Winter 2013/14
Part IX

Parallel Databases
Motivation

It is increasingly attractive to leverage parallelism available in hardware.

Reduced Cost:
- Large monolithic systems are extremely complex to build.
- Smaller systems sell at much higher volumes, with much better price/performance ratio.

Reduced Energy Consumption:
- Performance scales linearly with clock frequency; energy consumption scales quadratically.
- Additional cooling cost makes this even worse.
- Modern chip designs are power-limited (multi-core)

Prepare for Hardware Failures?
- A spare COTS system is cheaper than a spare mainframe.
Scaling with Parallelism

Desirable: **speed-up** and **scale-up**

![Graph showing speed-up and scale-up]

- **Linear speed-up**
- **Sub-linear speed-up**

![Graph showing transactions per second vs. number of CPUs]

![Graph showing transactions per second vs. # of CPUs; DB size]

- **Linear scale-up**
- **Sub-linear scale-up**
Different architectures have been proposed for parallel databases.
Advantages of shared memory architectures:

- Porting to shared memory architecture (relatively) easy.

Problems of shared memory architectures:

- **Contention** in interconnect
 - Here: memory contention
 - Hard to build scalable and fast interconnect.

- **Interference:**
 - Addl. CPUs slow down existing ones (e.g., due to contention).

- Suitable for **low degrees of parallelism** (up to few tens).
Shared Disk, Shared Memory

Shared disk architectures have similar problems.

→ contention and interference problems

Further:

- For read/write access, coherence tricky to get right.

→ Shared nothing seems to be the method of choice.
Parallel Query Evaluation

Intra-query parallelism:

- **Pipeline parallelism:**
 - Assign plan operators to CPUs; send tuples from CPU to CPU.
 - Only works for **non-blocking operators**.
 - **Limited scalability**: few operators per plan; load balancing?

- **Data parallelism:**

 ![Diagram showing data parallelism]
Data Parallelism

Data parallelism goes particularly well with data partitioning.

→ Distribute tuples over nodes (→ horizontal partitioning)

~ Parallel scan; high I/O bandwidth

Round-Robin Partitioning:

■ Easy, trivial load balancing

Range Partitioning:

■ Need to access only those nodes that hold relevant data.

■ Data skew may lead to trouble.

■ May be beneficial for sorting, joining, etc.

■ Range boundaries?
Hash Partitioning:

- **Data skew** less of a problem
- May also help certain operations (e.g., **joins**)
- **No knowledge** about data or types required
Parallelizing Operator Evaluation

Scan: Easy

→ Scan-heavy queries benefit easily from data parallelism.

Sort:

- Merge sort/external sort: run early stages in parallel, then merge
- With **range partitioning**, merging becomes trivial.
 → Thus, first range-partition (re-distribute) data, then sort.
 → Determine range boundaries with help of **sampling**.

Join:

- **Partition** (re-distribute) tuples (hash or range partitioning)
- $R_i \bowtie S_i$ joins can now be computed locally.
Parallel Joins (Using Merge Sort Locally)

input relation

range partition

local sort

(local)

range partition and local sort

input relation

© Jens Teubner · Architecture & Implementation of DBMS · Winter 2013/14
Parallel Joins (here: MPSM)

input relation

range partition

local sort

local sort

local sort

local sort

input relation

scan

scan

scan

scan

local sort

local sort

local sort

local sort

input relation
Instead: Sort, then Merge/Partition

Re-distributes ("shuffles") likely limited by interconnect bandwidth.
Perform merge/join during shuffle
→ Leverage available CPU capacity while I/O-limited.
Reduce Communication for Joins

Bloom filters can help reduce communication cost.

1. Partition and distribute outer join relation R.
2. On each node H_i, compute Bloom filter vector for R_i.
3. Broadcast all Bloom filters to all nodes.
4. Partition and distribute S, but filter tuples before sending.
5. Compute $R_i \bowtie S_i$ locally on all H_i.