Part VI

Query Optimization
Finding the “Best” Query Plan

We already saw that there may be more than one way to answer a given query.

Which one of the join operators should we pick? With which parameters (block size, buffer allocation, . . .)?

The task of finding the best execution plan is, in fact, the **holy grail** of any database implementation.
Plan Generation Process

- **Parser**: syntactical/semantical analysis
- **Rewriting**: optimizations independent of the current database state (table sizes, availability of indexes, etc.)
- **Optimizer**: optimizations that rely on a cost model and information about the current database state
- The resulting plan is then evaluated by the system’s execution engine.
Finding the right plan can dramatically impact performance.

```
SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM LINEITEM L, ORDERS O, CUSTOMER C
WHERE L.L_ORDERKEY = O.O_ORDERKEY
    AND O.O_CUSTKEY = C.C_CUSTKEY
    AND C.C_NAME = 'IBM Corp.'
```

In terms of execution times, these differences can easily mean “seconds versus days.”
The SQL Parser

- Besides some analyses regarding the syntactical and semantical correctness of the input query, the parser creates an **internal representation** of the input query.

- This representation still resembles the original query:
 - Each SELECT-FROM-WHERE clause is translated into a **query block**.

```
SELECT proj-list
    FROM R_1, R_2, ..., R_n
    WHERE predicate-list
    GROUP BY groupby-list
    HAVING having-list
```

- Each R_i can be a base relation or another query block.
The parser output is fed into a **rewrite engine** which, again, yields a tree of query blocks.

It is then the **optimizer’s** task to come up with the optimal **execution plan** for the given query.

Essentially, the optimizer

1. **enumerates** all possible execution plans,
2. determines the **quality** (cost) of each plan, then
3. **chooses** the best one as the final execution plan.

Before we can do so, we need to answer the question

- What is a “good” execution plan at all?
Cost Metrics

Database systems judge the quality of an execution plan based on a number of **cost factors**, *e.g.*,
- the number of **disk I/Os** required to evaluate the plan,
- the plan’s **CPU cost**,
- the overall **response time** observable by the user as well as the total **execution time**.

A cost-based optimizer tries to **anticipate** these costs and find the cheapest plan before actually running it.

- All of the above factors depend on one critical piece of information: the **size of (intermediate) query results**.
- Database systems, therefore, spend considerable effort into accurate **result size estimates**.
Consider a query block corresponding to a simple SFW query Q.

We can estimate the result size of Q based on

- the size of the input tables, $|R_1|, \ldots, |R_n|$, and
- the selectivity $sel(p)$ of the predicate $predicate-list$:

\[
|Q| \approx |R_1| \cdot |R_2| \cdots |R_n| \cdot sel(predicate-list) .
\]
Table Cardinalities

If not coming from another query block, the size $|R|$ of an input table R is available in the DBMS’s **system catalogs**.

E.g., IBM DB2:

```sql
db2 => SELECT TABNAME, CARD, NPAGES
         FROM SYSCAT.TABLES
         WHERE TABSCHEMA = 'TPCH';
```

<table>
<thead>
<tr>
<th>TABNAME</th>
<th>CARD</th>
<th>NPAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDERS</td>
<td>1500000</td>
<td>44331</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>150000</td>
<td>6747</td>
</tr>
<tr>
<td>NATION</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>REGION</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>PART</td>
<td>200000</td>
<td>7578</td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>10000</td>
<td>406</td>
</tr>
<tr>
<td>PARTSUPP</td>
<td>800000</td>
<td>31679</td>
</tr>
<tr>
<td>LINEITEM</td>
<td>6001215</td>
<td>207888</td>
</tr>
</tbody>
</table>

8 record(s) selected.
Estimating Selectivities

To estimate the selectivity of a predicate, we look at its structure.

\[\text{column} = \text{value} \]

\[
\text{sel}(\cdot) = \begin{cases}
\frac{1}{|I|} & \text{if there is an index } I \text{ on } \text{column} \\
\frac{1}{10} & \text{otherwise}
\end{cases}
\]

\[\text{column}_1 = \text{column}_2 \]

\[
\text{sel}(\cdot) = \begin{cases}
\frac{1}{\max\{|I_1|,|I_2|\}} & \text{if there are indexes on both cols.} \\
\frac{1}{|I_k|} & \text{if there is an index only on col. } k \\
\frac{1}{10} & \text{otherwise}
\end{cases}
\]

\[p_1 \text{ AND } p_2 \]

\[\text{sel}(\cdot) = \text{sel}(p_1) \cdot \text{sel}(p_2) \]

\[p_1 \text{ OR } p_2 \]

\[\text{sel}(\cdot) = \text{sel}(p_1) + \text{sel}(p_2) - \text{sel}(p_1) \cdot \text{sel}(p_2) \]
Improving Selectivity Estimation

The selectivity rules we saw make a fair amount of assumptions:
- **uniform distribution** of data values within a column,
- **independence** between individual predicates.

Since these assumptions aren’t generally met, systems try to improve selectivity estimation by gathering **data statistics**.
- These statistics are collected offline and stored in the system catalog.
 - IBM DB2: `RUNSTATS ON TABLE` . . .
- The most popular type of statistics are **histograms**.
Example: Histograms in IBM DB2

```
SELECT SEQNO, COLVALUE, VALCOUNT
FROM SYSCAT.COLDIST
WHERE TABNAME = 'LINEITEM'
AND COLNAME = 'L_EXTENDEDPRICE'
AND TYPE = 'Q';
```

<table>
<thead>
<tr>
<th>SEQNO</th>
<th>COLVALUE</th>
<th>VALCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+00000000000996.01</td>
<td>3001</td>
</tr>
<tr>
<td>2</td>
<td>+00000000004513.26</td>
<td>315064</td>
</tr>
<tr>
<td>3</td>
<td>+00000000007367.60</td>
<td>633128</td>
</tr>
<tr>
<td>4</td>
<td>+0000000011861.82</td>
<td>948192</td>
</tr>
<tr>
<td>5</td>
<td>+0000000015921.28</td>
<td>1263256</td>
</tr>
<tr>
<td>6</td>
<td>+0000000019922.76</td>
<td>1578320</td>
</tr>
<tr>
<td>7</td>
<td>+0000000024103.20</td>
<td>1896384</td>
</tr>
<tr>
<td>8</td>
<td>+0000000027733.58</td>
<td>2211448</td>
</tr>
<tr>
<td>9</td>
<td>+0000000031961.80</td>
<td>2526512</td>
</tr>
<tr>
<td>10</td>
<td>+0000000035584.72</td>
<td>2841576</td>
</tr>
<tr>
<td>11</td>
<td>+0000000039772.92</td>
<td>3159640</td>
</tr>
<tr>
<td>12</td>
<td>+0000000043395.75</td>
<td>3474704</td>
</tr>
<tr>
<td>13</td>
<td>+0000000047013.98</td>
<td>3789768</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSCAT.COLDIST also contains information like
- the n most frequent values (and their frequency),
- the number of distinct values in each histogram bucket.

Histograms may even be manipulated manually to tweak the query optimizer.
We’ve now translated the query into a graph of **query blocks**.

- Query blocks essentially are a **multi-way** Cartesian product with a number of selection predicates on top.

We can estimate the **cost** of a given **execution plan**.

- Use result size estimates in combination with the cost for individual join algorithms in the previous chapter.

We are now ready to **enumerate** all possible execution plans, *e.g.*, all possible **3-way** join combinations for a query block.
How Many Such Combinations Are There?

- A join over $n + 1$ relations R_1, \ldots, R_{n+1} requires n binary joins.
- Its root-level operator joins sub-plans of k and $n - k - 1$ join operators ($0 \leq k \leq n - 1$):

 ![Diagram](image)

- Let C_i be the number of possibilities to construct a binary tree of i inner nodes (join operators):

 $$ C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} $$
Catalan Numbers

This recurrence relation is satisfied by Catalan numbers:

\[C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!}, \]

describing the number of ordered binary trees with \(n + 1 \) leaves.

For each of these trees, we can permute the input relations \(R_1, \ldots, R_{n+1} \), leading to

\[\frac{(2n)!}{(n+1)!n!} \cdot (n+1)! = \frac{(2n)!}{n!} \]

possibilities to evaluate an \((n+1) \)-way join.
The resulting search space is **enormous**:

<table>
<thead>
<tr>
<th>number of relations n</th>
<th>C_{n-1}</th>
<th>join trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>1,680</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>30,240</td>
</tr>
<tr>
<td>7</td>
<td>132</td>
<td>665,280</td>
</tr>
<tr>
<td>8</td>
<td>429</td>
<td>17,297,280</td>
</tr>
<tr>
<td>10</td>
<td>4,862</td>
<td>17,643,225,600</td>
</tr>
</tbody>
</table>

And we haven’t yet even considered the use of k **different join algorithms** (yielding another factor of $k^{(n-1)}$)!
Dynamic Programming

The traditional approach to master this search space is the use of **dynamic programming**.

Idea:
- Find the cheapest plan for an n-way join in n passes.
- In each pass k, find the best plans for all k-relation sub-queries.
- **Construct** the plans in pass k from best i-relation and $(k - i)$-relation sub-plans found in earlier passes ($1 \leq i < k$).

Assumption:
- To find the optimal **global plan**, it is sufficient to only consider the optimal plans of its sub-queries.
Example: Four-Way Join

Pass 1 (best 1-relation plans)
Find the best **access path** to each of the R_i individually (considers index scans, full table scans).

Pass 2 (best 2-relation plans)
For each **pair** of tables R_i and R_j, determine the best order to join R_i and R_j ($R_i \bowtie R_j$ or $R_j \bowtie R_i$?):

$$optPlan(\{R_i, R_j\}) \leftarrow \text{best of } R_i \bowtie R_j \text{ and } R_j \bowtie R_i.$$

→ 12 plans to consider.

Pass 3 (best 3-relation plans)
For each **triple** of tables R_i, R_j, and R_k, determine the best three-table join plan, using sub-plans obtained so far:

$$optPlan(\{R_i, R_j, R_k\}) \leftarrow \text{best of } R_i \bowtie optPlan(\{R_j, R_k\}),$$

$$optPlan(\{R_j, R_k\}) \bowtie R_i, \quad R_j \bowtie optPlan(\{R_i, R_k\}), \ldots.$$

→ 24 plans to consider.
Pass 4 (best 4-relation plan)
For each set of four tables R_i, R_j, R_k, and R_l, determine the best four-table join plan, using sub-plans obtained so far:

\[
\text{optPlan}(\{R_i, R_j, R_k, R_l\}) \leftarrow \text{best of } R_i \bowtie \text{optPlan}(\{R_j, R_k, R_l\}), R_j \bowtie \text{optPlan}(\{R_i, R_k, R_l\}), \ldots, R_k \bowtie \text{optPlan}(\{R_i, R_j, R_l\}), \ldots.
\]

→ 14 plans to consider.

- Overall, we looked at only **50** (sub-)plans (instead of the possible 120 four-way join plans; ↩ slide 218).
- All decisions required the evaluation of simple sub-plans only (no need to re-evaluate the interior of $\text{optPlan}(\cdot)$).
Function: \text{find_join_tree_dp}(q(R_1, \ldots, R_n))

\begin{algorithm}
\begin{algorithmic}
\For {$i = 1$ to n}
\State $\text{optPlan}([R_i]) \leftarrow \text{access_plans}(R_i)$;
\State $\text{prune_plans}(\text{optPlan}([R_i]))$;
\EndFor
\For {$i = 2$ to n}
\ForEach{$S \subseteq \{R_1, \ldots, R_n\}$ such that $|S| = i$}
\State $\text{optPlan}(S) \leftarrow \emptyset$;
\ForEach{$O \subset S$}
\State $\text{optPlan}(S) \leftarrow \text{optPlan}(S) \cup \text{possible_joins}(\text{optPlan}(O), \text{optPlan}(S \setminus O))$;
\EndFor
\State $\text{prune_plans}(\text{optPlan}(S))$;
\EndFor
\State $\text{return} \ \text{optPlan}([R_1, \ldots, R_n])$
\end{algorithmic}
\end{algorithm}

- possible_joins(R, S) enumerates the possible joins between R and S (nested loops join, merge join, etc.).
- prune_plans(set) discards all but the best plan from set.
find_join_tree_dp() draws its advantage from filtering plan candidates early in the process.

In our example on slide 220, pruning in Pass 2 reduced the search space by a factor of 2, and another factor of 6 in Pass 3.

Some heuristics can be used to prune even more plans:

- Try to avoid Cartesian products.
- Produce left-deep plans only (see next slides).

Such heuristics can be used as a handle to balance plan quality and optimizer runtime.

DB2 UDB: SET CURRENT QUERY OPTIMIZATION = n
The algorithm on slide 222 explores all possible shapes a join tree could take:

- **left-deep**
- **bushy** (everything else)
- **right-deep**

Actual systems often prefer **left-deep** join trees.\(^\text{15}\)

- The **inner** relation is always a **base relation**.
- Allows the use of **index nested loops join**.
- Easier to implement in a **pipelined** fashion.

\(^{15}\)The seminal **System R** prototype, e.g., considered only left-deep plans.
Join Order Makes a Difference

- XPath evaluation over relationally encoded XML data\(^\text{16}\)
- \(n\)-way self-join with a range predicate.

Join Order Makes a Difference

Contrast the execution plans for a 8- and a 9-step path.

- left-deep join tree
- bushy join tree

- DB2’s optimizer essentially gave up in the face of 9+ joins.
Dynamic programming still has exponential resource requirements:

- time complexity: $O(3^n)$
- space complexity: $O(2^n)$

This may still be too expensive

- for joins involving many relations ($\sim 10–20$ and more),
- for simple queries over well-indexed data (where the right plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.
Greedy Join Enumeration

1. **Function:** `find_join_tree_greedy(q(R_1, \ldots, R_n))`
2. \(\text{worklist} \leftarrow \emptyset\);
3. \(\text{for } i = 1 \text{ to } n \text{ do}\)
4. \(\quad \text{worklist} \leftarrow \text{worklist} \cup \text{best_access_plan}(R_i)\);
5. \(\text{for } i = n \text{ downto } 2 \text{ do}\)
6. \(\quad \text{find } P_j, P_k \in \text{worklist} \text{ and } \ni \ldots \text{ such that } \text{cost}(P_j \ni \ldots P_k) \text{ is minimal }\);
7. \(\quad \text{worklist} \leftarrow \text{worklist} \setminus \{P_j, P_k\} \cup \{(P_j \ni \ldots P_k)\};\)
8. \(\text{return } \text{single plan left in worklist }\);

- In each iteration, choose the **cheapest** join that can be made over the remaining sub-plans.
- Observe that `find_join_tree_greedy()` operates similar to finding the optimum binary tree for **Huffman coding**.
Discussion

Greedy join enumeration:
- The greedy algorithm has $O(n^3)$ time complexity.
 - The loop has $O(n)$ iterations.
 - Each iteration looks at all remaining pairs of plans in worklist. An $O(n^2)$ task.

Other join enumeration techniques:
- Randomized algorithms: randomly rewrite the join tree one rewrite at a time; use hill-climbing or simulated annealing strategy to find optimal plan.
- Genetic algorithms: explore plan space by combining plans (“creating offspring”) and altering some plans randomly (“mutations”).
Consider the query

```
SELECT O.O_ORDERKEY, L.L_EXTENDEDPRICE
FROM ORDERS O, LINEITEM L
WHERE O.O_ORDERKEY = L.L_ORDERKEY
```

where table `ORDERS` is indexed with a **clustered index** `OK_IDX` on column `O_ORDERKEY`.

Possible table access plans are:

- **ORDERS**
 - **full table scan**: estimated I/Os: \(N_{ORDERS}\)
 - **index scan**: estimated I/Os: \(N_{OK_IDX} + N_{ORDERS}\).

- **LINEITEM**
 - **full table scan**: estimated I/Os: \(N_{LINEITEM}\).
Since the **full table scan** is the cheapest access method for both tables, our join algorithms will select them as the best 1-relation plans in Pass 1.\(^{17}\)

To **join** the two scan outputs, we now have the choices

- nested loops join,
- hash join, or
- sort both inputs, then use **merge join**.

Hash join or sort-merge join are probably the preferable candidates here, incurring a cost of \(\approx 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}})\).

\[\rightarrow \text{overall cost: } N_{\text{ORDERS}} + N_{\text{LINEITEM}} + 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}}). \]

\(^{17}\)Dynamic programming and the greedy algorithm happen to do the same in this example.
A Better Plan

It is easy to see, however, that there is a better way to evaluate the query:

1. Use an **index scan** to access ORDERS. This guarantees that the scan output is already **in ORDERKEY order**.

2. Then only **sort** LINEITEM and

3. join using **merge join**.

→ **overall cost:** \(\left(\frac{N_{OK_IDX} + N_{ORDERS}}{1.} \right) + \frac{3 \cdot N_{LINEITEM}}{2./3.} \).

Although more expensive as a standalone table access plan, the use of the index pays off in the overall plan.
Interesting Orders

- The advantage of the index-based access to ORDERS is that it provides beneficial **physical properties**.
- Optimizers, therefore, keep track of such properties by **annotating** candidate plans.
- System R introduced the concept of **interesting orders**, determined by:
 - ORDER BY or GROUP BY clauses in the input query, or
 - join attributes of subsequent joins (merge join).
- In prune plans (), retain
 - the cheapest “unordered” plan and
 - the cheapest plan for each interesting order.
Query Rewriting

Join optimization essentially takes a set of relations and a set of join predicates to find the best join order.

By **rewriting** query graphs beforehand, we can improve the effectiveness of this procedure.

The **query rewriter** applies (heuristic) rules, without looking into the actual database state (no information about cardinalities, indexes, etc.). In particular, it

- **rewrites predicates** and
- **unnests queries**.
Predicate Simplification

Example: rewrite

```
SELECT *  
FROM LINEITEM L  
WHERE L.L_TAX * 100 < 5
```

into

```
SELECT *  
FROM LINEITEM L  
WHERE L.L_TAX < 0.05
```

- Predicate simplification may enable the use of indexes and simplify the detection of opportunities for join algorithms.
Additional Join Predicates

Implicit join predicates as in

\[
\text{SELECT } * \\
\text{FROM } A, B, C \\
\text{WHERE } A.a = B.b \text{ AND } B.b = C.c
\]

can be turned into explicit ones:

\[
\text{SELECT } * \\
\text{FROM } A, B, C \\
\text{WHERE } A.a = B.b \text{ AND } B.b = C.c \\
\text{AND } A.a = C.c
\]

This enables plans like

\[(A \Join C) \Join B.\]

\((A \Join C)\) would have been a Cartesian product before.)
Nested Queries

SQL provides a number of ways to write nested queries.

- **Uncorrelated** sub-query:

```sql
SELECT *
FROM ORDERS O
WHERE O_CUSTKEY IN (SELECT C_CUSTKEY
                      FROM CUSTOMER
                      WHERE C_NAME = 'IBM Corp.')
```

- **Correlated** sub-query:

```sql
SELECT *
FROM ORDERS O
WHERE O.O_CUSTKEY IN
  (SELECT C.C_CUSTKEY
   FROM CUSTOMER C
   WHERE C.C_ACCTBAL < O.O_TOTALPRICE)
```
Query Unnesting

- Taking query nesting literally might be **expensive**.
 - An uncorrelated query, *e.g.*, need not be re-evaluated for every tuple in the outer query.

- Oftentimes, sub-queries are only used as a syntactical way to express a **join** (or a semi-join).

- The query rewriter tries to detect such situations and **make the join explicit**.

- This way, the sub-query can become part of the regular **join order optimization**.

Summary

Query Parser
Translates input query into (SFW-like) query blocks.

Rewriter
Logical (database state-independent) optimizations; predicate simplification; query unnesting.

(Join) Optimization
Find “best” query execution plan based on a cost model (considering I/O cost, CPU cost, . . .); data statistics (histograms); dynamic programming, greedy join enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art . . .
“Picasso” Plan Diagrams

“Picasso” Plan Diagrams

Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html