Information Systems (Informationssysteme)

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2018

Schema Normalization

Motivation

In the database design process, we tried to produce good relational schemata (e.g., by merging relations, slide 76).
\rightarrow But what is "good," after all?
Let us consider an example:

Students

StudID	Name	Address	SeminarTopic
$08-15$	John Doe	74 Main St	Databases
$08-15$	John Doe	74 Main St	Systems Design
$47-11$	Mary Jane	8 Summer St	Data Mining
$12-34$	Dave Kent	19 Church St	Databases
$12-34$	Dave Kent	19 Church St	Statistics
$12-34$	Dave Kent	19 Church St	Multimedia

Update Anomalies

Obviously, this is not an example of a "good" relational schema.
\rightarrow Redundant information may lead to problems during updates:
Update Anomaly
If a student changes his address, several rows have to be updated.
Insert Anomaly
What if a student is not enrolled to any seminar?
\rightarrow Null value in column SeminarTopic?
$(\rightarrow$ may be problematic since SeminarTopic is part of a key)
\rightarrow To enroll a student to a course: overwrite null value (if student is not enrolled to any course) or create new tuple (otherwise)?

Delete Anomaly
Conversely, to un-register a student from a course, we might now either have to create a null value or delete an entire row.

Decomposed Schema

Those anomalies can be avoided by decomposing the table:

Students		
StudID	Name	Address
$08-15$	John Doe	74 Main St
47-11	Mary Jane	8 Summer St
$12-34$	Dave Kent	19 Church St

Students	
StudID	SeminarTopic
$08-15$	Databases
$08-15$	Systems Design
$47-11$	Data Mining
$12-34$	Databases
$12-34$	Statistics
$12-34$	Multimedia

No redundancy exists in this representation any more.

Anomalies: Another Example

The previous example might seem silly. But what about this one:

Real-world constraints:
■ Each student may take only one exam with any particular professor.
■ For any course, all exams are done by the same professor.

Anomalies: Another Example

Ternary relationship set \rightarrow ternary relation:

TakesExam		
Student	Professor	Course
John Doe	Prof. Smart	Information Systems
Dave Kent	Prof. Smart	Information Systems
John Doe	Prof. Clever	Computer Architecture
Mary Jane	Prof. Bright	Software Engineering
John Doe	Prof. Bright	Software Engineering
Dave Kent	Prof. Bright	Software Engineering

■ The association Course \rightarrow Professor occurs multiple times.
■ Decomposition without that redundancy?

Functional Dependencies

Both examples contained instance of functional dependencies, e.g.,

$$
\text { Course } \rightarrow \text { Professor . }
$$

We say that
"Course (functionally) determines Professor."
meaning that when two tuples t_{1} and t_{2} agree on their Course values, they must also contain the same Professor value.

Notation

For this chapter, we'll simplify our notation a bit.
■ We use single capital letters A, B, C, \ldots for attribute names.
■ We use a short-hand notation for sets of attributes:

$$
A B C \stackrel{\text { def }}{=}\{A, B, C\}
$$

A functional dependency (FD) $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$ on a relation schema $\operatorname{sch}(R)$ describes a constraint that, for every instance R :

$$
t . A_{1}=s . A_{1} \wedge \cdots \wedge t . A_{n}=s . A_{n} \Rightarrow t . B_{1}=s . B_{1} \wedge \cdots \wedge t . B_{m}=s . B_{m}
$$

\rightarrow A functional dependency is a constraint over one relation. $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$ must all be in $\operatorname{sch}(R)$.

Functional Dependencies \leftrightarrow Keys

Functional dependencies are a generalization of key constraints:
A_{1}, \ldots, A_{n} is a set of identifying attributes ${ }^{11}$
in relation $R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right)$.
\Leftrightarrow
$A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$ holds.

Conversely, functional dependencies can be explained with keys.

$$
A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m} \text { holds for } R
$$

$$
\Leftrightarrow
$$

A_{1}, \ldots, A_{n} is a set of identifying attributes in $\pi_{A_{1}, \ldots, A_{n}, B_{1}, \ldots B_{m}}(R)$.
\rightarrow Functional dependencies are "partial keys".
\rightarrow A goal of this chapter is to turn FDs into real keys, because key constraints can easily be enforced by a DBMS.
${ }^{11}$ If the set is also minimal, A_{1}, \ldots, A_{n} is a key (\nearrow slide 53).

Functional Dependencies

Functional dependencies in Students?

Students				
StudID	Name	Address	SeminarTopic	
$08-15$	John Doe	74 Main St	Databases	
$08-15$	John Doe	74 Main St	Systems Design	
$47-11$	Mary Jane	8 Summer St	Data Mining	
$12-34$	Dave Kent	19 Church St	Databases	
$12-34$	Dave Kent	19 Church St	Statistics	
$12-34$	Dave Kent	19 Church St	Multimedia	

Functional dependencies in the TakesExam example?

Functional Dependencies, Entailment

A functional dependency with m attributes on the right-hand side

$$
A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}
$$

is equivalent to the m functional dependencies

$$
\begin{array}{ccc}
A_{1} \ldots A_{n} & \rightarrow & B_{1} \\
\vdots & & \vdots \\
A_{1} \ldots A_{n} & \rightarrow & B_{m}
\end{array}
$$

Often, functional dependencies imply one another.
\rightarrow We say that a set of FDs \mathcal{F} entails another FD f if the FDs in \mathcal{F} guarantee that f holds as well.
\rightarrow If a set of FDs \mathcal{F}_{1} entails all FDs in the set \mathcal{F}_{2}, we say that \mathcal{F}_{1} is a cover of $\mathcal{F}_{2} ; \mathcal{F}_{1}$ covers (all FDs in) \mathcal{F}_{2}.

Reasoning over Functional Dependencies

Intuitively, we want to (re-)write relational schemas such that
■ redundancy is minimized (and thus also update anomalies) and

- the system can still guarantee the same integrity constraints.

Functional dependencies allow us to reason over the latter.
E.g.,

■ Given two schemas S_{1} and S_{2} and their associated sets of FDs \mathcal{F}_{1} and \mathcal{F}_{2}, are \mathcal{F}_{1} and \mathcal{F}_{2} "equivalent" ?

Equivalence of two sets of functional dependencies:
■ We say that two sets of FDs \mathcal{F}_{1} and \mathcal{F}_{2} are equivalent $\left(\mathcal{F}_{1} \equiv \mathcal{F}_{2}\right)$ when \mathcal{F}_{1} entails all FDs in \mathcal{F}_{2} and vice versa.

Closure of a Set of Functional Dependencies

Given a set of functional dependencies \mathcal{F}, the set of all functional dependencies entailed by \mathcal{F} is called the closure of \mathcal{F}, denoted \mathcal{F}^{+}.12

$$
\mathcal{F}^{+}:=\{\alpha \rightarrow \beta \mid \alpha \rightarrow \beta \text { entailed by } \mathcal{F}\}
$$

Closures can be used to express equivalence of sets of FDs:

$$
\mathcal{F}_{1} \equiv \mathcal{F}_{2} \Leftrightarrow \mathcal{F}_{1}^{+}=\mathcal{F}_{2}^{+}
$$

If there is a way to compute \mathcal{F}^{+}for a given \mathcal{F}, we can test
■ whether a given FD $\alpha \rightarrow \beta$ is entailed by $\mathcal{F}\left(\sim \alpha \rightarrow \beta \stackrel{?}{\in} \mathcal{F}^{+}\right)$
■ whether two sets of FDs, \mathcal{F}_{1} and \mathcal{F}_{2}, are equivalent.

[^0]
Armstrong Axioms

\mathcal{F}^{+}can be computed from \mathcal{F} by repeatedly applying the so-called Armstrong axioms to the FDs in \mathcal{F} :

■ Reflexivity: ("trivial functional dependencies")

$$
\text { If } \beta \subseteq \alpha \text { then } \alpha \rightarrow \beta
$$

■ Augmentation:

$$
\text { If } \alpha \rightarrow \beta \text { then } \alpha \gamma \rightarrow \beta \gamma .
$$

■ Transitivity:

$$
\text { If } \alpha \rightarrow \beta \text { and } \beta \rightarrow \gamma \text { then } \alpha \rightarrow \gamma .
$$

It can be shown that the three Amstrong axioms are sound and complete: exactly the FDs in \mathcal{F}^{+}can be generated from those in \mathcal{F}.

Testing Entailment / Attribute Closure

Building the full \mathcal{F}^{+}for an entailment test can be very expensive:
■ The size of \mathcal{F}^{+}can be exponential in the size of \mathcal{F}.
■ Blindly applying the three Armstrong axioms to FDs in \mathcal{F} can be very inefficient.

A better strategy is to focus on the particular FD of interest.

Idea:

■ Given a set of attributes α, compute the attribute closure $\alpha_{\mathcal{F}}^{+}$:

$$
\alpha_{\mathcal{F}}^{+}=\left\{X \mid \alpha \rightarrow X \in \mathcal{F}^{+}\right\}
$$

■ Testing $\alpha \rightarrow \beta \stackrel{?}{\in} \mathcal{F}^{+}$then means testing $\beta \stackrel{?}{\subseteq} \alpha_{\mathcal{F}}^{+}$.

Attribute Closure

The attribute closure $\alpha_{\mathcal{F}}^{+}$can be computed as follows:

1 Algorithm: AttributeClosure
Input : α (a set of attributes); \mathcal{F} (a set of FDs $\alpha_{i} \rightarrow \beta_{i}$)
Output: $\alpha_{\mathcal{F}}^{+}$(all attributes functionally determined by α in \mathcal{F}^{+})
$2 x \leftarrow \alpha$;
3 repeat
$4 \mid x^{\prime} \leftarrow x$;
$5 \quad$ foreach $\alpha_{i} \rightarrow \beta_{i} \in \mathcal{F}$ do
$6 \quad$ if $\alpha_{i} \subseteq x$ then
7
$\left\lfloor x \leftarrow x \cup \beta_{i} ;\right.$
8 until $x^{\prime}=x$;
9 return x;

Example

Given

$$
\mathcal{F}=\{A B \rightarrow C, D \rightarrow E, A E \rightarrow G, G D \rightarrow H, I D \rightarrow J\}
$$

for a relation $R, \operatorname{sch}(R)=A B C D E F G H I J$.

- $A B D \rightarrow G H$ entailed by \mathcal{F} ?

■ $A B D \rightarrow H J$ entailed by \mathcal{F} ?

Minimal Cover

\mathcal{F}^{+}is the maximal cover for \mathcal{F}.
$\rightarrow \mathcal{F}^{+}$(even \mathcal{F}) can be large and contain many redundant FDs. This makes \mathcal{F}^{+}a poor basis to study a relational schema.

Thus: Construct a minimal cover \mathcal{F}^{-}such that
$1 \mathcal{F}^{-} \equiv \mathcal{F}$, i.e., $\left(\mathcal{F}^{-}\right)^{+}=\mathcal{F}^{+}$.
2 All functional dependencies in \mathcal{F}^{-}have the form $\alpha \rightarrow X$ (i.e., the right side is a single attribute).

3 In $\alpha \rightarrow X \in \mathcal{F}^{-}$, no attributes in α are redundant:

$$
\forall A \in \alpha:\left(\mathcal{F}^{-}-\{\alpha \rightarrow X\} \cup\{(\alpha-A) \rightarrow X\}\right) \not \equiv \mathcal{F}^{-}
$$

4 No rule $\alpha \rightarrow X$ is redundant in \mathcal{F}^{-}:

$$
\forall \alpha \rightarrow X \in \mathcal{F}^{-}:\left(\mathcal{F}^{-}-\{\alpha \rightarrow X\}\right) \not \equiv \mathcal{F}^{-}
$$

Constructing a Minimal Cover

To construct the minimal cover \mathcal{F}^{-}:
$1 \mathcal{F}^{-} \leftarrow \mathcal{F}$ where all functional dependencies are converted to have only one attribute on the right side.
2 Remove redundant attributes from the left-hand sides of functional dependencies in \mathcal{F}^{-}:
1 foreach $\alpha \rightarrow X \in \mathcal{F}^{-}$do
2 foreach $A \in \alpha$ do
3
if $X \in(\alpha-A)_{\mathcal{F}^{-}}^{+}$then A redundant in α ? Remove it.

$$
\mathcal{F}^{-} \leftarrow \mathcal{F}^{-}-\{\alpha \rightarrow X\} \cup\{(\alpha-A) \rightarrow X\}
$$

3 Remove redundant functional dependencies from \mathcal{F}^{-}:
1 foreach $\alpha \rightarrow X \in \mathcal{F}^{-}$do
2
if $\left(\mathcal{F}^{-}-\{\alpha \rightarrow X\}\right) \equiv \mathcal{F}^{-}$then
3

$$
\mathcal{F}^{-} \leftarrow \mathcal{F}^{-}-\{\alpha \rightarrow X\}
$$

Constructing a Minimal Cover

Minimal cover for the following FDs?

$$
\begin{array}{llll}
A B H \rightarrow C & F \rightarrow A D & C \rightarrow E & E \rightarrow F \\
A \rightarrow D & B G H \rightarrow F & B H \rightarrow E &
\end{array}
$$

Normal Forms

Normal forms try to avoid the anomalies that we discussed earlier.
Codd originally proposed three normal forms (each stricter than the previous one):

■ First normal form (1NF)

- Second normal form (2NF)
- Third normal form (3NF)

Later, Boyce and Codd added the
■ Boyce-Codd normal form (BCNF)
Toward the end of this chapter, we will briefly talk also about the
■ Fourth normal form (4NF).

First Normal Form

The first normal form states that all attribute values must be atomic.
That is, relations like

Students

StudID	Name	Address	SeminarTopic
$08-15$	John Doe	74 Main St	\{Databases, Systems Design\}
$47-11$	Mary Jane	8 Summer St	\{Data Mining\}
$12-34$	Dave Kent	19 Church St	\{Databases, Statistics, Multimedia \}

are not allowed.
\rightarrow This characteristic is already implied by our definition of a relation.
Likewise, nested tables (\nearrow slide 90) are not allowed in 1NF relations.

Boyce-Codd Normal Form (BCNF)

Given a schema $\operatorname{sch}(R)$ and a set of FDs $\mathcal{F}, \operatorname{sch}(R)$ is in Boyce-Codd Normal Form (BCNF) if, for every $\alpha \rightarrow A \in \mathcal{F}^{+}$any of the following is true:

- $A \in \alpha$ (i.e., this is a trivial FD)
- α contains a key (or: " α is a superkey")

Example: Consider a relation

> Courses(CourseNo, Title, InstrName, Phone)
with the FDs

$$
\begin{aligned}
& \text { CourseNo } \rightarrow \text { Title, InstrName, Phone } \\
& \text { InstrName } \rightarrow \text { Phone } .
\end{aligned}
$$

This relation is not in BCNF, because in InstrName \rightarrow Phone, the left-hand side is not a key of the entire relation and the FD is not trivial.

Boyce-Codd Normal Form (BCNF)

A BCNF schema can have more than one key. E.g.,

- $\operatorname{sch}(R)=A B C D$,
- $\mathcal{F}=\{A B \rightarrow C D, A C \rightarrow B D\}$.

This relation is in BCNF, because the left-hand side of each of the two FDs in \mathcal{F} is a key.

BCNF prevents all of the anomalies that we saw earlier in this chapter.
\rightarrow By ensuring BCNF in our database designs, we can produce "good" relational schemas.

A beauty of BCNF is that its FDs can easily be checked by a database system.
\rightarrow Only need to mark left-hand sides as key in the relational schema.

Third Normal Form (3NF)

Given a schema $\operatorname{sch}(R)$ and a set of $\operatorname{FDs} \mathcal{F}, \operatorname{sch}(R)$ is in third normal form (3NF) if, for every $\alpha \rightarrow A \in \mathcal{F}^{+}$any of the following is true:

- $A \in \alpha$ (i.e., this is a trivial FD)
- α contains a key (or: " α is a superkey")

■ $A \in \kappa$ for some key $\kappa \subseteq \operatorname{sch}(R)$.

Observe how the third case relaxes $B C N F$.
\rightarrow The TakesExam(Student, Professor, Course) relation on slide 215 is in 3NF:

Student, Professor	\rightarrow Course
Course	\rightarrow Professor.

\rightarrow But TakesExam is not in BCNF.

Third Normal Form (3NF)

Obviously, the additional condition allows some redundancy.
\rightarrow What is the merit of that condition then?

Answer:

1 There is none. 3NF was discovered "accidentally" in the search for BCNF.

2 As we shall see, relational schemas can always be converted into 3NF form losslessly, while in some cases this is not true for BCNF.

Note:

■ We will not discuss 2NF in this course. It is of no practical use today and only exists for historical reasons.

Schema Decomposition

As illustrated by example on slide 214 , redundancy can be eliminated by decomposing a schema into a collection of schemas:

$$
(\operatorname{sch}(R), \mathcal{F}) \sim\left(\operatorname{sch}\left(R_{1}\right), \mathcal{F}_{1}\right), \ldots,\left(\operatorname{sch}\left(R_{n}\right), \mathcal{F}_{n}\right)
$$

The corresponding relations can be obtained by projecting on columns of the original relation:

$$
R_{i}=\pi_{\operatorname{sch}\left(R_{i}\right)} R
$$

While decomposing a schema, we do not want to lose information.

Lossless and Lossy Decompositions

A decomposition is lossless if the original relation can be reconstructed from the decomposed tables:

$$
R=R_{1} \bowtie \cdots \bowtie R_{n} .
$$

For binary decompositions, losslessness is guaranteed if any of the following is true:

■ $\left(\operatorname{sch}\left(R_{1}\right) \cap \operatorname{sch}\left(R_{2}\right)\right) \rightarrow \operatorname{sch}\left(R_{1}\right) \in \mathcal{F}^{+}$
■ $\left(\operatorname{sch}\left(R_{1}\right) \cap \operatorname{sch}\left(R_{2}\right)\right) \rightarrow \operatorname{sch}\left(R_{2}\right) \in \mathcal{F}^{+}$
"The decomposition is guaranteed to be lossless if the intersection of attributes of the new tables is a key of at least one of the two relations."

Dependency-Preserving Decompositions

For a lossless decomposition of R, it would always be possible to re-construct R and check the original set of FDs \mathcal{F} over the re-constructed table.
\rightarrow But re-construction is expensive.
\rightarrow We'd rather like to guarantee that FDs $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ over decomposed tables R_{1}, \ldots, R_{n} entail all FDs in \mathcal{F}.

A decomposition is dependency-preserving if

$$
\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{n} \equiv \mathcal{F}
$$

Example

Consider a zip code directory
ZipCodes(Street, City, State, ZipCode) ,
where

$$
\begin{array}{ll}
\text { ZipCode } & \rightarrow \text { City, State } \\
\text { Street, City, State } & \rightarrow \text { ZipCode } .
\end{array}
$$

A lossless decomposition would be

$$
\begin{aligned}
& \text { Streets(ZipCode, Street) } \\
& \text { Cities(ZipCode, City, State) . }
\end{aligned}
$$

However, the FD Street, City, State \rightarrow ZipCode cannot be assigned to either of the two relations. This decomposition is not dependency-preserving.

Decomposing A Schema

When decomposing a schema, we obtain schemas by projecting on columns of the original relation (\nearrow slide 237):

$$
R_{i}=\pi_{\operatorname{sch}\left(R_{i}\right)} R
$$

How do we obtain the corresponding functional dependencies?

$$
\mathcal{F}_{i}:=\pi_{\operatorname{sch}\left(R_{i}\right)} \mathcal{F}:=\left\{\alpha \rightarrow \beta \mid \alpha \rightarrow \beta \in \mathcal{F}^{+} \text {and } \alpha \beta \subseteq \operatorname{sch}\left(R_{i}\right)\right\}
$$

\rightarrow We call this the projection of the set \mathcal{F} of functional dependencies on the set of attributes $\operatorname{sch}\left(R_{i}\right)$.

Algorithm for BCNF Decomposition

BCNF can be obtained by repeatedly decomposing a table along an FD that violates BCNF:

1 Algorithm: BCNFDecomposition
Input : $(\operatorname{sch}(R), \mathcal{F})$
Output: Schema $\left\{\left(\operatorname{sch}\left(R_{1}\right), \mathcal{F}_{1}\right), \ldots,\left(\operatorname{sch}\left(R_{n}\right), \mathcal{F}_{n}\right)\right\}$ in BCNF
2 Decomposed $\leftarrow\{(\operatorname{sch}(R), \mathcal{F})\}$;
3 while $\exists\left(\operatorname{sch}(S), \mathcal{F}_{S}\right) \in$ Decomposed that is not in BCNF do
4 Let $\alpha \rightarrow \beta$ be an FD in \mathcal{F}_{S} that violates BCNF;
5 Decompose S into $S_{1}(\alpha \beta)$ and $S_{2}((S-\beta) \cup \alpha)$;
6 return Decomposed;

In line 5 , use the projection mechanism on slide 241 to obtain the $\mathcal{F}_{S_{i}}$.

Example

Consider

$R(A B C D E F G H)$

with

$A B H$	\rightarrow	C
A	\rightarrow	$D E$
$B G H$	$\rightarrow F$	
F	\rightarrow	$A D H$
$B H$	\rightarrow	$G E$

Properties of BCNF Decomposition

Algorithm BCNFDecomposition always yields a lossless decomposition.
■ Attribute set α is contained in S_{1} and S_{2} (line 5).
■ $\alpha \rightarrow \beta \in \mathcal{F}_{S}$ (line 4), so $\alpha \rightarrow \operatorname{sch}\left(S_{1}\right)$.

We already saw that BCNF decomposition is not always dependency-preserving.

BCNF decomposition is not deterministic. Different choices of FDs in line 4 might lead to different decompositions.
\rightarrow Those different decompositions might even preserve more or less dependencies!

3NF Decomposition Through Schema Synthesis

The 3NF synthesis algorithm produces a 3NF schema that is always lossless and dependency-preserving:

1 Compute the minimal cover \mathcal{F}^{-}of the given set of FDs \mathcal{F}.
2 Merge rules in \mathcal{F}^{-}that have the same left-hand side $(\rightarrow \mathcal{G})$.
3 For each $\alpha \rightarrow \beta \in \mathcal{G}$ create a table $R_{\alpha}(\alpha \beta)$ and associate $\mathcal{F}_{\alpha}=\{\alpha \rightarrow \beta\}$ with it.

4 If none of the constructed tables from step 3 contains a key of the original relation R, add one relation $R_{\kappa}(\kappa)$, where κ is a (candidate) key in R. No functional dependencies are associated with R_{κ}.

Example

Q Given a table $R(A B C D E F G H)$ with the FDs

$$
\begin{array}{lllllll}
A B H & \rightarrow C & A & \rightarrow & D E & B G H & \rightarrow \\
F & \rightarrow A D H & B H & \rightarrow & G E & \\
\text { determine a corresponding } & \text { 3NF schema. }
\end{array}
$$

Example (cont.)

Normal Forms

Normal forms are increasingly restrictive.
\rightarrow In particular, every BCNF relation is also 3NF.

■ Our decomposition algorithms produce lossless decompositions.
\rightarrow It is always possible to losslessly transform a relation into 1NF, 2NF, 3NF, BCNF.

- BCNF decomposition might not be dependency-preserving. Preservation of dependencies can only be guaranteed up to 3NF.

BCNF vs. 3NF

BCNF decomposition is non-deterministic.
\rightarrow Some decompositions might be dependency-preserving, some might not.

Decomposition strategy:

1 Establish 3NF schema (through synthesis; dependency preservation guaranteed).
2 Decompose resulting schema to obtain BCNF.
\rightarrow This strategy typically leads to "good" (dependency-preserving if possible) BCNF decompositions.

Fourth Normal Form (4NF)

Not all redundancies can be explained through functional dependencies.

Books		
ISBN	Author	Keyword
3486598341	Kemper	Databases
3486598341	Kemper	Computer Science
3486598341	Eickler	Databases
3486598341	Eickler	Computer Science
0321268458	Kifer	Databases
0321268458	Bernstein	Databases
0321268458	Lewis	Databases

\rightarrow There is no clear association between authors and keywords, and no functional dependencies exist for this table.
\rightarrow This relation is in BCNF!

Join Dependencies

Observe that the relation satisfies the following property:

$$
\text { Books }=\pi_{I S B N, \text { Author }}(\text { Books }) \bowtie \pi_{I S B N, \text { Keyword }}(\text { Books }) .
$$

A join dependency, written as

$$
\operatorname{sch}(R)=\alpha \bowtie \beta
$$

is a constraint specifying that, for any legal instance of R,

$$
R=\pi_{\alpha}(R) \bowtie \pi_{\beta}(R)
$$

Fourth Normal Form (4NF)

Given a schema $\operatorname{sch}(R)$ and a set of join and dependencies \mathcal{J} and \mathcal{F}, $\operatorname{sch}(R)$ is in fourth normal form (4NF) if, for every join dependency $\operatorname{sch}(R)=\alpha \bowtie \beta$ entailed by \mathcal{F} and \mathcal{J}, either of the following is true:

- The join dependency is trivial, i.e., $\alpha \subseteq \beta$.
$\square \alpha \cap \beta$ contains a key of R (or: " α is a superkey of R ").
(Relation Books is not in 4NF, because ISBN is not a key.)

4NF relations are also BCNF:

■ Suppose $\operatorname{sch}(R)$ with $\alpha \rightarrow \beta$ is in 4NF (and $\alpha \cap \beta=\varnothing$).

- Then, $R=\pi_{\alpha \beta}(R) \bowtie \pi_{\text {sch }(R)-\beta}(R)$ (\nearrow slide 238).

■ Thus, $\alpha \beta \cap(\operatorname{sch}(R)-\beta)=\alpha$ is a superkey of R (4NF property).
■ BCNF requirement satisfied.

Multi-Valued Dependencies (MVDs)

Join dependencies are also called multi-valued dependencies.
The MVD

$$
\alpha \rightarrow \beta
$$

is another notation for the join dependency

$$
\operatorname{sch}(R)=\alpha \beta \bowtie \alpha(\operatorname{sch}(R)-\beta)
$$

Intuitively,
"The set of values in columns β associated with every α is independent of all other columns."

Note:
■ MVDs always come in pairs. If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow(\operatorname{sch}(R)-\beta)$ automatically holds as well.

Obtaining 4NF Schemas

Decomposing a schema

$$
R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{k}\right)
$$

into

$$
R_{1}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right) \text { and } R_{2}\left(A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{k}\right)
$$

is lossless if and only if (\nearrow slide 238)

$$
A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots B_{m} \quad\left(\text { or } A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots B_{k}\right)
$$

Thus: (intuition for obtaining 4NF)
■ Whenever there is a lossless (non-trivial) decomposition, decompose.

[^0]: ${ }^{12}$ Let α, β, \ldots denote sets of attributes.

