Information Systems (Informationssysteme)

Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de

Summer 2018

Part IX

B-Trees

- fast, but expensive and small, memory close to CPU
- larger, slower memory at the periphery
- Try to hide latency by using the fast memory as a cache.

"Slow" memory typically means high latency.

Example: Samsung HD642JJ Hard Drive (640 GB, SATA 3)

- rotational speed: 7200 rpm
- sequential read bandwidth: $\approx 106 \text{ MB/s} (\nearrow \text{ hdparm } -t)$

■ random access time: 15.2 ms (measured)

Sime it takes to read 1,024 random 4 kB blocks?

The latency penalty is hard to avoid.

However:

- Throughput can be increased rather easily by exploiting **parallelism**.
- **Idea:** Use multiple disks and access them in parallel.

The current number one system (Oracle 11g RAC on SPARC) uses

- 11,040 flash drives (24 GB each) and 720 hard drives (!) (plus drives for OS, etc.),
- connected with 8 Gbit Fibre Channel,
- yielding 30 tpmC (\approx 60 M transactions per minute).

To combat the latency problem:

- **1** Databases access and organize the disk with a **page granularity**.
 - Read larger chunks to amortize high latency.
 - Page size: at least 4 kB, better more; up to \approx 64 kB.
- **2** Use sequential access and/or aggressive prefetching (read-ahead).
 - But must read many pages ahead to actually avoid penalty.

SELECT * FROM CUSTOMERS WHERE ZIPCODE BETWEEN 8800 AND 8999

To answer this query, we could

- **1 sort** the table on disk (in **ZIPCODE** order).
- To answer queries, then use binary search to find first qualifying tuple, and scan as long as ZIPCODE < 8999.</p>

k* denotes the full data record with search key k.

Ordered Files and Binary Search

- ✓ Need to read only $log_2(\# tuples)$ to find the first match.
- Need to read about as many pages for this. (The whole point of binary search is that we make far, unpredictable jumps. This largely defeats prefetching.)

Binary Search and Database Pages

Observations:

- Make rather far jumps initially.
 - $\rightarrow\,$ For each step read full page, but inspect only one record.
- Last $\mathcal{O}(\log_2 pagesize)$ steps stay within one page.
 - \rightarrow I/O cost is used much more efficiently here.

Binary Search and Database Pages

Idea: "Cache" those records that might be needed for the first phase.

 \rightarrow If we can keep the cache **in memory**, we can find **any** record with just a **single I/O**.

 $^{\textcircled{N}}$ Is this assumption reasonable?

Large Data

What if my data set is really large?

• "Cache" will span many pages, too.

■ Thus: "cache the cache" → hierarchical "cache"

leave nodes

B-trees are essentially such a "hierarchical cache."

⁽In practice, we'll organize the cache just like any other database object.)

- All nodes are the size of a page
 - $\rightarrow\,$ hundreds of entries per page
 - \rightarrow large fanout, low depth
- Search effort: log_{fanout}(# tuples)

Each B-tree node contains

A set of index entries, which include

- the value of a search key (e.g., 4711) and
- "associated information" (indicated by *) (either a full data tuple or a reference to a tuple).

• A set of **child pointers**, pointing to a child page of the B-tree.

Each tree node (except the root) contains **at least** d and **at most** 2d index entries ("minimum 50 % full"; on previous slide: d = 2).

- \rightarrow We call *d* the **order** of the B-tree.
- \rightarrow In practice, *d* is **large** (few hundreds).

B-trees are **balanced** at all times.

Searching a B-Tree

```
1 Function:
    tree_search(k, node)
2 if matching *; found on node then
3
      return *_i;
4 if node is a leaf node then
     return not found;
5
6 switch k do
       case k < k_0 do
7
           return
8
            tree_search (k, p_0);
       case k_i < k < k_{i+1} do
9
           return
10
            tree_search (k, p_i);
       case k_{2d} < k do
11
           return
12
            tree_search (k, p_{2d});
```

- Invoke with node = root node.
- Note that B-trees are an ordered index structure.
 - $\rightarrow\,$ Support equality and range predicates

Goal: Keep B-tree **balanced** at all times.¹⁴

Why is this desirable?

Thus: Define routines for **insertion** and **deletion** that leave the B-tree properties intact.

¹⁴*I.e.*, every root-to-leaf path must have the same length.

[©] Jens Teubner · Information Systems · Summer 2018

Sketch of the **insertion procedure** for entry *k******:

- **1** Find leaf page *n* where we would expect the entry for *k*.
- **2** If *n* has **enough space** to hold the new entry (*i.e.*, at most 2d 1 entries in *n*), **simply insert** k* into *n*.
- 3 Otherwise node *n* must be **split** into *n* and *n'* and a new **separator** has to be inserted into the parent of *n*.

Splitting happens recursively and may eventually lead to a split of the root node (increasing the tree height).

 $\rightarrow\,$ B-trees grow at the root, not at the leaves!

B-Tree Insert: Examples (Insert without Split)

Insert new entry with key 4222.

 $\rightarrow\,$ Enough space in node 3, simply insert.

B-Tree Insert: Examples (Insert with Leaf Split)

Insert key 6330.

- \rightarrow Must **split** node 4.
- \rightarrow **Middle entry** goes into node 1.

B-Tree Insert: Examples (Insert with Inner Node Split)

After 8180, 8245, 6435 insert key 4104.

- \rightarrow Must **split** node 3.
- $\rightarrow~$ Node 1 overflows \rightarrow split it
- \rightarrow **New separator** goes into root

Insert: Root Node Split

- Splitting starts at the leaf level and continues upward as long as index nodes are fully occupied.
- Eventually, this can lead to a split of the **root node**:
 - Split like any other inner node.
 - Use the separator to create a **new root**.
- The root node is the **only** node that may have an occupancy of less than 50 %.
- This is the **only** situation where the tree height increases.

[®] How often do you expect a root split to happen?

A B-tree maintains key values together with "associated information".

The "associated information" * can be

Full Data Tuples

The B-tree becomes the mechanism to organize the table data

- $\rightarrow\,$ The table is $\ensuremath{\text{physically ordered}}$ according to the key attribute.
- $\rightarrow\,$ We call this a clustered index or an index-organized table.
- $\rightarrow\,$ There can be at most one clustered index per table.

Pointers to Actual Tuples

These pointers are also called record identifiers or RIDs.

- \rightarrow Most systems use $\langle \textit{pageno, pos. within page} \rangle$ to encode RIDs.
- $\rightarrow\,$ Such indexes are also called **secondary indexes**.
- $\rightarrow\,$ There can be arbitrarily many secondary indexes.

Many systems (*e.g.*, DB2) only support the latter index type.

Key to the efficiency of B-trees is their high fanout.

high fanout \rightarrow low tree depth \rightarrow fast root-to-leaf navigation

This gives incentive to maximize fanout:

- \rightarrow Do **not** store * in **inner nodes** (Rather use that space to increase d / store more keys.)
- $\rightarrow\,$ Inner nodes are then used for root-to-leaf navigation ${\rm only}.$
- $\rightarrow\,$ For every data tuple, there is on leaf-level index entry.
- \rightarrow The resulting index structure is then called **B⁺-tree**.

Real systems today always use B⁺-trees.

 \rightarrow When database people say "B-tree," they typically mean "B⁺-tree."

- Inner nodes do not store tuples or RIDs
 - $\rightarrow\,$ only used to navigate to leaves
 - \rightarrow higher fanout, lower depth
- Only leaves contain (references to) tuple data (indicated here with *)

Searching a B⁺-tree

- 1 Function: search(k)
- 2 return tree_search(k, root);
- ¹ Function:

```
tree_search(k, node)
```

- 2 if node is a leaf then
- 3 **return** node;

```
4 switch k do
```

```
case k < k_0 do
 5
            return
 6
             tree_search (k, p_0);
       case k_i < k < k_{i+1} do
7
            return
 8
             tree_search (k, p_i);
       case k_{2d} < k do
9
            return
10
             tree_search (A
© Jens Teubner · Information Systems
```

- All searches now navigate to a leaf node.
 - \rightarrow Makes search effort also more predictable.
- Function search (k) returns a pointer to the leaf node that contains potential hits for search key k.

B⁺-tree Insert: Examples (Insert without Split)

Insert new entry with key 4222.

 \rightarrow Enough space in node 3, simply insert. (Same as in B-tree)

B⁺-tree Insert: Examples (Insert with Leaf Split)

Insert key 6330.

- \rightarrow Must **split** node 4.
- → New separator goes into node 1. But keep entry in node 4!

B⁺-tree Insert: Examples (Insert with Inner Node Split)

After 5219, 5476, insert key 4104.

- \rightarrow Must **split** leaf node 3.
- $\rightarrow\,$ Inner node 1 overflows $\rightarrow\,$ split it
- $\rightarrow~$ New separator goes into root

Splitting the **inner node** works analogously to B-tree.

B⁺-tree Insertion Algorithm

```
1 Function: tree_insert(k, rid, node)
2 if node is a leaf then
        return leaf_insert (k, rid, node);
 3
4 else
        switch k do
5
             case k < k_0 do
 6
               \langle sep, ptr \rangle \leftarrow tree\_insert(k, rid, p_0);
 7
             case k_i < k < k_{i+1} do
8
                                                                      see tree_search()
               \langle sep, ptr \rangle \leftarrow tree\_insert(k, rid, p_i);
 9
             case k_{2d} < k do
10
                  (sep, ptr) \leftarrow tree\_insert(k, rid, p_{2d});
11
        if sep is null then
12
             return (null, null);
13
        else
14
             return split (sep, ptr, node);
15
```

```
1 Function: leaf_insert(k, rid, node)
 <sup>2</sup> if another entry fits into node then
           insert \langle k, rid \rangle into node ;
 3
           return (null, null);
   else
 5
           allocate new leaf page p;
           take \{\langle k_1^+, p_1^+ \rangle, \dots, \langle k_{2d+1}^+, p_{2d+1}^+ \rangle\} := entries from node \cup \{\langle k, ptr \rangle\}
 7
                 leave entries \langle k_1^+, p_1^+ \rangle, \ldots, \langle k_{d+1}^+, p_{d+1}^+ \rangle in node;
 8
                move entries \langle k_{d+2}^+, p_{d+2}^+ \rangle, \dots, \langle k_{2d+1}^+, p_{2d+1}^+ \rangle to p;
 9
           return \langle k_{d+1}^+, p \rangle;
10
   Function: split (k, ptr, node)
   if another entry fits into node then
 2
           insert \langle k, ptr \rangle into node;
 3
           return (null, null);
```

5 else

 $\begin{array}{l} & \text{allocate new leaf page } p ; \\ & \text{for } kake \left\{ \langle k_{1}^{+}, p_{1}^{+} \rangle, \dots, \langle k_{2d+1}^{+}, p_{2d+1}^{+} \rangle \right\} := \text{entries from } node \cup \left\{ \langle k, ptr \rangle \right\} \\ & \text{s} \\ & \text{g} \\ & \text{leave entries } \langle k_{1}^{+}, p_{1}^{+} \rangle, \dots, \langle k_{d}^{+}, p_{d}^{+} \rangle \text{ in } node ; \\ & \text{move entries } \langle k_{d+2}^{+}, p_{d+2}^{+} \rangle, \dots, \langle k_{2d+1}^{+}, p_{2d+1}^{+} \rangle \text{ to } p ; \\ & \text{set } p_{0} \leftarrow p_{d+1}^{+} \text{ in } node; \\ & \text{return } \langle k_{d+1}^{+}, p \rangle; \end{array}$

B⁺-tree Insertion Algorithm

```
1 Function: insert (k, rid)
2 {key, ptr} ← tree_insert (k, rid, root);
3 if key is not null then
4 allocate new root page r;
5 populate n with
6 p_0 \leftarrow root;
7 k_1 \leftarrow key;
8 p_1 \leftarrow ptr;
9 root ← r;
```

- insert (k, rid) is called from outside.
- Note how leaf node entries point to RIDs, while inner nodes contain pointers to other B⁺-tree nodes.

Example: Webserver access log (people.inf.ethz.ch)

- table cardinality: 11 million tuples (710K data pages)
- distinct IP addresses: 181,628 (stored as CHAR (15))
- database: IBM DB2 9.7

B⁺-tree on IP addresses:

- 25,151 index pages total:
 - 1 root node
 - 110 second-level nodes; average fanout: 230
 - 25,040 leaf-level nodes: 1–77 keys per node

- If a node is sufficiently full (*i.e.*, contains at least *d* + 1 entries, we may simply remove the entry from the node.
 - Note: Afterward, **inner nodes** may contain keys that no longer exist in the database. This is perfectly legal.
- Merge nodes in case of an underflow ("undo a split"):

• "Pull" separator into merged node.

Deletion

It's not quite that easy...

- Merging only works if two neighboring nodes were 50 % full.
- Otherwise, we have to **re-distribute**:
 - "rotate" entry through parent
- Redistribution is **complex** and **expensive**.
 - $\rightarrow\,$ Real systems usually do not implement deletion "by the book."

 Actual systems often avoid the cost of merging and/or redistribution, but relax the minimum occupancy rule.

• *E.g.*, **IBM DB2 UDB**:

- The MINPCTUSED parameter controls when the system should try a leaf node merge ("on-line index reorg").
- Inner nodes are never merged
 - $(\rightarrow$ need to do full table reorg for that).
- To improve concurrency, systems sometimes only mark index entries as deleted and physically remove them later (*e.g.*, IBM DB2 UDB "type-2 indexes")
 - $\rightarrow\,$ Resulting index entries are also called **ghost records**.

B⁺-trees and Sorting

A typical situation (for a secondary B⁺-tree) looks like this:

What are the implications when we want to execute SELECT * FROM CUSTOMERS ORDER BY ZIPCODE ? B⁺-trees can (in theory¹⁵) be used to index everything with a defined **total order**, *e.g.*:

- integers, strings, dates, ..., and
- concatenations thereof (based on lexicographical order).
- *E.g.*, in most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME);

- A useful application are, e.g., partitioned B-trees:
 - Leading index attributes effectively **partition** the resulting B⁺-tree.

 \nearrow G. Graefe: Sorting And Indexing With Partitioned B-Trees. CIDR 2003.

© Jens Teubner · Information Systems · Summer 2018

¹⁵Some implementations won't allow you to index, *e.g.*, large character fields.

CREATE INDEX ON TABLE STUDENTS (SEMESTER, ZIPCODE);

[∞] What types of queries could this index support?