Information Systems
(Informationssysteme)

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2018
Part IX

B-Trees
Memory Hierarchy

<table>
<thead>
<tr>
<th>CPU (with registers)</th>
<th>capacity</th>
<th>latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>caches</td>
<td>bytes</td>
<td>< 1 ns</td>
</tr>
<tr>
<td>main memory</td>
<td>kilo-/megabytes</td>
<td>< 10 ns</td>
</tr>
<tr>
<td>hard disks</td>
<td>gigabytes</td>
<td>70–100 ns</td>
</tr>
<tr>
<td>tape library</td>
<td>terabytes</td>
<td>3–10 ms</td>
</tr>
<tr>
<td></td>
<td>petabytes</td>
<td>varies</td>
</tr>
</tbody>
</table>

- fast, but expensive and small, memory close to CPU
- larger, slower memory at the periphery
- Try to **hide latency** by using the fast memory as a **cache**.
“Slow” memory typically means **high latency**.

Example: Samsung HD642JJ Hard Drive (640 GB, SATA 3)
- rotational speed: 7200 rpm
- sequential read bandwidth: \(\approx 106 \text{ MB/s} \) (\texttt{hdparm -t})
- random access time: 15.2 ms (measured)

\[1024 \times 15.2 \text{ ms} = 15.56 \text{ s} \]

```
4 \text{ MB} \div 106 \text{ MB/s} = 0.04 \text{ s}
```

Total time: 15.60 s

✏️ **Time it takes to read 1,024 random 4 kB blocks?**
Ways to Improve I/O Performance

The latency penalty is hard to avoid.

However:

- Throughput can be increased rather easily by exploiting parallelism.
- **Idea:** Use multiple disks and access them in parallel.

TPC-C: An industry benchmark for OLTP

The current number one system (Oracle 11g RAC on SPARC) uses

- 11,040 flash drives (24 GB each) and 720 hard drives (!)
 (plus drives for OS, etc.),
- connected with 8 Gbit Fibre Channel,
- yielding 30 tpmC (≈ 60 M transactions per minute).

© Jens Teubner · Information Systems · Summer 2018
Consequences of the Bandwidth ↔ Latency Gap

To combat the latency problem:

1. Databases access and organize the disk with a page granularity.
 - Read larger chunks to amortize high latency.
 - Page size: at least 4 kB, better more; up to ≈ 64 kB.

2. Use **sequential access** and/or aggressive **prefetching** (read-ahead).
 - But must read many pages ahead to actually avoid penalty.
Finding a Needle in a Haystack

SQL Query:

```
SELECT * 
FROM CUSTOMERS 
WHERE ZIPCODE BETWEEN 8800 AND 8999
```

To answer this query, we could

1. **sort** the table on disk (in ZIPCODE order).
2. To answer queries, then use **binary search** to find first qualifying tuple, and **scan** as long as ZIPCODE < 8999.

\[k^* \] denotes the full data record with search key \(k \).
Need to read only \(\log_2(\# \text{tuples}) \) to find the first match.

Need to read about as many pages for this. (The whole point of binary search is that we make far, unpredictable jumps. This largely defeats prefetching.)
Observations:

- Make rather **far jumps initially**.
 - For each step read **full page**, but inspect only **one record**.
- Last $O(\log_2 \text{pagesize})$ steps stay **within one page**.
 - I/O cost is used much more efficiently here.
Idea: “Cache” those records that might be needed for the first phase.

→ If we can keep the cache **in memory**, we can find **any** record with just a **single I/O**.

Is this assumption reasonable?

Binary Search and Database Pages
Large Data

What if my data set is really large?

- “Cache” will span many pages, too.
 (In practice, we’ll organize the cache just like any other database object.)
- Thus: “cache the cache” → hierarchical “cache”

B-trees are essentially such a “hierarchical cache.”
B-Trees

- All nodes are the size of a page
 - hundreds of entries per page
 - large fanout, low depth
- Search effort: $\log_{\text{fanout}}(\# \text{ tuples})$

Each B-tree node contains

- A set of **index entries**, which include
 - the value of a **search key** (e.g., 4711) and
 - “**associated information**” (indicated by *)
 (either a full data tuple or a reference to a tuple).
- A set of **child pointers**, pointing to a child page of the B-tree.

Each tree node (except the root) contains **at least** \(d \) and **at most** \(2d \) index entries ("minimum 50 % full"; on previous slide: \(d = 2 \)).

→ We call \(d \) the **order** of the B-tree.

→ In practice, \(d \) is **large** (few hundreds).

B-trees are **balanced** at all times.
Searching a B-Tree

1. **Function:**

 \[\text{tree_search}(k, \text{node})\]

2. if matching \(*_i \) found on \(\text{node} \) then

 return \(*_i \);

3. if \(\text{node} \) is a leaf node then

 return not found;

4. switch \(k \) do

 case \(k < k_0 \) do

 return

 \[\text{tree_search}(k, p_0);\]

 case \(k_i < k < k_{i+1} \) do

 return

 \[\text{tree_search}(k, p_i);\]

 case \(k_{2d} < k \) do

 return

 \[\text{tree_search}(k, p_{2d});\]

Note that B-trees are an **ordered** index structure.

- Support equality and range predicates

Invoke with

\[\text{node} = \text{root node}.\]
Goal: Keep B-tree **balanced** at all times.\(^\text{14}\)

Why is this desirable?

Thus: Define routines for **insertion** and **deletion** that leave the B-tree properties intact.

\(^\text{14}\) *i.e.*, every root-to-leaf path must have the same length.
Sketch of the **insertion procedure** for entry k^*:

1. **Find leaf page** n where we would expect the entry for k.

2. If n has **enough space** to hold the new entry (i.e., at most $2d - 1$ entries in n), **simply insert** k^* into n.

3. Otherwise node n must be **split** into n and n' and a new **separator** has to be inserted into the parent of n.

Splitting happens recursively and may eventually lead to a split of the root node (increasing the tree height).

→ B-trees grow at the root, not at the leaves!
B-Tree Insert: Examples (Insert without Split)

Insert new entry with key 4222.

→ Enough space in node 3, simply insert.
Insert key 6330.

→ Must **split** node 4.

→ **Middle entry** goes into node 1.
After 8180, 8245, 6435 insert key 4104.

→ Must **split** node 3.
→ Node 1 overflows → split it
→ **New separator** goes into root
Splitting starts at the leaf level and continues upward as long as index nodes are fully occupied.

Eventually, this can lead to a split of the root node:
- Split like any other inner node.
- Use the separator to create a new root.

The root node is the only node that may have an occupancy of less than 50%.

This is the only situation where the tree height increases.

How often do you expect a root split to happen?
A B-tree maintains **key values** together with **“associated information”**.

The **“associated information”** *can be*

Full Data Tuples

The B-tree becomes the mechanism to organize the table data

→ The table is **physically ordered** according to the key attribute.
→ We call this a **clustered index** or an **index-organized table**.
→ There can be at most one clustered index per table.

Pointers to Actual Tuples

These pointers are also called **record identifiers** or **RIDs**.

→ Most systems use \(\langle \text{pageno, pos. within page}\rangle\) to encode RIDs.
→ Such indexes are also called **secondary indexes**.
→ There can be arbitrarily many secondary indexes.

Many systems (e.g., DB2) only support the latter index type.
B-Trees → \mathbb{B}^+-trees

Key to the efficiency of B-trees is their **high fanout**.

\[
\text{high fanout} \rightarrow \text{low tree depth} \rightarrow \text{fast root-to-leaf navigation}
\]

This gives incentive to **maximize fanout**:

→ Do **not** store \ast in **inner nodes**

 (Rather use that space to increase d / store more keys.)

→ Inner nodes are then used for root-to-leaf navigation **only**.

→ For every data tuple, there is on leaf-level index entry.

→ The resulting index structure is then called \mathbb{B}^+-tree.

Real systems today always use \mathbb{B}^+-trees.

→ When database people say “B-tree,” they typically mean “\mathbb{B}^+-tree.”
B+-trees

- Inner nodes do not store tuples or RIDs
 - only used to navigate to leaves
 - higher fanout, lower depth
- Only leaves contain (references to) tuple data (indicated here with *)

© Jens Teubner · Information Systems · Summer 2018
Function: search \((k)\)

```
return tree_search \((k, root)\);
```

Function: tree_search \((k, node)\)

```
if node is a leaf then
    return node;

switch \(k\) do
    case \(k \leq k_0\) do
        return tree_search \((k, p_0)\);
    case \(k_i < k \leq k_{i+1}\) do
        return tree_search \((k, p_i)\);
    case \(k_2d < k\) do
        return tree_search \((k, p_{2d})\);
```

- All searches now navigate to a leaf node. → Makes search effort also more predictable.
- Function search \((k)\) returns a pointer to the leaf node that contains potential hits for search key \(k\).
Insert new entry with key 4222.

→ Enough space in node 3, simply insert.
(Same as in B-tree)
Insert key 6330.

→ Must **split** node 4.

→ **New separator** goes into node 1.
 But **keep** entry in node 4!
After 5219, 5476, insert key 4104.

→ Must **split** leaf node 3.
→ Inner node 1 overflows → split it
→ **New separator** goes into root

Splitting the **inner node** works analogously to B-tree.
B⁺-tree Insertion Algorithm

1. **Function**: `tree_insert(k, rid, node)

2. if node is a leaf then
 3. return leaf_insert(k, rid, node);

4. else

5. switch k do
 6. case k ≤ k₀ do
 7. ⟨sep, ptr⟩ ← tree_insert(k, rid, p₀);

 8. case kᵢ < k ≤ kᵢ₊₁ do
 9. ⟨sep, ptr⟩ ← tree_insert(k, rid, pᵢ);

 10. case k₂ᵈ < k do
 11. ⟨sep, ptr⟩ ← tree_insert(k, rid, p₂ᵈ);

 12. if sep is null then
 13. return ⟨null, null⟩;

 14. else
 15. return split(sep, ptr, node);

see tree_search()
Function: leaf_insert (k, rid, node)

if another entry fits into node then
 insert ⟨k, rid⟩ into node;
 return ⟨null, null⟩;
else
 allocate new leaf page p;
 take \{⟨k_1^+, p_1^+⟩, ..., ⟨k_{2d+1}^+, p_{2d+1}^+⟩\} := entries from node ∪ \{⟨k, ptr⟩\}
 leave entries ⟨k_1^+, p_1^+⟩, ..., ⟨k_{d+1}^+, p_{d+1}^+⟩ in node;
 move entries ⟨k_{d+2}^+, p_{d+2}^+⟩, ..., ⟨k_{2d+1}^+, p_{2d+1}^+⟩ to p;
 set p_0 ← p_{d+1}^+ in node;
 return ⟨k_{d+1}^+, p⟩;

Function: split (k, ptr, node)

if another entry fits into node then
 insert ⟨k, ptr⟩ into node;
 return ⟨null, null⟩;
else
 allocate new leaf page p;
 take \{⟨k_1^+, p_1^+⟩, ..., ⟨k_{2d+1}^+, p_{2d+1}^+⟩\} := entries from node ∪ \{⟨k, ptr⟩\}
 leave entries ⟨k_1^+, p_1^+⟩, ..., ⟨k_{d+1}^+, p_{d+1}^+⟩ in node;
 move entries ⟨k_{d+2}^+, p_{d+2}^+⟩, ..., ⟨k_{2d+1}^+, p_{2d+1}^+⟩ to p;
 set p_0 ← p_{d+1}^+ in node;
 return ⟨k_{d+1}^+, p⟩;
Function: insert \((k, rid)\)

\[
\langle \text{key}, \text{ptr} \rangle \leftarrow \text{tree_insert} \((k, rid, root)\);
\]

if key is not null then

allocate new root page \(r\);

populate \(n\) with

\[
\begin{align*}
p_0 & \leftarrow \text{root}; \\
k_1 & \leftarrow \text{key}; \\
p_1 & \leftarrow \text{ptr}; \\
\text{root} & \leftarrow r;
\end{align*}
\]

insert \((k, rid)\) is called from outside.

Note how leaf node entries point to RIDs, while inner nodes contain pointers to other \(B^+\)-tree nodes.
Example: Webserver access log (people.inf.ethz.ch)
- table cardinality: 11 million tuples (710K data pages)
- distinct IP addresses: 181,628 (stored as CHAR (15))
- database: IBM DB2 9.7

B^+-tree on IP addresses:
- 25,151 index pages total:
 - 1 root node
 - 110 second-level nodes; average fanout: 230
 - 25,040 leaf-level nodes: 1–77 keys per node
Deletion

- If a node is sufficiently full (i.e., contains at least $d + 1$ entries, we may simply remove the entry from the node.
 - Note: Afterward, **inner nodes** may contain keys that no longer exist in the database. This is perfectly legal.

- **Merge** nodes in case of an **underflow** ("undo a split"):

 ![Diagram of node merge]

 - “Pull” separator into merged node.
Deletion

It’s not quite that easy...

- Merging only works if two neighboring nodes were 50% full.
- Otherwise, we have to re-distribute:
 - “rotate” entry through parent
- Redistribution is complex and expensive.
 → Real systems usually do not implement deletion “by the book.”
Actual systems often avoid the cost of merging and/or redistribution, but relax the minimum occupancy rule.

E.g., IBM DB2 UDB:
- The MINPCTUSED parameter controls when the system should try a leaf node merge (“on-line index reorg”).
- Inner nodes are never merged (→ need to do full table reorg for that).

To improve concurrency, systems sometimes only mark index entries as deleted and physically remove them later (e.g., IBM DB2 UDB “type-2 indexes”)
→ Resulting index entries are also called ghost records.
A typical situation (for a secondary B^+-tree) looks like this:

What are the implications when we want to execute

```
SELECT * FROM CUSTOMERS ORDER BY ZIPCODE
```
B$^+$-trees can (in theory15) be used to index everything with a defined total order, e.g.:

- integers, strings, dates, . . . , and
- concatenations thereof (based on lexicographical order).

E.g., in most SQL dialects:

```
CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME);
```

A useful application are, e.g., partitioned B-trees:

- Leading index attributes effectively partition the resulting B$^+$-tree.

15Some implementations won’t allow you to index, e.g., large character fields.
CREATE INDEX ON TABLE STUDENTS (SEMESTER, ZIPCODE);

What types of queries could this index support?