
Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2018

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 1

Part II

Storage: Disks and Files

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 10

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Operator Evaluator Optimizer

Executor Parser

Lock

Manager

Transaction

Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 11

Memory Hierarchy

CPU
(with registers)

caches

main memory

hard disks

tape library

capacity

bytes

kilo-/megabytes

gigabytes

terabytes

petabytes

latency

< 1 ns

< 10 ns

70–100 ns

3–10 ms

varies

fast, but expensive and small, memory close to CPU

larger, slower memory at the periphery

We’ll try to hide latency by using the fast memory as a cache.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 12

Magnetic Disks

heads

arm

platter

rotation

sectorblock

track

A stepper motor positions an array of

disk heads on the requested track.

Platters (disks) steadily rotate.

Disks are managed in blocks: the system

reads/writes data one block at a time.

P
h

o
to

:
h
t
t
p
:
/
/
w
w
w
.
m
e
t
a
l
l
u
r
g
y
.
u
t
a
h
.
e
d
u
/

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 13

http://www.metallurgy.utah.edu/

Access Time

This design has implications on the access time to read/write a given

block:

1 Move disk arms to desired track (seek time ts).

2 Wait for desired block to rotate under disk head (rotational delay

tr).

3 Read/write data (transfer time ttr)

→ access time: t = ts + tr + ttr

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 14

Example: Notebook drive Hitachi Travelstar 7K200

4 heads, 2 disks, 512 bytes/sector, 200 GB capacity

rotational speed: 7200 rpm

average seek time: 10 ms

transfer rate: ≈ 50 MB/s

� What is the access time to read an 8 KB data block?

average seek time ts = 10 ms

average rotational delay: 1
2 ·

1 s
7200/min tr = 4.17 ms

transfer time for 8 KB: 8 KB
50 MB/s ttr = 0.16 ms

access time for an 8 KB data block t = 14.33 ms

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 15

Sequential vs. Random Access

Example: Read 1000 blocks of size 8 KB

random access:

trnd = 1000 · 14.33 ms = 14.33 s

sequential read:

tseq = ts + tr + 1000 · ttr + 16·1000
63 · ts,track-to-track

= 10 ms + 4.14 ms + 160 ms + 254 ms ≈ 428 ms

The Travelstar 7K200 has 63 sectors per track, with a 1 ms

track-to-track seek time; one 8 KB block occupies 16 sectors.

→ Sequential I/O is much faster than random I/O.

→ Avoid random I/O whenever possible.

→ As soon as we need at least 428 ms
14330 ms = 3% of a file, we better read

the entire file!

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 16

Performance Tricks

System builders play a number of tricks to improve performance.

track skewing

Align sector 0 of each track to avoid

rotational delay during sequential

scans.

request scheduling

If multiple requests have to be served, choose the one that requires

the smallest arm movement (SPTF: shortest positioning time first).

zoning

Outer tracks are longer than the inner ones. Therefore, divide outer

tracks into more sectors than inners.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 17

Hard Disk Latency
IBM Almaden Research center

© 2010
IBM Corporation

13 Solid State Storage: Technology, Design and Applications
FAST February 2010

Disk Drive Latency

0

1

2

3

4

5

6

7

8

1985 1990 1995 2000 2005 2010

Date

Latency
[ms]

! Bandwidth Problem is getting much harder to hide with parallelism
! Access Time Problem is also not improving with caching tricks
! Power/Space/Performance Cost

IBM Almaden Research center

© 2010
IBM Corporation

14 Solid State Storage: Technology, Design and Applications
FAST February 2010

Disk Drive Reliability
Annualized

Failure
Rate

[%]

10

8

6

4

2

0

¼ ½ 1 2 3 4 5

AFR
[%] 10

8

6

2

0

12

4

¼ ½ 1 2 3 4 5

overall

by usage

age of drive

age of drive[Pinheiro:2007]

• Consider: drive failures during

recovery from a drive failure…?

" potential for improvement given
• switch to solid-state (no moving parts)

• faster time-to-fill (during recovery)

• with hundreds of thousands of

server drives being used in-situ,

reliability problems well known…

• similar understanding for Flash & other

SCM technologies not yet available…

source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 18

Evolution of Hard Disk Technology

Disk latencies have only marginally improved over the last years (≈ 10 %

per year).

But:

Throughput (i.e., transfer rates) improve by ≈ 50 % per year.

Hard disk capacity grows by ≈ 50 % every year.

Therefore:

Random access cost hurts even more as time progresses.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 19

Ways to Improve I/O Performance

The latency penalty is hard to avoid.

But:

Throughput can be increased rather easily by exploiting parallelism.

Idea: Use multiple disks and access them in parallel.

I TPC-C: An industry benchmark for OLTP

Some while ago, the number one system (DB2 9.5 on AIX) used

10,992 disk drives (73.4 GB each, 15,000 rpm) (!)

(plus 8 internal SCSI drives with 146.8 GB each),

connected with 68 × 4 Gbit Fibre Channel adapters,

yielding 6 mio transactions per minute.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 20

Disk Mirroring

Replicate data onto multiple disks

1 2 3 4 5

6 7 8 9 · · ·

1 2 3 4 5

6 7 8 9 · · ·

1 2 3 4 5

6 7 8 9 · · ·

I/O parallelism only for reads.

Improved failure tolerance (can survive one disk failure).

This is also known as RAID 1 (mirroring without parity).

(RAID: Redundant Array of Inexpensive Disks)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 21

Disk Striping

Distribute data over disks

1 2 3 4 5

6 7 8 9 · · ·

1 4 7 · · · 2 5 8 · · · 3 6 9 · · ·

Full I/O parallelism.

High failure risk (here: 3 times risk of single disk failure)!

Also known as RAID 0 (striping without parity).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 22

Disk Striping with Parity

Distribute data and parity information over disks.

1 2 3 4 5

6 7 8 9 · · ·

1 3 7 · · ·5/6 2 5 8 · · ·3/4 4 6 · · ·1/2 7/8

High I/O parallelism.

Fault tolerance: one disk can fail without data loss (two disks with

dual parity/RAID 6).

Also known as RAID 5 (striping with distributed parity).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 23

Solid-State Drives: Technology

Basis: MOS transistor

IBM Almaden Research center

© 2010
IBM Corporation

27 Solid State Storage: Technology, Design and Applications
FAST February 2010

Many Competing Technologies for SCM

! Phase Change RAM
– most promising now (scaling)

! Magnetic RAM

– used today, but poor scaling and a space hog

! Magnetic Racetrack

– basic research, but very promising long term

! Ferroelectric RAM

– used today, but poor scalability

! Solid Electrolyte and resistive RAM (Memristor)

– early development, maybe?

! Organic, nano particle and polymeric RAM

– many different devices in this class, unlikely

! Improved FLASH
– still slow and poor write endurance

bistable material
plus on-off switch

Generic SCM Array

IBM Almaden Research center

© 2010
IBM Corporation

28 Solid State Storage: Technology, Design and Applications
FAST February 2010

What is Flash?

• Based on MOS transistor

• Transistor gate is redesigned

• Charge is placed or removed
near the “gate”

• The threshold voltage Vth of the
transistor is shifted by the
presence of this charge

• The threshold Voltage shift
detection enables non-volatile
memory function.

source drain

gate

source drain

control gate

source drain

e- e- e- e- e-

control gate

oxide

Floating
Gate e- e-

Flash
Memory

“0”

Flash
Memory

“1”

Floating
Gate

IBM Almaden Research center

© 2010
IBM Corporation

27 Solid State Storage: Technology, Design and Applications
FAST February 2010

Many Competing Technologies for SCM

! Phase Change RAM
– most promising now (scaling)

! Magnetic RAM

– used today, but poor scaling and a space hog

! Magnetic Racetrack

– basic research, but very promising long term

! Ferroelectric RAM

– used today, but poor scalability

! Solid Electrolyte and resistive RAM (Memristor)

– early development, maybe?

! Organic, nano particle and polymeric RAM

– many different devices in this class, unlikely

! Improved FLASH
– still slow and poor write endurance

bistable material
plus on-off switch

Generic SCM Array

IBM Almaden Research center

© 2010
IBM Corporation

28 Solid State Storage: Technology, Design and Applications
FAST February 2010

What is Flash?

• Based on MOS transistor

• Transistor gate is redesigned

• Charge is placed or removed
near the “gate”

• The threshold voltage Vth of the
transistor is shifted by the
presence of this charge

• The threshold Voltage shift
detection enables non-volatile
memory function.

source drain

gate

source drain

control gate

source drain

e- e- e- e- e-

control gate

oxide

Floating
Gate e- e-

Flash
Memory

“0”

Flash
Memory

“1”

Floating
Gate

Flash cell:

Add (fully isolated) floating gate

in-between.

Charge on floating gate shifts

characteristics of the source/control

gate/drain transistor.

→ Use to “read” charge state

(Dis-)charging of floating gate only

through high voltage (tunnel effect)

→ Charge “trapped” → persistence

source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 24

Solid-State Drives: Technology

Miniaturization:

Combine many cells to achieve tight packing

→ NAND Flash

→ Must read blocks of data at once (; hard disks)

Single-level cells (SLC) vs. Multi-level cells (MLC)

→ Cost/density ↔ reliability trade-off

Challenges:

Feature size ↘ ⇒ reliability ↘
Fewer electrons of charge, thinner isolation layers

→ Limited retention

Over time, writes damage isolation layer

→ Limited endurance (104 ∼ 105 writes per cell)

Block based erasure (→ no update in place)

→ Write amplification, slow writes

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 25

Solid-State Drives

Solid state drives (SSDs) as an alternative to conventional hard disks?

flash mag. disk

re
a

d

w
ri

te

re
a

d

w
ri

teti
m

e
Samsung 32 GB flash disk; 4096 bytes read/written randomly. Source: Koltsidas and Viglas. Flashing up the Storage Layer. VLDB 2008.

SSDs provide very low-latency random

read access.

Random writes, however, are significantly

slower than on traditional magnetic drives.

Pages have to be erased before they can

be updated.

Once pages have been erased, sequentially writing them is

almost as fast as reading.

Adapting databases to these characteristics is a current research

topic.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 26

Phase-Change Memory: Physics

IBM Almaden Research center

© 2010
IBM Corporation

41 Solid State Storage: Technology, Design and Applications
FAST February 2010

History of Phase-change memory

[Neale:2001]

• late 1960’s – Ovshinsky shows reversible electrical switching in
disordered semiconductors

• early 1970’s – much research on mechanisms, but everything was too slow!

E
le

ct
ri
ca

l c
o

n
d

u
ct

iv
ity

Crystalline phase
Low resistance
High reflectivity

Amorphous phase
High resistance
Low reflectivity

[Wuttig:2007]

IBM Almaden Research center

© 2010
IBM Corporation

42 Solid State Storage: Technology, Design and Applications
FAST February 2010

Phase-Change
RAM

Access device
(transistor, diode)

PCRAM
“programmable

resistor”

Bit-line

Word
-line

temperature

time

Tmelt

Tcryst

“RESET” pulse

“SET”
pulse

Voltage

Potential headache:

High power/current
! affects scaling!

Potential headache:

If crystallization is slow
! affects performance!

source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 27

Phase-Change Memory: Technology

IBM Almaden Research center

© 2010
IBM Corporation

41 Solid State Storage: Technology, Design and Applications
FAST February 2010

History of Phase-change memory

[Neale:2001]

• late 1960’s – Ovshinsky shows reversible electrical switching in
disordered semiconductors

• early 1970’s – much research on mechanisms, but everything was too slow!

E
le

ct
ri
ca

l c
o

n
d

u
ct

iv
ity

Crystalline phase
Low resistance
High reflectivity

Amorphous phase
High resistance
Low reflectivity

[Wuttig:2007]

IBM Almaden Research center

© 2010
IBM Corporation

42 Solid State Storage: Technology, Design and Applications
FAST February 2010

Phase-Change
RAM

Access device
(transistor, diode)

PCRAM
“programmable

resistor”

Bit-line

Word
-line

temperature

time

Tmelt

Tcryst

“RESET” pulse

“SET”
pulse

Voltage

Potential headache:

High power/current
! affects scaling!

Potential headache:

If crystallization is slow
! affects performance!

source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 28

Storage-Class Memory (SCM)

Phase-Change Memory is one promising technology to realize

storage-class memory:

Persistent (like disks or SSDs)

RAM-like access characteristics

→ Speed-wise, but also with byte-level addressing

First prototypes exist!

Challenges/Questions:

How scalable are SCM technologies? (so far looks good)

How can SCM be integrated into a system?

→ Access SCM like a block device or like RAM?

What does fast, byte-addressable storage mean for software?

→ E.g., database recovery mechanisms

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 29

Network-Based Storage

The network is not a bottleneck any more:

Hard disk: 50–100 MB/s

Serial ATA: 375 MB/s (600 MB/s soon)

Ultra-640 SCSI: 640 MB/s

10 gigabit Ethernet: 1,250 MB/s (latency: ∼ µs)

Infiniband QDR: 12,000 MB/s (latency: ∼ µs)

for comparison:

PC2-5300 DDR2-SDRAM (dual channel): 10.6 GB/s

PC3-12800 DDR3-SDRAM (dual channel): 25.6 GB/s

→ Why not use the network for database storage?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 30

Storage Area Network

Block-based network access to storage

Seen as logical disks (“give me block 4711 from disk 42”)

Unlike network file systems (e.g., NFS, CIFS)

SAN storage devices typically abstract from RAID or physical disks

and present logical drives to the DBMS

Hardware acceleration and simplified maintainability

Typically local networks with multiple servers and storage resources

participating

Failure tolerance and increased flexibility

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 31

Grid or Cloud Storage

Some big enterprises employ clusters with thousands of commodity PCs

(e.g., Google, Amazon):

system cost ↔ reliability and performance,

use massive replication for data storage.

Spare CPU cycles and disk space can be sold as a service.

Amazon’s “Elastic Computing Cloud (EC2)”

Use Amazon’s compute cluster by the hour (∼ 10 ¢/hour).

Amazon’s “Simple Storage Systems (S3)”

“Infinite” store for objects between 1 Byte and 5 GB in size, with a

simple key 7→ value interface.

Latency: 100 ms to 1 s (not impacted by load)

pricing ≈ disk drives (but addl. cost for access)

→ Build a database on S3? (↗ Brantner et al., SIGMOD 2008)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 32

Managing Space

data files, indices, . . .

Buffer Manager

Files and Access Methods

Disk Space Manager

Operator Evaluator Optimizer

Executor Parser

Lock

Manager

Transaction

Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 33

Managing Space

The disk space manager

abstracts from the gory details of the underlying storage

provides the concept of a page (typically 4–64 KB) as a unit of

storage to the remaining system components

maintains the mapping

page number 7→ physical location ,

where a physical location could be, e.g.,

an OS file name and an offset within that file,

head, sector, and track of a hard drive, or

tape number and offset for data stored in a tape library

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 34

Empty Pages

The disk space manager also keeps track of used/free blocks.

1 Maintain a linked list of free pages

When a page is no longer needed, add it to the list.

2 Maintain a bitmap with one bit for each page

Toggle bit n when page n is (de-)allocated.

� To exploit sequential access, it may be useful to allocate contiguous

sequences of pages. Which of the techniques 1 or 2 would you

choose to support this?

This is a lot easier to do with a free page bitmap (option 2).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 35

Buffer Manager

data files, indices, . . .

Disk Space Manager

Files and Access Methods

Buffer Manager

Operator Evaluator Optimizer

Executor Parser

Lock

Manager

Transaction

Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 36

Buffer Manager

6 1 4

3

7

1 2 3 4 5 6

7 8 9 10 11 · · ·

main
memory

disk

disk page
free frame

page requests The buffer manager

mediates between external

storage and main memory,

manages a designated main

memory area, the buffer pool

for this task.

Disk pages are brought into memory

as needed and loaded into memory

frames.

A replacement policy decides which

page to evict when the buffer is full.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 37

Interface to the Buffer Manager

Higher-level code requests (pins) pages from the buffer manager and

releases (unpins) pages after use.

pin (pageno)

Request page number pageno from the buffer manager, load it into

memory if necessary. Returns a reference to the frame containing

pageno.

unpin (pageno, dirty)

Release page number pageno, making it a candidate for eviction.

Must set dirty = true if page was modified.

� Why do we need the dirty bit?

Only modified pages need to be written back to disk upon eviction.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 38

Implementation of pin ()

1 Function: pin(pageno)

2 if buffer pool already contains pageno then

3 pinCount (pageno)← pinCount (pageno)+ 1 ;

4 return address of frame holding pageno ;

5 else

6 select a victim frame v using the replacement policy ;

7 if dirty (v) then

8 write v to disk ;

9 read page pageno from disk into frame v ;

10 pinCount (pageno)← 1 ;

11 dirty (pageno)← false ;

12 return address of frame v ;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 39

Implementation of unpin ()

1 Function: unpin(pageno, dirty)

2 pinCount (pageno)← pinCount (pageno)− 1 ;

3 if dirty then

4 dirty (pageno)← dirty ;

� Why don’t we write pages back to disk during unpin ()?

Well, we could . . .

+ transaction recovery a lot simpler (e.g., System R “shadow pages”)

– higher I/O cost (every update implies a write to disk)

– bad response time for writing transaction

This discussion is also known as force (or write-through) vs. write-back.

Actual systems typically implement write-back (or no-force).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 40

Replacement Policies

The effectiveness of the buffer manager’s caching functionality can

depend on the replacement policy it uses, e.g.,

Least Recently Used (LRU)

Evict the page whose latest unpin () is longest ago.

LRU-k

Like LRU, but considers k-latest unpin (), not just latest.

Most Recently Used (MRU)

Evict the page that has been unpinned most recently.

Random

Pick a victim randomly.

� What could be the rationales behind each of these strategies?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 41

Buffer Management in Reality

Prefetching

Buffer managers try to anticipate page requests to overlap CPU and

I/O operations.

Speculative prefetching: Assume sequential scan and

automatically read ahead.

Prefetch lists: Some database algorithms can instruct the

buffer manager with a list of pages to prefetch.

Page fixing/hating

Higher-level code may request to fix a page if it may be useful in the

near future (e.g., index pages).

Likewise, an operator that hates a page won’t access it any time

soon (e.g., table pages in a sequential scan).

Partitioned buffer pools

E.g., separate pools for indexes and tables.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 42

Databases vs. Operating Systems

Hmm. . . Didn’t we just re-invent the operating system?

Yes,

disk space management and buffer management very much look like

file management and virtual memory in OSs.

But,

a DBMS may be much more aware of the access patterns of

certain operators (→ prefetching, page fixing/hating),

transaction management often calls for a defined order of write

operations,

technical reasons may make OS tools unsuitable for a database

(e.g., file size limitation, platform independence).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 43

Databases vs. Operating Systems

In fact, databases and operating systems sometimes interfere.

Operating system and buffer manager

effectively buffer the same data twice.

Things get really bad if parts of the DBMS

buffer get swapped out to disk by OS VM

manager.

Therefore, databases try to turn off OS

functionality as much as possible.

→ Raw disk access instead of OS files.
disk

OS
buffer

DBMS
buffer

(Similar story: DBMS TX management vs. journaling file systems.)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 44

Files and Records

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Operator Evaluator Optimizer

Executor Parser

Lock

Manager

Transaction

Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 45

Database Files

page 0 page 1 page 2 page 3

page 4 page 5 page 6 page 7

file 0

file 1

free

free

So far we have talked about pages. Their management is oblivious

with respect to their actual content.

On the conceptual level, a DBMS manages tables of tuples and

indexes (among others).

Such tables are implemented as files of records:

A file consists of one or more pages.

Each page contains one or more records.

Each record corresponds to one tuple.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 46

Heap Files

The most important type of files in a database is the heap file. It stores

records in no particular order (in line with, e.g., SQL).

Linked list of pages

header

page

data

page

data

page
· · · data

page

data

page

data

page
· · · data

page

pages w/

free space

full pages

+ easy to implement

– most pages will end up in free page list

– might have to search many pages to place a (large) record

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 47

Heap Files

Directory of pages

data

page

data

page

data

page

· · ·

use as space map with information about free page

granularity as trade-off space ↔ accuracy

(range from open/closed bit to exact information)

+ free space search more efficient

– small memory overhead to host directory

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 48

Free Space Management

Which page to pick for the insertion of a new record?

Append Only

Always insert into last page. Otherwise, create a new page.

Best Fit

Reduces fragmentation, but requires searching the entire space map

for each insert.

First Fit

Search from beginning, take first page with enough space.

(→ These pages quickly fill up, and we waste a lot of search effort

in first pages afterwards.)

Next Fit

Maintain cursor and continue searching where search stopped last

time.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 49

Free Space Witnesses

We can accelerate the search by remembering witnesses:

Classify pages into buckets, e.g., “75 %–100 % full”,

“50 %–75 % full”, “25 %–50 % full”, and “0 %–25 % full”.

For each bucket, remember some witness pages.

Do a regular best/first/next fit search only if no witness is recorded

for the specific bucket.

Populate witness information, e.g., as a side effect when searching

for a best/first/next fit page.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 50

Inside a Page

ID NAME SEX

4711 John M

1723 Marc M

6381 Betty F

record identifier (rid):

〈pageno, slotno〉
record position (within page):

slotno × bytes per slot

Tuple deletion?

record id shouldn’t change

→ slot directory (bitmap)

4 7 1 1 J o h n M 1 7 2 3 M
a r c M 6 3 8 1 B e t t y

F

Header3

no. of records

in this page

1 0 1

slot

directory

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 51

Inside a Page—Variable-Sized Fields

Variable-sized fields moved to end of

each record.

Placeholder points to location.

� Why?

Slot directory points to start of each

record.

Records can move on page.

E.g., if field size changes.

Create “forward address” if record

won’t fit on page.

� Future updates?

4 7 1 1 M J o h n ⊥ 1 7 2 3 M M
a r c ⊥ 6 3 8 1 F B e t t y ⊥ 1 7 2
3 M T i m o t h y ⊥

• •
•

•

Header3

no. of records

in this page

•••

•

forward

slot

directory

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 52

Slotted Pages —I IBM DB2

In DB2, the slot directory grows from the front, data grows from the end:

BPS Page Header:

Page Data Offset = 48

Page Data Length = 4048

Page LSN = 0000 0438 8F85

...

Object Type = Data Object

Data Page Header:

Slot Count = 103

Total Free Space = 48

...

Free Space Offset = 216

Maximum Record Size = 37

Data Records:

Slot 0:

Offset Location = 3991 (xF97)

Record Length = 37 (x25)

Record Type = Table Data Record

(FIXEDVAR) (PUNC)

...

Slot 1:

Offset Location = 3954 (xF72)

Record Length = 37 (x25)

Record Type = Table Data Record

(FIXEDVAR) (PUNC)

...

0000 3000D00F 50020000 00040000 04388F85 0...P........8..

0010 01010000 0500000A 542FE4C5 01000000T.......

0020 02000000 09000000 00000000 00000000

0030 67003000 25002500 2500D800 00000000 g.0.............

0040 CDDF0000 970F720F 4D0F280F FFFFDE0Er.M.......

0050 B90E940E 6F0E4A0E 250E000E DB0DB60Do.J.........

0060 910D6C0D 470D220D FD0CD80C B30C8E0C ..l.G...........

...

0F90 00100025 0001001D 00C71800 00620D00b..

0FA0 00737472 2D383337 37372020 20202020 .str.83777......

0FB0 20202020 20001000 25000100 1D003B18

0FC0 00003AA9 00007374 722D3837 31383720str.87187.

0FD0 20202020 20202020 20200010 00250001

0FE0 001D00CF 1C000056 AB000073 74722D39V...str.9

0FF0 30303533 20202020 20202020 20202000 0053............

Such data can be obtained with

db2dart.

Observe how slot 4 is marked

‘deleted’ (FFFF).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 53

Sparse Columns

An alternative is interpreted storage.

Interpreted Storage

〈ID, 4711〉, 〈NAME, John〉, 〈SEX, M〉
〈ID, 1723〉, 〈NAME, Marc〉, 〈SEX, M〉
〈ID, 6381〉, 〈NAME, Betty〉, 〈SEX, F〉

� Why would one want to do this?

e.g., product categories:
ID Group Price Card Zoom MP Pages Color Port · · ·
1 Camera 100.00 SD 5 10 – – – · · ·
2 Printer 599.00 – – – 50 Yes USB · · ·

multi-tenant databases

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 54

Sparse Columns in MS SQL Server

Microsoft SQL Server 2008 provides support for sparse columns.

Columns marked as SPARSE are put into an interpreted storage.

CREATE TABLE Products

(· · · , Card VARCHAR(10) SPARSE NULL, · · ·)

The internal storage is designed for fast access.

Interpreted Storage

Header Range Mask Column IDs Value Offsets Values

4 · · · 100 1 SD

101 · · · 200 0 4, 5, 6 0, 10, 18 5

201 · · · 300 1 10

↗Acharya et al.. Relational Support for Flexible Schema Scenarios. VLDB 2008.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 55

Alternative Page Layouts

We have just populated data pages in a row-wise fashion:

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a1 b1 c1

c1 d1 a2

b2 c2 d2

d2 a3 b3

c3 d3

page 0

a4 b4 c4

c4 d4

page 1

We could as well do that column-wise:

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a1 a2 a3

a3 a4

page 0

b1 b2 b3

b3 b4

page 1

· · ·

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 56

Alternative Page Layouts

These two approaches are also known as NSM (n-ary storage model)

and DSM (decomposition storage model).1

Tuning knob for certain workload types (e.g., OLAP)

Different behavior with respect to compression.

A hybrid approach is the PAX (Partition

Attributes Accross) layout:

Divide each page into minipages.

Group attributes into them.

↗ Ailamaki et al. Weaving Relations for Cache

Performance. VLDB 2001.

mini-
page 0

mini-
page 1

mini-
page 2

mini-
page 3

page 0

1Recently, the terms row-store and column-store have become popular, too.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 57

Recap

Magnetic Disks

Random access orders of magnitude slower than sequential.

Disk Space Manager

Abstracts from hardware details and maps

page number 7→ physical location.

Buffer Manager

Page caching in main memory; pin ()/unpin () interface;

replacement policy crucial for effectiveness.

File Organization

Stable record identifiers (rids); maintenance with fixed-sized

records and variable-sized fields; NSM vs. DSM.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 58

	Storage: Disks and Files
	Magnetic Disks
	Sequential vs. Random Access

	I/O Parallelism
	Disk Mirroring—RAID 1
	Disk Striping—RAID 0
	Disk Striping with Parity—RAID 5

	Alternative Storage Techniques
	Solid-State Disks
	Phase-Change Memory
	Network-Based Storage

	Managing Space
	Free Space Management

	Buffer Manager
	Pinning and Unpinning
	Replacement Policies

	Databases vs. Operating Systems
	Files and Records
	Heap Files
	Inside a Page (Fixed-Length Records)
	Inside a Page (Variable-Length Records)
	Sparse Columns
	Alternative Page Layouts

	Recap

