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Part I

Storage: Disks and Files
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Memory Hierarchy
capacity latency

- kilo-/megabytes <10ns

m fast, but expensive and small, memory close to CPU
m larger, slower memory at the periphery

m We'll try to hide latency by using the fast memory as a cache.
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Magnetic Disks

rotation <S>

platter

m A stepper motor positions an array of
disk heads on the requested track.

m Platters (disks) steadily rotate.

m Disks are managed in blocks: the system
reads/writes data one block at a time.

Photo: http://www.metallurgy.utah.edu/
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Access Time

This design has implications on the access time to read/write a given
block:
Move disk arms to desired track (seek time t).

Wait for desired block to rotate under disk head (rotational delay
tr).
Read/write data (transfer time t;.)

— access time: t = t; + t, + t3
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Example: Notebook drive Hitachi Travelstar 7K200

m 4 heads, 2 disks, 512 bytes/sector, 200 GB capacity
m rotational speed: 7200 rpm

B average seek time: 10 ms

m transfer rate: ~50MB/s

Q. What is the access time to read an 8 KB data block?
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Sequential vs. Random Access

Example: Read 1000 blocks of size 8 KB

m random access:
trnd = 1000 - 14.33ms = 14.33s

m sequential read:
tseq = ts + tr + 1000 - ¢ + 16'&300 - ts track-to-track
= 10ms + 4.14 ms + 160 ms 4+ 254 ms ~ 428 ms

The Travelstar 7K200 has 63 sectors per track, with a 1 ms
track-to-track seek time; one 8 KB block occupies 16 sectors.

4

Sequential |/O is much faster than random 1/0O.

1

Avoid random 1/0 whenever possible.

As soon as we need at least 12335‘55 = 3% of a file, we better read
the entire file!

d
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Performance Tricks

System builders play a number of tricks to improve performance.

track skewing

Align sector 0 of each track to avoid
rotational delay during sequential
scans.

request scheduling

If multiple requests have to be served, choose the one that requires
the smallest arm movement (SPTF: shortest positioning time first).

zoning

Outer tracks are longer than the inner ones. Therefore, divide outer
tracks into more sectors than inners.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018




Hard Disk Latency
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source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.
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Evolution of Hard Disk Technology

Disk latencies have only marginally improved over the last years (~ 10 %
per year).
But:
m Throughput (i.e., transfer rates) improve by ~ 50 % per year.
m Hard disk capacity grows by ~ 50 % every year.
Therefore:

m Random access cost hurts even more as time progresses.
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Ways to Improve |/O Performance

The latency penalty is hard to avoid.
But:

m Throughput can be increased rather easily by exploiting parallelism.

m Idea: Use multiple disks and access them in parallel.

ed TPC-C: An industry benchmark for OLTP
Some while ago, the number one system (DB2 9.5 on AlX) used

m 10,992 disk drives (73.4 GB each, 15,000 rpm) (1)
(plus 8 internal SCSI drives with 146.8 GB each),

m connected with 68 x 4 Gbit Fibre Channel adapters,

m yielding 6 mio transactions per minute.
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Disk Mirroring

m Replicate data onto multiple disks
— | pEne
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m |/O parallelism only for reads.

m Improved failure tolerance (can survive one disk failure).

m This is also known as RAID 1 (mirroring without parity).
(RAID: Redundant Array of Inexpensive Disks)
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Disk Striping

m Distribute data over disks
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m Full 1/O parallelism.

m High failure risk (here: 3 times risk of single disk failure)!

m Also known as RAID 0 (striping without parity).
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Disk Striping with Parity

m Distribute data and parity information over disks.

I
— = =

m High 1/O parallelism.

m Fault tolerance: one disk can fail without data loss (two disks with
dual parity/RAID 6).

m Also known as RAID 5 (striping with distributed parity).
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Solid-State Drives: Technology

oxide

Basis: MOS transistor

Flash cell:

Flash m Add (fully isolated) floating gate
Me“Tfry in-between.

Floating
Gate

m Charge on floating gate shifts
characteristics of the source/control

Flash gate/drain transistor.
Floating Memor “ "
Gate e y — Use to “read” charge state

m (Dis-)charging of floating gate only
through high voltage (tunnel effect)
— Charge “trapped’ — persistence

source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.
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Solid-State Drives: Technology

Miniaturization:

m Combine many cells to achieve tight packing

— NAND Flash
— Must read blocks of data at once (~ hard disks)

m Single-level cells (SLC) vs. Multi-level cells (MLC)
— Cost/density < reliability trade-off

Challenges:
m Feature size N\, = reliability N\,

m Fewer electrons of charge, thinner isolation layers
— Limited retention

m Over time, writes damage isolation layer

— Limited endurance (10* ~ 10° writes per cell)
m Block based erasure (— no update in place)

— Write amplification, slow writes
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Solid-State Drives

Solid state drives (SSDs) as an alternative to conventional hard disks?

m SSDs provide very low-latency random
read access.

m Random writes, however, are significantly
slower than on traditional magnetic drives.

read
read
write

m Pages have to be erased before they can flash  mag. disk

be updated.
m Once pages have been erased, sequentially writing them is
almost as fast as reading.

m Adapting databases to these characteristics is a current research
topic.

Samsung 32 GB flash disk; 4096 bytes read/written randomly. Source: Koltsidas and Viglas. Flashing up the Storage Layer. VLDB 2008.
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Phase-Change Memory: Physics
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source: Freitas, Chiu. Solid-State Storage: Technology, Design, and Applications. FAST 2010.
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Phase-Change Me . Technology

Phase-Chang

Bit-line
PCRAM
“programmable
resistor”
Word - Access device
-line

(transistor, diode)

. Potential headache:
Voltage “RESET” pulse High power/current
temperature] /| """~~~ "°°°°7 melt > affects scaling!
A U - 'Tcryst

Potential headache:
If crystallization is slow
time affects performance!

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018



Storage-Class Memory (SCM)

Phase-Change Memory is one promising technology to realize
storage-class memory:
m Persistent (like disks or SSDs)
m RAM-like access characteristics
— Speed-wise, but also with byte-level addressing

First prototypes exist!

Challenges/Questions:
m How scalable are SCM technologies? (so far looks good)
m How can SCM be integrated into a system?
— Access SCM like a block device or like RAM?
m What does fast, byte-addressable storage mean for software?
— E.g., database recovery mechanisms
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Network-Based Storage

The network is not a bottleneck any more:
m Hard disk: 50-100 MB/s

m Serial ATA: 375 MB/s (600 MB/s soon)
Ultra-640 SCSI: 640 MB/s

m 10 gigabit Ethernet: 1,250 MB/s (latency: ~ us)
Infiniband QDR: 12,000 MB/s (latency: ~ us)

m for comparison:
PC2-5300 DDR2-SDRAM (dual channel): 10.6 GB/s
PC3-12800 DDR3-SDRAM (dual channel): 25.6 GB/s

— Why not use the network for database storage?
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Storage Area Network

m Block-based network access to storage

m Seen as logical disks ( “give me block 4711 from disk 42")
m Unlike network file systems (e.g., NFS, CIFS)

m SAN storage devices typically abstract from RAID or physical disks
and present logical drives to the DBMS

m Hardware acceleration and simplified maintainability

m Typically local networks with multiple servers and storage resources
participating

m Failure tolerance and increased flexibility
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Grid or Cloud Storage

Some big enterprises employ clusters with thousands of commodity PCs
(e.g., Google, Amazon):

m system cost < reliability and performance,
m use massive replication for data storage.
Spare CPU cycles and disk space can be sold as a service.

Amazon's “Elastic Computing Cloud (EC2)"
Use Amazon's compute cluster by the hour (~ 10 ¢/hour).

Amazon's “Simple Storage Systems (S3)"
“Infinite” store for objects between 1 Byte and 5 GB in size, with a
simple key — value interface.
m Latency: 100ms to 1s (not impacted by load)
m pricing =~ disk drives (but addl. cost for access)

— Build a database on S3? (" Brantner et al., SIGMOD 2008)
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Managing Space
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Managing Space

The disk space manager

m abstracts from the gory details of the underlying storage

m provides the concept of a page (typically 4-64 KB) as a unit of
storage to the remaining system components

m maintains the mapping
page number — physical location |,

where a physical location could be, e.g.,
m an OS file name and an offset within that file,
m head, sector, and track of a hard drive, or
m tape number and offset for data stored in a tape library
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Empty Pages

The disk space manager also keeps track of used/free blocks.

Maintain a linked list of free pages
m When a page is no longer needed, add it to the list.

Maintain a bitmap with one bit for each page
m Toggle bit n when page n is (de-)allocated.

% To exploit sequential access, it may be useful to allocate contiguous
sequences of pages. Which of the techniques 1 or 2 would you

choose to support this?
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Buffer Manager

[ Web Forms j [ Applications ] [SQL Interfacej
1
SQL CoInmands

Parser

Executor

‘ Operator Evaluator ‘ ‘ Optimizer ‘

[

Transaction <—>{ Files and Access Methods F
Manager 1
74 Buffer Manager P ,F\i/lecovery
Lock T anager
Manager Disk Space Manager
- : -
DBMS
data files, indices, ... Database

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018



Buffer Manager

page requests The buffer manager
. m mediates between external
6 114 main storage and main memory,
memory _ ,
3 _ B manages a designated main
disk page
7|« memory area, the buffer pool
~free frame i
for this task.

Disk pages are brought into memory
disk as needed and loaded into memory
[1]2]3]4[5]6] frames.

[7]8]9]10]11] -] A replacement policy decides which
page to evict when the buffer is full.
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Interface to the Buffer Manager

Higher-level code requests (pins) pages from the buffer manager and

releases (unpins) pages after use.

pin (pageno)
Request page number pageno from the buffer manager, load it into
memory if necessary. Returns a reference to the frame containing
pageno.

unpin (pageno, dirty)
Release page number pageno, making it a candidate for eviction.
Must set dirty = true if page was modified.

D Why do we need the dirty bit?
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Implementation of pin ()

Function: pin(pageno)

=

2 if buffer pool already contains pageno then

3 pinCount (pageno) < pinCount (pageno) + 1 ;

4 return address of frame holding pageno ;

5 else

6 select a victim frame v using the replacement policy ;
7 if dirty (v) then

8 | write v to disk ;

O

read page pageno from disk into frame v ;
10 pinCount (pageno) + 1 ;

11 dirty (pageno) <« false ;

12 return address of frame v ;
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Implementation of unpin ()

1 Function: unpin(pageno, dirty)

2 pinCount (pageno) < pinCount (pageno) — 1 ;
3 if dirty then
4 L dirty (pageno) < dirty ;

D Why don’t we write pages back to disk during unpin ()7
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Replacement Policies

The effectiveness of the buffer manager's caching functionality can
depend on the replacement policy it uses, e.g.,

Least Recently Used (LRU)

Evict the page whose latest unpin () is longest ago.
LRU-k

Like LRU, but considers k-latest unpin (), not just latest.

Most Recently Used (MRU)
Evict the page that has been unpinned most recently.

Random
Pick a victim randomly.

Q. What could be the rationales behind each of these strategies?
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Buffer Management in Reality

Prefetching

Buffer managers try to anticipate page requests to overlap CPU and
|/O operations.

m Speculative prefetching: Assume sequential scan and
automatically read ahead.
m Prefetch lists: Some database algorithms can instruct the
buffer manager with a list of pages to prefetch.
Page fixing/hating
Higher-level code may request to fix a page if it may be useful in the
near future (e.g., index pages).
Likewise, an operator that hates a page won't access it any time
soon (e.g., table pages in a sequential scan).
Partitioned buffer pools
E.g., separate pools for indexes and tables.
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Databases vs. Operating Systems

Hmm... Didn’t we just re-invent the operating system?

Yes,
m disk space management and buffer management very much look like
file management and virtual memory in OSs.
But,
m a DBMS may be much more aware of the access patterns of
certain operators (— prefetching, page fixing/hating),
m transaction management often calls for a defined order of write
operations,

m technical reasons may make OS tools unsuitable for a database
(e.g., file size limitation, platform independence).
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Databases vs. Operating Systems

In fact, databases and operating systems sometimes interfere.

m Operating system and buffer manager DBMS
effectively buffer the same data twice. buffer
m Things get really bad if parts of the DBMS N
buffer get swapped out to disk by OS VM oS
manager. buffer
m Therefore, databases try to turn off OS $
functionality as much as possible.
i
— Raw disk access instead of OS files.

(Similar story: DBMS TX management vs. journaling file systems.)
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Files and Records
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Database Files

m So far we have talked about pages. Their management is oblivious
with respect to their actual content.

m On the conceptual level, a DBMS manages tables of tuples and
indexes (among others).
m Such tables are implemented as files of records:
m A file consists of one or more pages.

m Each page contains one or more records.
m Each record corresponds to one tuple.

file O
—
—/
= free —
——
page O page 1 page 2 page 3
——
—— free
—
page 4 page 5 page 6 page 7
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Heap Files

The most important type of files in a database is the heap file. It stores
records in no particular order (in line with, e.g., SQL).

Linked list of pages

data [ | data [ 77| data | pages w/
age age age free space
— 9 | page | | page |~ ~_| pag p
age
Pag Q data [ | data [ -~ data full pages
page page | - ~_ Page

+ easy to implement
— most pages will end up in free page list

— might have to search many pages to place a (large) record
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Heap Files

Directory of pages

- ——data

&ﬁ page

data
page

m use as space map with information about free page

m granularity as trade-off space <> accuracy
(range from open/closed bit to exact information)

+ free space search more efficient

— small memory overhead to host directory
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Free Space Management

Which page to pick for the insertion of a new record?
Append Only

Always insert into last page. Otherwise, create a new page.
Best Fit

Reduces fragmentation, but requires searching the entire space map
for each insert.

First Fit

Search from beginning, take first page with enough space.

(— These pages quickly fill up, and we waste a lot of search effort
in first pages afterwards.)

Next Fit

Maintain cursor and continue searching where search stopped last
time.
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Free Space Witnesses

We can accelerate the search by remembering witnesses:
m Classify pages into buckets, e.g., “75%-100 % full”",
“50 %—75 % full", “25%-50 % full", and "0 %—25 % full”.
m For each bucket, remember some witness pages.

m Do a regular best/first/next fit search only if no witness is recorded
for the specific bucket.

m Populate witness information, e.g., as a side effect when searching
for a best/first/next fit page.
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Inside a Page

ID NAME SEX STIToky, W73

4711 | John M aric . {iesEaBetty.
F

1723 Mare-—— M

6381 | Betty F

m record identifier (rid):
(pageno, slotno)

m record position (within page):

slotno x bytes per slot slot no. of records
. directory in this page
m Tuple deletion?

m record id shouldn’t change A
— slot directory (bitmap) 1]0[1] .3[ Header
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Inside a Page—Variable-Sized Fields

— F—
47 11] eMJohn ([I723] oMM

m Variable-sized fields moved to end of N 6381 e lFBot sy (172
each record. 8| ANMTimothyT ) o
m Placeholder points to location. forwafd
m Q Why?
m Slot directory points to start of each
record.

m Records can move on page.

m £.g., if field size changes.

no. of records

m Create “forward address” if record diectory in this page

won't fit on page. \
m © Future updates?

[ o] ‘o] 's] 3] Header
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Slotted Pages—e IBM DB2

In DB2, the slot directory grows from the front, data grows from the end:

0000

0010

0020
0030 67003000 25002500 2500D800 00000000 g.0.............
0040 CDDFO000 970F720F 4DOF280F FFFFDEOE ...... .M.
0050 B90E940E 6FOE4AOE 250EQ00E DBODB6OD ....o0.J.........
Data Page Header: 0060 910D6COD 470D220D FDOCD80OC B30C8EOC ..1.G...........

Slot Count = 103 LR}

Total Free Space = 48 0F90 00100025 0001001D 00C71800 00620D00 ............. b..
L. OFAO 00737472 2D383337 37372020 20202020 .str.83777......
Free Space Offset = 216 OFBO 20202020 20001000 25000100 1D003B18 ................
Maximum Record Size = 37 OFCO 00003AA9 00007374 722D3837 31383720 ...... str.87187.
Data Records: OFDO 20202020 20202020 20200010 00250001 ................
OFEO 001DOOCF 1C000056 AB0O00073 74722D39 ....... V...str.9

Slot O:
Offset Location = 3991 (xF97)
Record Length = 37 (x25)

OFFO0 30303533 20202020 20202020 20202000 0053............

Record Type = Table Data Record

(FIXEDVAR) (PUNC) m Such data can be obtained with
Slor 1. db2dart.
PSS S m Observe how slot 4 is marked
roeor RS T xRy (PN ‘deleted’ (FFFF).
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Sparse Columns

An alternative is interpreted storage.

Interpreted Storage
(ID,4711), (NAME, John), (SEX, M)
(ID, 1723), (NAME, Marc), (SEX,M)
(ID, 6381), (NAME, Betty), (SEX, F)

S Why would one want to do this?
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Sparse Columns in MS SQL Server

Microsoft SQL Server 2008 provides support for sparse columns.

Columns marked as SPARSE are put into an interpreted storage.

CREATE TABLE Products
(..., Card VARCHAR(10) SPARSE NULL, ---)

The internal storage is designed for fast access.

Interpreted Storage
Header Range Mask Column IDs Value Offsets ~ Values

4..-100 1 )
101---200 0 4,5 6 0,10, 18  cececce 5
201---300 L I — 10

‘Acharya et al.. Relational Support for Flexible Schema Scenarios. VLDB 2008.
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Alternative Page Layouts

We have just populated data pages in a row-wise fashion:

I,‘-J A I a7 I bl I <1 I aq I b4 I 4
L
il e e bl T I €T “ =) =3 I €
e b~ |+
teb [ a——5—
sh ) o T =)
3 S )] IS C3 1=
.5 B 2 .
I I T I I page 0 page 1
We could as well do that column-wise:
¥, Fer—T—a—Tta [Ehr—T—b-—1h

5o N =

page 0 page 1
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Alternative Page Layouts

These two approaches are also known as NSM (n-ary storage model)
and DSM (decomposition storage model).!

m Tuning knob for certain workload types (e.g., OLAP)
m Different behavior with respect to compression.

A hybrid a h is the PAX (Partiti | | mini-
ybri pproach is the (Partition }page3
Attributes Accross) layout: : :

m Divide each page into minipages. | : }page2

m Group attributes into them. T ] }p?gme"l

[ [ o

" Ailamaki et al. Weaving Relations for Cache I }pr:g':l_'_o
Performance. VLDB 2001. page O

1Recently, the terms row-store and column-store have become popular, too.
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Magnetic Disks
Random access orders of magnitude slower than sequential.

Disk Space Manager
Abstracts from hardware details and maps
page number — physical location.

Buffer Manager
Page caching in main memory; pin () /unpin () interface;
replacement policy crucial for effectiveness.

File Organization
Stable record identifiers (rids); maintenance with fixed-sized
records and variable-sized fields; NSM vs. DSM.
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